

COLLOQUIUM MATHEMATICUM

VOL. VIII

1961

FASC. 2

A THEOREM ON THE DISCRETE GROUPS AND ALGEBRAS L,

BY

W. ŻELAZKO (WARSAW)

It has been proved in [2] that for p>1 the space L_p of all complex valued functions defined on a locally compact Abelian group G and integrable with p-th power with respect to Haar measure μ is a normed algebra under convolution

(1)
$$f * g(t) = \int f(\tau) g(t\tau^{-1}) d\mu(\tau)$$

if and only if the group G is compact. Here is a result for 0 . This result is a consequence of two propositions formulated for measures more general than the Haar measure.

In the sequel we assume p be a real number satisfying $0 , and <math>L_p(\mu, G)$ is the space of all complex functions defined on G such that

(2)
$$||f|| = \int |f(t)|^p d\mu(t) < \infty,$$

where G is an arbitrary group and μ — an arbitrary measure defined on any field of subsets of G. The space $L_p(\mu, G)$ is an F-space with the norm (2) (see [1]).

PROPOSITION 1. If G is a group with the measure μ such that $\mu(t) = 1$ for every $t \in G$, then $L_p(\mu, G)$ is a topological algebra under the convolution (1).

Proof. We have

$$||f|| = \sum_{\tau \in G} |f(\tau)|^p$$

and

$$||f * g|| = \sum_{t} \left| \sum_{\tau} f(\tau) \dot{g}(t\tau^{-1}) \right|^{p} \leqslant \sum_{t} \sum_{\tau} |f(\tau)|^{p} |g(t\tau^{-1})|^{p}$$
$$= \sum_{\tau} |f(\tau)|^{p} \sum_{t} |g(t\tau^{-1})|^{p} = ||f|| \cdot ||g||.$$

Hence $L_p(\mu, G)$ is a topological algebra (1), q. e. d.

⁽¹⁾ The theory of topological algebras of this type is developed in the papers [3] and [4].

206

W. ZELAZKO

PROPOSITION 2. Let G be a group with a measure μ such that there exist a symmetric subset V containing the unit element and a family of μ -measurable sets V_n with $\mu(V_n) > 0$ (n = 1, 2, ...) satisfying

- (a) $0 < \mu(V^2) < \infty$,
- (b) $V_n \subset V$ for $n = 1, 2, \ldots$
- (c) $V_n \cap V_k = \emptyset$ for $n \neq k$;

then $L_n(\mu, G)$ is not an algebra under the convolution (1).

Proof. We shall find two functions $f, g \in L_p(\mu, G)$ such that f * g is not in $L_p(\mu, G)$. By our assumptions we have $\sum_{n=0}^{\infty} \mu(V_n) < \infty$. Hence, by passing if necessary to the subsequence, we may assume that $\mu(V_n) \leq 2^{-n}$ for n = 1, 2, ... We put now

$$f(t) = \sum_{n=1}^{\infty} [\mu_{\cdot}(V_n) \cdot n^2]^{-1/p} \chi_{V_n}(t),$$

where χ_A designates the characteristic function of the set A, and

$$g(t) = \chi_{V^2}(t).$$

We have

$$||f|| = \sum_{n=1}^{\infty} [\mu(V_n)n^2]^{-1} \int \chi_{V_n}(t) d\mu(t) = \sum_{n=1}^{\infty} n^{-2} < \infty,$$

and

$$\|g\| = \mu(V^2) < \infty.$$

Hence $f, g \in L_n(\mu, G)$. On the other hand,

$$f*g(t) = \int f(\tau)g(t\tau^{-1})d\mu(\tau) = \int\limits_{V^{2t}} f(\tau)d\mu(\tau)$$

and for every $t \in V$ we have

$$f*g(t) = \sum_{n=1}^{\infty} [\mu(V_n)n^2]^{-1/p} \cdot \mu(V_n) \geqslant \sum_{n=1}^{\infty} \frac{2^{n(1/p-1)}}{n^2} = \infty.$$

Hence f*g cannot be in $L_p(\mu, G)$, because V contains a measurable subset of positive measure, q. e. d.

Applying the propositions to the locally compact group with the left invariant Haar measure μ , we get the following

THEOREM. Let G be a locally compact group with the left invariant Haar measure μ . Then the space $L_n(\mu, G)$ is a topological algebra under convolution if and only if the group G is discrete.

DISCRETE GROUPS AND ALGEBRAS Ln

207

REFERENCES

[1] S. Rolewicz, On a certain class of linear metric spaces, Bulletin de l'Académie Polonaise des Sciences, Cl. III, 5 (1957), p. 479-484.

[2] W. Żelazko, On the algebras L_p of locally compact groups, Colloquium Mathematicum 8 (1960), p. 115-120.

[3] - On the locally bounded and m-convex topological algebras, Studia Mathematica 19 (1960), p. 333-356.

[4] - On the radicals of p-normed algebras, ibidem (in print).

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Recu par la Rédaction le 28, 4, 1960