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ON THE IMPOSSIBILITY OF EMBEDDING OF THE SPACE L
IN CERTAIN BANACH SPACES

BY

A. PELCZYNSKI (WARSAW)

In this note we shall prove the following

THEOREM. The space L of all absolutely summable real-valued func-
tions defined on the interval [0, 1] is not isomorphic to a subspace of a sepa-
rable B-space X* conjugate to the B-space X, as well as to a subspace of
a B-space with an unconditional basis.

The impossibility of the embedding of the space L in a conjugate
separable B-space was first proved by Gelfand (see [4], p. 265). Recently
a similar proof was given by Dieudonné [2]. The arguments of Gelfand
and Dieudonné are based on the representation of linear operators in L
by kernels. Qur proof is quite different and is based on the fact that for
every perfect set T C[0,1] of a positive Lebesgue measure there is
a bounded measurable function which is equivalent to mno function
belonging to the first Baire class on 7. The alternative proofs that the
space L has no unconditional basis are given in [5] and [6].

Remark. All results in this paper remain valid if we replace the
space L by the space L(Q, u), where y is a non-purely atomic measure
defined on the o-field of all Borel sets in a compact metric space @, and
L(Q, u) denotes the space of all absolutely summable real-valued func-
tions f defined on @, under the norm |f| = g 1f (@) u(dq)-

By L*® we shall denote the space of all real-valued essentially boun-
ded functions ¢ defined on the interval [0,1] with the morm [g¢] =
€88 suple(t)|. In the sequel by measure of a set 7' C [0, 1] we shall mean

6[0,1]
thé Lebesgue measure of this set and we shall denote it by mes 7.

Lemma 1. Let E be a separable subspace of L™. Then there is a per-
feet set T with positive measure such that every function ¢ in X is equiva-
lent to a function @, the restriction of which is continwous on T.
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Proof. Let (»,) be a dense denumerable set in ¥ and 0 < ¢ < 1.
According to the Lusin theorem we define a decreasing sequence of er-
fect sets (T,) such that mesZ, << mesT,, —e2 "' and the function

%, is equivalent to a function restriction of which is continuous on T,
oo

Let us put I' = (M 1,,. We omit the easy proof that T

rz ]

forn=1,2,...
is a required set.

Lemma 2. Let T be o perfect set in [0, 1] with positive measure. Then
there exists & bounded measurable real function ¢, such that @q(t) = 0 for
t¢T and g4 is not equivalent to any function belonging to the first Baire
class on T.

Proof. Let us put, for a measurable function ¢,

Cr(p, 1) = sup Lim g () — g (4)],
n
where the supremum is extended on all sequences (i) and (¢,) in T with
lim¢, = limt, = ¢,
n n

es8 Op(p, 1) = inf Ry (p, 1),

where the infimum is extended on all functions y equivalent to g.

It is well known that if the function ¢ belongs to the first Baire
clags on » perfect set 7', then for every & > 0 the set {teT: Qp(p, 1) =1}
is closed and nowhere denge in 7'. Hence, to prove our Lemma it is
sufficient to show that there exists a bounded measurable fanction p,
vanishing outside the set 7' and such that ess Q7(p,,t) > 1 for every ¢
in T.

Let (¢,) be a dense denumerable set in 7. We shall consider the fol-
jowing sets of functions:

F={pel®: |p] <1 and () = 0 for 47},
Fn={‘P€F:ess‘Q.’[’(‘P3t~n)>l} (n=1,2,..).
The set F under the metric
t) "t
f I’ (M___w_,)l ..... at
14+le" (1) —¢" (1)

is a complete metric space and in this space the sets F, are closed
and nawhere dense. Hence, according to Baire’s theorem, the set

ele’, ")

Fy="PF— UFn is non-empty. Let g, belong to F,. Tt is easily seen

=1

icm
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that essQr(p,t,) > 1forn =1,2,... Since the set {¢: ess Qp(po, 1) = 1}
is closed and the set (4,) is dense in T, we have essQp(p,,t) =1 for
every'tin T, q. e. d.

LeMMA 3. Let B be a subspace of L™ such that for every g, in L™ there
exists @ sequence (p,) in B satisfying the following conditions:

1

(1) [ e f(t)dt = Yim [ g (0f )@t for

) feL;
(2) the sequence (p,) is o weak Cauchy sequence, 1. e. for every functional
@ in (L™)* there emwists a limit Lm @ (p,).

n

Then the space E is unseparable.

Proof. Suppose a contrario that Z is separable. Let T be chosen for
the separable subspace E of L® and ¢, be chosen for 7' and that they
have the same meaning and properties as in Lemmas 1 and 2. Let (g,)
be a sequence in E chosen for ¢, and satisfying (1) and (2). Sinee every
function ¢ in F is equivalent to a function ¢, the restriction of which
is continuous on 7, then, according to the Hahn-Banach theorem, for
every ¢ in 7T there exists a functional @, over L such that @;(p) = @(t)
for every ¢ in E. According to the condition (2) there exists a limit

(3) Hm @ylg,) = lima, (1) for el
N n n

On the other hand, as (g,) is a Cauchy sequence in L* so
(4) sup Jpu|} < e

Let f be an arbitrary function in I vanishing outside the set T. By
(1), (3) and (4) according to Lebesgue theorem on integration of sequen-
ces of functions, we obtain

[r@gomyat = f F(B) golt) @ = lim f Fgn()a f Hm , (8)-f 2)d¢
T

Since f is an arbitrary summable function on T, it follows that g,

- is equivalent to the function lim @,(-) belonging to the first Baire class
" .

on T, which leads to a contradiction.

Lemmsa 3 is thus proved.

Since I is a conjugate space to the space L, our: Theorem is an
immediate consequence of Lemma 3 and the following

Levmma 4, Let Z be a B-space satisfying one of the following condi-
tions:
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(a) Z is separable and it is conjugate to a B-space X (74 = X*),
(b) Z has an unconditional basis (e,) ().
Then for every subspace ¥ of Z there ewists a separable subspace .,
in Y* such that for every yy in Y™ there is a sequence (yy) in By such that
(1) w5 (y) = limyy(y) for every y in X,
nw

(2") the sequence (yy) is & weak Cauchy sequence in Y™, i. . for every
y** in T there emists a limit, imy™ (y3).
‘ n

Proof. It is sufficient to restrict our attention to the case where
Y is equal to the whole space Z. Indeed, suppose that ki, is a required
subspace in this case. Then for arbitrary subspace ¥ of Z we put B,
= REy,, where R is the operation of restriction of linear functionals
over Z to the linear functionals over ¥, i. e. for every ¢ in Z*, Re* = ¥,
where y*(y) = 2*(y) for every y in Y.

Now suppose that ¥ = Z and consider separately the cases (a) and (b).

(a) In this case we put By = X, where X denotes the image under
the natural embedding of the space X in its second conjugate space X** =
= Z*. The fact that the subspace X fulfills the conditions (1) and (2")
follows immediately from a result of Gantmacher and Smulyan in [3],
which states that if X* is separable, then for every x}* in X™** there is
& sequence («,) in X such that ag*(#*) = lim 2*(»,) for every #* in X*.

n
(b) Let (ey) be a sequence in Z* which consists with the basis (e)
the biorthonormal system, i.e. é(6n) = 8 (n,m =1,2,...). We put
B, = Lin(¢;) (the symbol Lin(w,) denotes the smallest closed linear
manifold containing the sequence (#,)). Obviously E, is separable. Let
% be an arbitrary functional in Z* We put

n
Y = Z%‘(%)% (n=1,2,..).
M=l

Since (ea) is a basis in Z, the sequence 4} satisfies the condition (1').
o
Since the basis (e,) is unconditional, the series Y y&(e,)ef is weakly un-
Meml
conditionally convergent that is w*-unordered (see [1], p. 73, Theo-
rem 1). Hence (y,) is a weak Cauchy sequence.
REFERENCES
(1] M. M. Day, Normed linear spaces, Berlin-Gottingen-Heidelberg 1958.
[2] J. Dieudonné, Sur les espaces L', Archiv der Mathematik 10 (1959),
p. 151-152.

(") For the definition and basic properties of unconditional bases see [1], p. 73

. IMPOSSIBILITY OF EMBEDDING 203

[81 V. Gantmacher et V. Smulyan, Sur les espaces linéaires dont la spheére
unitaire est faiblement compacte, Comptes Rendus de 1'Académie des Sciences de
I'URSS 17 (1937), p. 91-94.

[4] I. M. Gelfand, Abstrakie Funktionen und lineare Operatoren, Recueil
Mathématique 4 (46) (1938), p. 235-286.

[6]1 A. Pelezynski, Projections in certain Banach spaces, Studia Mathema-
tica 19 (1960), p. 209-228.

[6] I. Singer, Sur les espaces de Banach & base absolue équivalents ¢ un dual
d’espace de Banach, Comptes Rendus Hebdomadaires de ’Académie des Sciences,
Paris, 251 (1960), p. 620-621.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Regu par la Rédaction le 8. 10. 1960


GUEST




