

COLLOQUIUM MATHEMATICUM

VOL. VIII

1961

FASC. 2

A NOTE ON CONVEXITY

RΥ

A. D. WALLACE (NEW ORLEANS, LA.)

The theorem of this note extends a result of Nachbin [1] and Ward [3].

We suppose that X is a Hausdorff space and that R is a binary relation on X; that means that R is a subset of $X \times X$ (xRy if and only if $(x, y) \in R$).

We say that R is *struct* [3] on X if it is a closed non-void transitive subset of $X \times X$, i. e. the relation R is transitive.

A closed subset A of X is called R-convex if a, $a' \in A$, $x \in X$ and aRx, xRa' implies $x \in A$.

THEOREM. If A is a compact R-convex subset of the compact Hausdorff space X, where R is a struct on X, and if W is an open set containing A, then there exists an open R-convex set W_0 with $A \subset W_0 \subset W$.

Proof. Let

$$L(A) = p((X \times A) \cap R)$$
 and $M(A) = q((A \times X) \cap P)$,

where p and q are the projections of $X \times X$ on the first and second coordinates. It is well known that the projection of the Cartesian product of a compact space and any space on the non-compact factor is a closed map. Hence L(A) and M(A) are closed.

We write also

$$L_0(U) = X \setminus M(X \setminus U)$$
 and $M_0(V) = X \setminus L(X \setminus V)$

and it follows from the above that if U and V are open, then $L_0(U)$ and $M_0(V)$ are open [3].

Let us put

$$C(A) = L(A) \cap M(A).$$

It is obvious that A is R-convex if and only if $C(A) \subset A$.

The sets $L(A) \setminus W$ and $M(A) \setminus W$ are disjoint and closed. Hence there exist disjoint open sets U_0 and V_0 with $L(A) \setminus W \subset U_0$ and $M(A) \setminus W \subset V_0$.

238

A. D. WALLACE

Let $U = U_0 \cup W$ and $V = V_0 \cup W$ so that $A \cup L(A) \subset U$ and $A \cup M(A) \subset V$ and, moreover, $U \cap V \subset W$. If we put

$$W_0 = U \cap L_0(U) \cap V \cap M_0(V),$$

then W_0 is the desired set. For W_0 is open in virtue of a preceding remark, and it is clear that $A \subseteq U \cap V$. It is readily seen that

$$L(A) \subset B$$
 if and only if $A \subset L_0(B)$.

From this we infer that $A \subset W_0$. Now the intersection of R-convex sets is R-convex and it is easily seen that $U \cap L_0(U)$ and $V \cap M_0(V)$ are R-convex. This completes the proof.

I am greatly obliged to the National Science Foundation (U.S.A) for its support.

REFERENCES

[1] L. Nachbin, Topologia e ordem, Chicago 1950.

[2] A. D. Wallace, Struct ideals, Proceedings of the American Mathematical Society 6 (1955), p. 634-638.

[3] L. E. Ward, Jr., Binary relations in topological spaces, Anais da Academia Brasileira de Ciencias 26 (1954), p. 357-373.

THE TULANE UNIVERSITY OF LOUISIANA (U.S.A)

Reçu par la Rédaction le 9.5.1960

COLLOQUIUM MATHEMATICUM

VOL. VIII

1961

FASC. 2

ON A PROBLEM OF V. KLEE CONCERNING THE HILBERT MANIFOLDS

BY

K. BORSUK (WARSAW)

In his talk at the conference on Functional Analysis in Warsaw, September 1960, V. Klee raised the following problem:

Is it true that every Hilbert manifold (i. e. a connected space locally homeomorphic to the Hilbert space at each of its points) is homeomorphic to the Cartesian product of an n-dimensional manifold (in the classical sense) and of the Hilbert space?

In the present note I give an example answering this question in the negative sense and I consider another analogous problem.

Let H denote the Hilbert space, i. e. the space consisting of all real sequences $\{x_n\}$ with $\sum_{n=0}^{\infty} x_n^2 < +\infty$, metrized by the formula

$$\varrho\left(\left\{x_{n}\right\},\left\{y_{n}\right\}
ight)=\sqrt{\sum_{n=1}^{\infty}\left(x_{n}-y_{n}
ight)^{2}}$$
 .

Let Q_n denote the open ball in H with centre $a_n=(3n,0,0,\ldots)$ and radius 1. Let B_n denote the boundary of Q_n .

It is clear that every open ball in H is homeomorphic to H; consequently every point of a Hilbert manifold has neighbourhoods with arbitrary small diameters, homeomorphic to H.

Obviously the Cartesian product of H by an n-dimensional manifold (i. e. by a connected space locally homeomorphic with the Euclidean n-space at each of its points) is a Hilbert manifold. In particular the spaces

$$A_n = H \times S^n, \quad n = 1, 2, \dots,$$

where S^n denotes the Euclidean *n*-sphere, are Hilbert manifolds. It follows that there exists a homeomorphism h_n mapping H onto an open subset G_n of A_n and one can assume that

$$G_n \subset A_n - (a_1) \times S^n$$
.