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1. Introduction. In almost every aspect of topology the hypothe-
sis of a compact space has led to interesting results and topological dy-
namics is no exception to this. The hypothesis of compactness is a natu-
ral one and is found in many of the classical theorems as a sufficiency
condition. Equicontinuity of the dynamical system, a condition inde-
pendent of compactness of the space, is also a natural hypothesis in topo-
logical dynamics. It is the purpose of this paper to secure consequences
of equicontinuity with particular emphasis on results heretofore known
only in the presence of compactness.

The notation of the paper follows that of [4] and is explained in
Section 2. The intrinsic properties of an equicontinuous flow and the
possibilities of a weaker concept have been found of suffieient interest
to form the content of Section 3. In Section 4 the classical recurrence
properties are taken up in & very general setting. In some instances these
properties hold on a space as & result of holding on a dense subset, but
this is more often the case in the presence of equicontinuity of the system.
Limits of collections of orbits are considered in Section 5. As might be
expected, the most interesting systems for study are those which employ
the properties of real numbers, and some consequences of order are men-
tioned in Section 6.

2. Preliminary definitions and notation. Throughout the paper
X, T, 8, @ R and I will be used in the special sense explained in this
section. X will denote a metric space with metric ¢. 7 will denote a set
of continuous transformations of X into itself. Usually 7 will be assumed
closed under a binary operation which will always be assumed associative
and commutative. When these conditions are imposed on T we shall
refer to T as the semigroup §. It is often desirable to assume that § is
2 group and in this case we shall use G to denote this group. In this case,
of course, each transformation of ¢ is a homeomorphism of X onto itself.
A topology, not necessarily metric, will be assumed on § and @ in which
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the binary and inverse operations are continuous. In other words, S is
a topological semigroup and @ is a topological group. The notation § =@
means S is & group.

The special additive groups of the real numbers B and the integers
T with their natural topology are often employed to yield results not
always possible in the more general setting of & topological group. § =R
means § is isomorphic to E.

A continuous function of XX § onto X is a flow on X provided
#(8,85) = (®81)S, = @8,8, for all zeX, s;,8¢8. The algebraic rather
than the functional notation will be used. The point set s8C X will be
called the orbit of . This terminology will not be used in the case of
simply 2 set of transformations T, but x¢ will always denote the image
of 2z under the transformation i. In case 8§ = I, the flow consigts of the
identity and the iterations of ¢ and ¢~*. This has often been called the
discerete flow.

A semigroup 8'CS is said to be replete provided S’ contains some
translate of each compact set in S. A set ACS is said to be extensive
provided that A intersects every replete semigroup in §. A set AC S iy
said to be syndetic provided that there exists a compact set K C § such
that § = AK (this is the algebraic product, not the set intersection).
It is remarked in [4] that when S is a group, a syndetic set is extensive.

In case 8 = R or § = I these definitions become simpler. A semi-
group 8’ is replete provided 8’ contains a ray. 4 is extensive provided
A contains a sequence

frde <7, <roy <re<r <1y <...

which is unbounded above and below. Such a sequence will be called an
extensive sequence. A iy syndetic provided that A contains an extensive
sequence {r;} such that the sequence {r;—;_,} is bounded. Such a sequence
will be called & relatively dense sequence.

A set YC X is said to be smvariant provided YiC Y for each feT.
T =1, Y is seen to be invariant if and only if ¥¢, = ¥, wheére ?, = 1.

The null set (of X) will be denoted by 0. U,(x) denotes the set of
all yeX such that o(z,y) <e.

3. Equicontinuity and related properties. T is said to be equi-
continuous at xeX provided that to each real number &> 0 there cor-
responds & real number ¢ < 0 depending upon # and ¢ such that when-
ever yeX, o(w,y) < 8, then o(wt,yt) < e for each teT. T is said to
be equicontinuous on Y C X provided T is equicontinunous at each ye¥.
T is said to be equiuniformly continuous on ¥ C X provided that to each
real number ¢ > 0 there corresponds a real number 6 > 0, depending
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upon ¢, such that whenever y,y'cY, o(y,¥’) < 6, then o(yt,y't) < e
for all teT'.

It is not difficult to show that a necessary and sufficient condition
that ¢ be equicontinuous on the orbit #@ is that ¢ be equicontinuous
at @.

‘When T is isomorphic to R, the reals, one obtains the following cha-
racterization of equiuniform continuity:

THEOREM 1. If T =R, a necessary and sufficient condition that
R be equiuniformly continuous on X is that corresponding to each &> 0
there is @ 6> 0 and an N > 0 such that whenever ©,y<X, o(z,y) < 6,
then p(ar, yr) < & for all reR for which |r| > N.

Proof. The necessity is obvious. For the sufficiency let ¢ > 0 be
arbitrary and let 6 and N be as guaranteed by the hypothesis. Now take
¢’y N' so that if p(s,y) < ¢’ < 6 and |r] > N', then g(ar, yr) < 8. If
lr| > N, o(#,y) < 8 < é and g(ar,yr) <e by hypothesis. If |r| <N,
let M=3 max(N,N')sothat r< N M [3<M/2. Thus M—r = (M[2—7r)+
+M[2> N and r—M|>N. If @, y are taken so that o(=z,y) < &,
then o(sM,yM) < ¢ and g(ar, yr) = o[(aM)(r— M), WM)(r—M)] <s.

An example of Edrei [1] shows that the hypothesis “|r| > N” in
Theorem 1 can not be weakened to “each r belonging to an extensive
sequence”.

8 is said to be weakly transitive on the closed set ¥ C X provided that
there is an element yeY for which yS = Y and strongly iransitive on the
closed set ¥ C X provided that for each yeY, yS = Y. Weak transitivity
does not imply strong transitivity even where X is compact and 8 = I.
The following theorems relate transitivity to equicontinuity in trans-
formation groups.

TaEOREM 2. If there is an element y ex@ such that G is equicontinuous
at y, then oG = y@.

Proof. yG C 2@ since @ is closed and invariant. To show that #GC y&
let u e2@=u@, and let ¢ > 0 be arbitrary. Since @ is equicontinuous at y,
there is a ¢ > 0 such that if ¢(y, v) < 8, then ¢(yg, vg) < e for each ge@.
Now ye?_ﬁ 80 there is a v eu@ such that ¢(y,v) < 8, and since & is a group
there is a ge@ such that vg= u. Since o(yg, u) = o(yg, v9) < &, uey—G,
and therefore 2GC y@ and 2GC y@.

The next theorem follows at once from Theorem 2.

TEEOREM 3. If G 4is weakly transitive and equicontinuous on ¥YC X,
then @ is strongly tramsitive on Y. If G is equicontinuous on @, then G is
strongly tramsitive on z6.
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Theorem 3 provides an opportunity to compare equicontinuity of
@ with compactness of X. A closed set ¥ C X is said to be minimal pro-
vided that S (or &) is strongly transitive on Y. It is well-known that in
case G =R or G = I, if X is compact, each closed invariant set containg
2 minimal set [8]. Using theorem 3 and the fact that if Y is invariant
then y?‘r CY, we have the following analogous theorem for equicontinu-
ity valid for any transformation group:

THEOREM 4. If G is equicontinuous on X, a necessary and sufficient
condition that a closed set Y CX be a minimal set is that X be an orbit clo-
sure (the closure of an orbit). Thus if G is equicontinuous on ¥ CX and Y
is closed and invariant, then Y contains o minimal set.

Examples are easily constructed to show that .Y may be a compact
orbit clogsure without being a minimal set.

If X is expressed as the union of disjoint minimal sets, these sets
are said to form a minimal set partition of X. According to the definition
of a minimal set, distinet minimal sets must be disjoint and so, from
_ Theorem 4, we see that if ¢ is equicontinuous on X, then the orbit clo-
gures form a minimal set partition of X.

The following property, weaker than equicontinuity, has been used
by Wenjen [7] to secure necessary and sufficient conditions for the exis-
tence of a convergent sequence in & family of transformations. )

SCR is said to be e-related at x<X provided that to each ¢ >0
corresponds & 6 > 0 such that whenever yeX, o(z,y) < §, then there
is an N > 0, depending on y, for which g(ws, ys) << e for s > N. § is
e-related on ¥ C X provided R is e-related at each ye¢Y. § is uniformly
e-related on ¥ CX provided that to each £ > 0 there corresponds a 6 > 0
in such a fashion that if #, y<¥, o(z,y) < §, then there is an N > 0,
depending upon z, y as well as ¢ and o(ws,ys) <e for |s| > N. It is
obvious that if B (or I) is equicontinuous then R (or I) is e-related. The
following example demonstrates that the converse is not true by exhi-
biting a flow which is uniformly e-related but not equicontinuous and
none of the transformations is uniformly continuous.

Example 1. Let X be the following subset of #,: all points (¢, 0)
and (4,1/§) for ¢ =0, +1, +2,...; § =1,2,8,... Let @ = I be defi-
ned as follows:

when # = (4,1),1 <1,

when ¢ = (4,1),1 > 2,

when & = (4,1/1),4 > 1,
‘when & = (¢,1/(i—1)),4> 1,

define 1 = (¢, 1);

define @l = (i+1,1/(i—1));
define #1 = (141, 1);
define ol = (i, 1/(i—1)};

for all other points & = (i, p)eX, define #l = (i+1, p).
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It is well-known [8] that if X is compact and S is equicontinuous
on X, then S is equiuniformly continuous on X. Similarly one can show
that if X is compact and R is e-related, then R is uniformly e-related.

We now state a theorem needed in the next section. The proof is
routine and will be omitted.

THEOREM 5. If f,(%) is & mapping of a metric space into itself for
n=1,2,3,... and the sequence {f,(x)} is e-related (uniformly e-related)
and converges pointwise to F(x), then F(z) is continuous (uniformly con-
tinuous) on X.

In Theorem 5 the hypothesis that {f, (%)} is e-related is stronger than
is necessary for the conclusion. Let {f,(#)} have the property that cor-
responding to each &> 0 and we<X there is a 6 > 0 such that when-
ever yeX, o(z,y) < 4, then there is an increasing sequence {n;} of posi-
tive integers so that o(f,, (@), fu;(9)) < e. If {f,(#)} is & sequence of map-
pings of a metric space X into itself with this property and if f,(x) con-
verges pointwise to F(x), then one can show that F(x) is continuous.

In Theorem 5 one can not prove that the convergence is uniform as
this can not be inferred even when {f,(z)} is equiuniformly continuous.

4. Recurrence properties and their extensions to the closure of
a set. In this section K denotes a dense subset of X, that is, K = X. In
most of the theorems of this section we assume that 8 has certain pro-
perties on K and show that this implies that § will have the same proper-
ties on X. The difficult question of extending the flow itself from K to
X will not be considered. Thus, we will always assume that the flow is
defined on all of X. }

It is not difficult to show that if S is equiuniformly continuous on K,
then § is equiuniformly continuous on X and that whenever R is uni-
formly s-related on K, then R is uniformly e-related on X. The word
“yniformly” may not be omitted from the preceding observations, as
is shown by the following examples wherein I is equicontinuous on K
but not even e-related on X, which is compact.

Example 2. Let K be the subset of the real numbers consisting
of the points 4 (1—1/2") for n = 0,1,2,... and let X consist of the
points of K and the two points +1. Let G = I, defined as follows:

2041 for —1<
@

. <0,
T @2 for o< 1.

2
<
I is not erelated at z = —1.

8 is said to be periodic at weX, or x is a periodic point, provided
there exists a syndetic semigroup A CS such that #4 = . An imme-
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diate consequence s that the orbit #8 is compact. S is pointwise periodic
on YCX if 8 is periodic at each ye¥. 8 is periodic on ¥ CX provided
there exists a syndetic semigroup 4 C § such that y4 = y for each y Y.
It is easily shown that if § = &, 4 is a subgroup of G.

We now define almost periodicity and recurrence in S. § is said to
be almost periodic (recurrent) at <X, or # is an almost periodic (a recur-
rent) poini, provided that to each &> 0 corresponds a syndetic (an
extensive) set A CS such that g (v, #s) < ¢ for each seA. § is pointwise
almost periodic (pointwise recurrent) on Y CX if § is almost periodic
(recurrent) at each y<¥. S is almost periodic (recurrent) on Y CX pro-
vided that to each &> 0 corresponds a syndetic (an extensive) set A CS§
such that o(xz, »s) < ¢ for each sed, ye¥. It is clear that if S is perio-
dic at =, then § is almost periodic at » and if § is almost periodic at =,
then § is recurrent at a.

Before considering the extensions of these properties from K to X
we recall [8] that if 8§ = I then § periodic on Y implies § is equiconti-
nuous on Y and prove that this conclusion holds with the weaker hypo-
thesis that I is almost periodic on X, If X is compact it is known [3]
that equiuniform continuity of @& and almost periodicity of G are equi-
valent.

THEOREM 6. If I is almost periodic on X, then I is equicontinuous on X.

Proof. Let ¢ > 0 be arbitrary. From the almost periodicity there
is a relatively dense sequence {4,} and a number B such that 0 < 4,—4,_,
< B and o(=, #4,) < ¢/3 for each integer # and each z<X. To show the
equicontinuity let <X and i<l be arbitrary. Since for each M, 1y, 18 con-
tinuous, there is a 6, > 0 such that whenever y <X such that o (x, y) < 4,,
then p(#i,, #i,) < &/3. Let 6 = mind, for # =0,1,2,...,B—1. Let
k be taken so that 4, ; <—14 <4, and it follows that 0 < i-+4, < B.
Now if y is taken such that g(z,y) < 6 < Oisiy,, then o(wity, yit,) < &f3.
From the almost periodicity o (wi, %) = o [(24), (1)i,] < ¢/3, and simi-
larly o(yi, yiix) < £/3. It follows from the triangle inequality that
o(@i, yi) < o(wt, Wiiy) + o (w8t yity) + o(yt, yiiy) < ¢, and thus I is equi-
continuous on X.

That pointwise periodicity may not be substituted for almost perio-
dicity in Theorem 6 is illustrated by the following example where I is
even pointwise periodic on a compact space X without being equicon-
tinuous.

Example 3. Let X consist of the following subset of F, (expressed
in polar coordinates (r, #)): p,, = (1—1/2n,0), P is the set (1,#) for
0 <9 < 2r, with the transformation 7 defined ag

Pl = (1—1/2n,9+=x/n) and pl =p for peP.
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Let X = (U psI)w P. I fails to be equicontinuous for any peP,

n=1
» #(1,0).

We turn now to the question of extending the properties of perio-
dicity, almost periodicity and recurrence from K to X. From the conti-
nuity of the transformations it is obvious that if S is periodic on K,
then § is periodic on X. We combine the almost periodie and recurrent
cases into one theorem.

THEOREM 7. If 8 is almost periodic (recurrent) on K, then S is almost
periodic (recurrent) on X.

Proof. Let ¢ > 0, x¢X be arbitrary. Then by hypothesis there is
a syndetic (extensive) set ACS such that g(k, ks) < &/3 for all keK,
seA. Now let s be an arbitrary element of 4. By the continuity of s at =,
thereis & > 0 such that 4 < £/3 and g (ws, ys) < ¢/3 whenever p(x, y) << 9
and yeX. Since K = X, an element k<K may be selected so that
o(#, k) < 6 < £/3. Then, by the triangle inequality, o(z, #s) < o(@, k)+
+o(k, ks)+ o(ks, »8) < e. Since s was an arbitrary element of the syn-
detic (extensive) set A, this establishes the almost periodieity (recurrence)
of § on X.

In our next example we show that pointwise periodicity, pointwise
almost periodicity and pointwise recurrence do not generally extend
to X from K. In the example we give a flow I which hag all of these pro-
perties on K but has none of these properties on the compact space X.

Example 4. Let X be the set of all functions from the integers onto
the two symbols @, b, and let the metric be defined as follows, where
functional notation is employed for clarity:

0, when # = y;
1, when #(0) # y(0);

1/(j+1), when z(n) =y(n)forn=0,41, £2,..., £jbut
#(j+1) #£y(G+1) or a(—j—1) #y(—j—1).

Let I be defined as follows: #(n)1 = #(n-+1). This example is well-
-known and properties of the flow are found in [5]. If K is taken to be
the get of all periodic points, it is easy to show that K = X . I fails to
be recurrent, even, at the point where #(0) = a, #(n) = b for n = 0.

Before considering pointwise recursive properties further we wish
to recall the property of non-wandering, the weakest recursive property
considered in the paper.

8 is said to be non-wandering at x<X, or © is a non-wandering point,
provided that to each &> 0 corresponds an extensive set. ACS such
that U,(x) ~U,(z)s # 0 for each sed. 8 is pointwise non-wandering on
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Y CX if § is non-wandering at each yeX¥. § is non-wandering on YCX
provided that to each s > 0 corresponds an extensive set ACS such that
U.(y) ~ U, (y)s # 0 for each sed, yeY. It is obvious that if S is recar-
rent at », then S is non-wandering at #. Under certain hypotheses the
converse is true.

TeEOREM 8. If S is equicontinuous and non-wandering at neX,
then S is recurrent at x. If S is equiuniformly continuous and non-wander-
ing on YCX, then 8 ds recurvent on Y.

Proof. Let ¢ > 0 be arbitrary. Then by the equicontinuity at =,
there is a 6 > 0 such that 6 < &/2 and o(»s, ys) < &/2 for each seS when-
ever o(#,y) < 6. Now since S is non-wandering at , there is an exten-
give set AC § such that Us(w) ~Us(z)s 5= 0 for each sed. Let sed be
arbitrary, and corresponding to this s let ve Us(#) ~ Us(x)s. Then there
is & ye Us(x) such that v = ys, and so o(ws, v) < &/2. Since ¢(x, v) < /2,
it follows that o(w, #s) < o(x, v)+o(v, ws) < ¢, and since s was any ele-
ment of the extensive set 4, § is recurrent at .

The proof of the second half of the theorem is similar.

We are now ready to give the theorem for non-wandering S analo-
gous to Theorem 7. Non-wandering differs from the other recursive
properties in that pointwise non-wandering on K implies this property
on X.

THEOREM 9. If 8 is non-wandering on K, then § is non-wandering
on X. If 8 is pointwise non-wandering on K, then S is pointwise non-wan-
dering on X.

Proof. Let ¢ > 0 be arbitrary. By hypothesis there is an exten-
sive set ACS such that U, (k) ~ U,p(k)s # 0 for each sed, ke K. Leb
weX be arbitrary. Then there exists a keK for which o(x, k) < ¢/2.
Then U,(#) D U,p(k) and U,(x)s DU,p(k)s for each seA. Therefore
U.(2) ~U,(x)s DU,p(k) ~ U,p(k)s #0, so that § is non-wandering on X.

The proof for the second part is similar. For the case 8§ =@, it
algo follows from a remark in [4].

In the presence of equicontinuity of § on X or equiuniform conti-
nuity on K, either pointwise recurrence or pointwise almost periodi-
city on K implies the respective property on X.

TeroREM 10. If 8 is equicontinuous on X or equiuniformly conti-
nuous on K and if 8 is pointwise almost periodic (pointwise recurrent)
on K, then 8 is pointwise almost periodic (pointwise recurrent) on X.

Proof. Assume § is equicontinuous on X. Let & > 0, #eX be arbi-
trary. Then there is a 6 > 0 such that 6 < ¢/3 and o(zs, ys) < ¢/3 when-
ever yeX, o(@,y) <0< ¢[3. Since K = X, there is an element keK
for which o(w, k) < 8 < ¢/3. Now, using the hypothesis of pointwise
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almost periodicity (pointwise recurrence) there is a syndetic (extensive)
set ACS such that o(k, ks) < &/3 for each sed. Applying the triangle
inequality, ¢(u,#s8) < o(#, k)+g(k, ks)+ o(ks, @s) < e, the almost perio-
dicity (recurrence) of the arbitrary point x is established.

In case § is equiuniformly continuous on K then, as has been obser-
ved, 8 is equiuniformly continuous on X and the theorem is proved.

If § = R or 8 = I, the hypotheses of Theorem 10 may be weakened.

TeEEOREM 11. If R is e-related on X or uniformly e-related on K and
if R is pointwise almost periodic (pointwise recurrent) on K, then R is point-
wise almost periodic (pointwise recurrent) on X.

The proof of Theorem 11 is similar to that of Theorem 10 and will
be omitted.

The convergence of erelated sequences of transformations was
eonsidered in Theorem 5. Using that theorem we are able to secure the
following result: '

TueoREM 12. If X 4s complete and f,(X)CX for n =1,2,... and
if the sequence {f,,(X)} is e-related on X (uniformly e-related on X) and con-
verges to F(x) on K, then f,(x) converges on X, and the limit function is
continuous (uniformly continuous) on X.

Proof. Let ¢ > 0, x¢X be arbitrary. Then there is a 6 > 0 such
that if o(x,y) << 6, yeX, then there is an N = N(y) > 0 for which
o{fa(®@), fa(y)) < £/3, whenever n>> N . Since K = X, there is an element
keK for which o(z, k) < 8. Also, since f,(k) converges to F(k), there is
a number N’ > 0 such that o(fin(k), fu(k)) < /3 for m, n > N'. Let
m, n > max(N, N'). Then by the triangle inequality

Q(fm('r’)yfn(m)) < Q(ﬁzt(w)ifm(k))+ Q(fm(k)’fn(k))”]"g(fn(k)yfn(w)) < &

so that {f,(x)} is a Cauchy sequence and consequently convergent since
X is complete. As a consequence of Theorem 5, F({x) is continuous on X
(uniformly continunous on X).

‘We now summarize those results of this section that pertain to ex-
tending properties of § from K to K= X. If, on K, § is equinniformly con-
tinuous, uniformly s-related, periodic, almost periodic, recurrent, non-
-wandering, or pointwise non-wandering, then 8 has the respective pro-
perty on X. If § is pointwise almost periodic or pointwise recurrent on
K and if, also, § is either equiuniformly continuous on K or equiconti-
nuous on X, then S has the respective recursive property on X. We have
not shown sufficient conditions for § pointwise periodic on K to imply S
pointwise periodic on X. According to Example 4, compactness is not
enough to insure this inheritance. We now give an example to show
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that § may be pointwise periodic on K, equiuniformly continuous on
the compact space X yet § is not pointwise periodic on X. This example
was suggested by E. E. Floyd [2].

Example 5. Let X be all (#,, 2,,...) such that

(1) #; is an integer 1,2,3,..., 2" and #,,, = o (mod2’)
or .

(2) ®,is an integer1,2,3,...,2" and »;; = #;(mod 2,4 = 1,2, ...,
m—1 while 5, =0, i =m,m-+1,...

For example, X contains the following three points: (1,1, 35,...),
1,3,7,..9,(1,3,3,0,0,...).

If # = (2, %,...) and ¥ = (¥,, ¥s, ...) are points of X,

1 2 — il
ol®,9) = -
=1

provides a metric in X under which X is compact.

For © = (@1, ®y,...)eX define S=1 as o1 =y = (¥, ¥s, ...) Where-
in y; = 2,—1 reduced mod2’ in case z; #£0. If 4, =0 let Y =0.
Under § the points of (2) are periodic and it is easily seen that they are
denge in X. Since § is equiuniformly continuous on the points of (2),
8§ is equinniformly continuous on X. However, no point of (1) is periodic.

5. Limits of collections of orbits. Let H be any infinite collection
of subsets of X not necessarily distinet. The set of all #¢X such that
for every £> 0, U,») contains at least one point of infinitely many
sets of H is called the limit superior of H, written lim sup H. The set of
all X such that for every ¢ > 0, U,(x) contains at least one point of
all but a finite number of sets of H is called the limit inferior of H, written
lim inf H. In case lim inf H = lim sup H, then H is said to converge,
and the set is called the limit of H, written LmH,

It is noted in [8] that liminfH C limsupH, and that each set
is -closed. It is easily seen that in case H is a collection of orbits, then
limsupH and lim infH are invariant sets.

TueoreM 13. If H is a collection of orbils of points of X such that
limint H = L, and if G is equicontinuous at some point wel, then L = af¥
so that G is weakly transitive on L. Thus, if G is equicontinuous on L, then
L is o minimal set.

Proof. Since L is closed and invariant, it follows that 2G CL. To
complete the proof, let ¢ > 0, y<L he arbitrary. Then by the equiconti-
nuity there is a 6 > 0 such that if g(w,u) < §, then o(wxg,ug) < ¢f2
for each ge @. Since @, yeIL, each of the sets Us(») and U, (y) intersects
all but a finite number of the orbits in H so that there is an orbit 2G-eH
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intersecting both Us(#) and U, (y). Let u <26 ~ U, () and ugexG ~ U, (y).
Then by the equicontinuity e(2g, ug) < £/2, and, using the triangle ine-
quality, o(y, #9) < oy, ug)+ o(ug, 29) < ¢, LCxG, and therefore L = 2@,
from which it follows that G is weakly transitive on L.

Since a periodic orbit is compact and therefore closed, the next
theorem follows from Theorem 13.

TaEOREM 14. If H 4s a collection of orbits of points of X such that
limintH = L and if @ is equicontinuous and periodic at some point zel,
then L is am orbit.

In Theorem 14 almost periodicity may not be substituted for perio-
dicity at a point even with additional hypotheses, as is shown in the
following example, where X is compact, ¢ = I equiuniformly conti-
nuous and almost periodic on X, and limH exists but is not an orbit.

Example 6. Let X be the subset of E, for which (in polar coordi-
nates (r, #)) r =1 and let I be defined as the rotation through 1 radian,
(1,91 = (1, #+1). It is easily seen that X is compact and the I is
equiuniformly continuous, and it follows from a theorem in [3] that I
is almost periodic on X. If H is taken to be the set of all orbits of points
of X, it is obvious that imH = X is not an orbit.

Thus far the question of the convergence of a collection of orbits
has not been considered. In the presence of equicontinuity a sufficient
condition for convergence is now shown.

TEEOREM 15. Let (a) ¥ = {y,}, where y, <X and the sequence Y, con-
verges o 1 X, (b) H be the collection of orbits y& for all y<¥Y, (c) G equi-
continuous at %, then LmH = aG.

Proof. It iy obvious that xeliminfH, which is a closed invariant
set, so that »GCliminfH C limsupH. Now let &> 0, pelimsupH be
arbitrary. By (c) there is a 4 > 0 such that whenever o(z, u) < 4, then
o(@g, ug) < &]2 for each ge@. Select a sequence {y,} such that each y,e Y
and 4,6 ~U,,(p) # 0. Then by (a) for some n, o(%,Y,) < 0. Let y,g
eUp(p) so that o(p,yng) <e/2. By the triaBgle inequality ¢(p, 2g)
< o(p, Yng)+ g(yﬂg, zg) < e, and limpupH C 2GC liminfH C limsup H,
from which it follows that limH = 2G.

The strength of the hypothesis of equicontinuity is illustrated by
the following example where X is compact, I is pointwise periodic but
the limit does not exist.

Example 7. To the space of Example 3 add the fixed points Pap—1
= (1—1/@n—1),0) for n =1,2,3,... The sequence of points {pa}
converges to the point (1, 0), but liminfp,& is the point (1, 0) whereas
limsupp,G is the set P of all points (1, ) for 0 < & < 2.
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In case C is a component of YC X and ¥ = {J ¢S, then Y is called
ceC
a component orbit. It is obvious that the orbit of a point is & component
orbit and that a component orbit is an invariant set. The following the-
orem is an immediate consequence of the continuity of the transforma-
tions and gives a characterization of component orbits:

THEOREM ‘16. A necessary and sufficient condition that an invariant
set YC X be a component orbit is that yG ~ C # 0 for each component ¢
of Y and each yeY.

In the case where X is compact, § = I, and I is pointwise periodic
on X, Schweigert [6] has shown that the limit of a sequence of compo-
nent; orbits is itself a component orbit. It is easy to see that the same
result is valid for the limit of amy collection of component orbits. It is
interesting to note that this is one situation where equicontinuity is no
substitute for compactness. This is shown in the following example
where I is periodic and equiuniformly continuous on the complete space X.

Example 8. Let X be H, and let H consist of the sequence of ellipses
22 [(1—1/n)2+4y2n® =1 for n =2,3,4, ...

I is defined so that (#, y)1 = (»,y). Thus every point of X is fixed.
Each ellipse is obviously a component orbit, but lim H is the pair of paral-
lel lines #*—1 = 0, which is not a component orbit.

The case where @ iz connected (including the case G = R) is easily
treated. In this case pointwise periodicity plays no role.

TeEOREM 17. If X is compact, G is connected and H is a convergent
sequence of component orbits, then im H 4s a component orbit.

Proof. Since G is connected, each component orbit is connected.
It is known [8] that under these conditions lim H is connected. By a pre-
vious remark H is invariant and consequently a component orbit.

Using the fact that if @ is connected an orbit closure is also conne-
cted and Theorem 13 we secure the following theorem:

TurorEM 18. If H is a collection of orbits of points of X such that
limintH = L and if & is connected and equicontinuous at some point xeL,
then L is a component orbil.

That the last theorem is not valid for a collection of component
orbits is shown by Example 8, defining @ exactly as I so that each trans-
formation of @ is the identity transformation.

6. Special properties of ordered transformation groups. When-
ever § is simply ordered, recurrence properties may be defined in terms
of the order relationship. This has already been done in case § = R or

8 = I. Some additional properties of these special cases will be consi- ,

dered in this section.
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R is positively recurrent ot <X provided that to each &> 0 corres-
ponds an unbounded sequence {ra} such that 0 < 7,—17,_ 3 <7y, 7ek,
and o(@, ar,) < & for n =1,2,3,... If, in addition, {r,—r,_,} is boun-
ded, R is said to be positively almost periodic at ©e X . Negative recurrence
and other related properties are defined in an obvious manner. If follows
immediately from the group property that if R is positively almost perio-
dic at ¢ X, then R is positively almost periodic at ar for each reR, and
similarly for the other related properties. In the presence of equiconti-
nuity a stronger property may be shown.

TuroREM 19. If R is equicontinuous at <X and either positively or
negatively almost periodic (positively or megatively recurrent) af ®, then R
is almost periodic (recurrent) at m. Thus, if R is equicontinuous on ¥C X
and is either positively or negatively almost periodic (positively or negatively
recurrent) on Y, then R is pointwise almost periodic (pointwise recurrent)
on Y.

Proof. Let R be positively almost periodic at # and let ¢ > 0 be
arbitrary. By the equicontinuity there is a 6 > 0 such that whenever
o(z,y) < 8, then g(ar,yr) < ¢ for each r<R. Then by hypothesis there
is an unbounded sequence {r,} such that 0 < r,—7,_; < p, {Fa—"n1}
is bounded and o(z,ar,) < for n=1,2,3,..., and it follows that
olar, ar,7) < & for each reR, and in particular o[z(—1,), o (— 1) ]
= g[#(—17,), ¥] < e, 80 that-R is negatively almost periodic at « and
consequently almost periodic at #. The proof in the other case is iden-
tical.

The following theorem is easily established by a proof similar to
that for Theorem 19:

TEEOREM 20. If B is equiuniformly continuous on YC X and either
positively or negatively almost periodic (positively or negatively recurrent)
on Y, then R is alimost periodic (recurrent) on Y.

A point yeX is called an w-limit point (a-limit point) of the orbit 2R
provided that there exists an unbounded sequence {r,} such thab

0 <ty g < Ty (0> 7—1yy >1y), TpeR for n=1,2,..

and limar, = y. The set of all w-limit points (a-limit points) of the orbit
%R will be denoted by =R, (zR,). It is easily seen _that each of the sets
xR, and zR, is closed and invariant and that zR =asR v me.u mR‘E'
It is remarked in [4] under more restrictiﬁ conditions that if B is posi-
tively (negatively) recurrent at @, then wR = @R, (¢R,) and that if B
is recurrent at #, then 2R = 2R, = #R,. The same result is valid here.
It is now shown that in the presence of equicontinuity, it holds without
Tecurrence. .
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TeEOREM 21. If R is equicontinuous on @R and #R,~ oR, + 0, then
2R = oR, = sR, and R is recurrent at .

Proof. Assume «zR, # 0 and let yeaR,, 6> 0 be arbitrary. By
hypothesis there is a 6> 0 such that whenever o(y,u) << J, then
o(yr,ur) < ¢ for each reR. Since yeaxR,, there is an unbounded increa-
sing positive sequence {r,} such that o(y, ar,) < é from which it follows
that

ely(—m), a1 (—1)] = o[y (—m), 2] < ¢,

so that it is seen that zeyR,C ﬁf . Now since yeaR,, a closed and inva-
riant set, then yR C xE,, and therefore z xR, which is also closed and
invariant so that #R CaR,, and it follows that xR = aR,.

Since z xR, , then wesR, from Theorem 19, and similarly #R = aR,.
The proof is identical in case xR, # 0.

All of the results in this section are established in the same manner
when @G is any simply ordered group, with appropriate modifications
of the definitions.
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P 326. Is it possible to construet a continuous associative multipli-
cation on the closed n-cell (n > 2) such that the boundary consists of
exactly those elements satisfying »? = %

P 327. Is it possible to construct a continuous associative multi-
plication on an n-sphere in such a way that (i) every element is the
product of two elements, (ii) there is a zero-element.

For n = 1 the answer is negative, see [3].

P 328. If ¢ is a compact totally disconnected metrizable group
does there exist a compact connected-acyclic one-dimensional metri-
zable space T and on 7' a continuous associative multiplication with
a two-sided unmit such that the maximal subgroup of 7' which contains
the unit coincides with ¢ and such that @ is the set of endpoints of T'?%

If @ is the Cantor group the angwer ig affirmative (unpublished).
A related question hag been congidered and solved by Koch and McAuley
(also unpublished).

P 329. Suppose that Euclidean n-space R" is supplied with a con-
tinunous associative multiplication with unit and that there exists a com-
pact connected subset G of R™ which contains the unit and which is
& subgroup of R" under the given multiplication. Ig it possible that &
can be “self-linked” in any reasonable way? (Cf. [1] for » = 3).

P 330. If § is a compact connected locally connected metrizable
one-dimensional semigroup with unit, then it is known that 8 is either
a dendrite or contains exactly one simple closed curve which coincides
with the minimal ideal of §. (The details of the proof are unpublished
but see [6]). Is there an analogous proposition for higher dimensions?

P 331. If § is a compact connected commutative semigroup with
unit, all of whose elements satisty #* = @, does § have the fixed point
property ¢

P 332. If § is a compact semigroup then the minimal ideal K of
8 is a retract of S in the sense of Borsuk (see [9]). Examples will show
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