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ON SOME PROPERTIES OF CONVEX SETS

BY
B. GRUNBAUM (PRINCETON, N.J.)

1. The following problem has been proposed by H. Steinhaus [7]:

Prove that through each point inside a closed conven surface there is
passing such a plane that this point lies on one of the longest chords of the
curve: of ‘interséction.’ )

In the present note* we shall disprove this conjecture; on the other
hand we shall prove a theorem generalizing some known results [5, 6]
of a related nature.

We shall limit ourselves to convex bodies in three-dimensional
space, and only briefly indicate the extension to higher dimensional
Spaces.

2. Let K be a convex body in B and let p be a point of Int K. A set-
-valued function F which assigns to every plane = containing p a compact
convex subset ¥ (x) of sz, and which is continunous (in the Hausdorff metric
[2] for compact sets) in sz, shall be called a proper mapping. Then we have

TuEoREM 1. If K is a convex body in B3, if p eInt K and if F' is a proper
mapping, then there exists a plane = (containing p) such that peF ().

Proof. Assuming the assertion of the theorem false, let F' be a proper
mapping for which p ¢ F (s) for all planes = containing p. Let p (=) be that
(unique) point of F (z) for which the distance to p is minimal, and let v ()
be the vector issuing from p and ending at p (x). Obviously » () depends
continuously on =, is parallel to # and different from 0. For each point «
of the unit sphere 8, = {1 = (%, ¥,2); @*+y2+22 =1} let =, be the
plane orthogonal to w and containing p. Then f(u) = v () is a continuous
field of non-vanishing vectors, tangential to S,. But this is a contradic-
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tion to the well-known theorem of Poincaré-Brouwer (see, e.g., [1],
P. 484) according to which such a vector field does not exist. This ends
the proof of Theorem 1.

‘We note that Theorem 1 is valid in all dimensions. The above proof
transfers immediately to odd-dimensional spaces; for even-dimensional
spaces the property f(u) = f(—u) of our mapping is to be used, together
with the following theorem: Any continuous field f(u) of tangential vee-
tors on S,,, sabistying f(u) = f(—wu), vanishes for some weSy,_;. To
prove this theorem we observe that otherwise f could obviously be used
to define a map F:8,_; = Suw—1 (Where F(u) = f(u)/|f(»)]) such that:
@ F is homotopic to the identity map of Sy, onto itself (see, e.g.,
[3], p. 130) and thus has degree 1; (2) F may be factored through the
projective space P, ; (because F(u) = F(—w)) and thus has even
degree, in contradiction to (1).

Theorem. 1 obviously implies the results of [5, 6]: Every point p
belonging to the interior of a convex body K is the centroid of some
plane section of K (resp. of some “cap” of K, resp. of the surface of some
toap” of K). (The proof of Theorem 1 is practically identical with that
given in [6]).

Theorem 1 also implies that every point of IntK is the center of
a circle circumseribed about some plane section of K, as well ag the
“quasi-center” of some gection of K (see [3]), ete.

Ags is easily seen, Theorem 1 may fail if the assumptions on F are
significantly weakened. An example to that effect may easily be derived
from Theorem 2. '

3, We shall now show that Steinhaus’ conjecture is false, even if some
additional conditions (like smoothness, differentiability, ete.) are imposed
on the convex body considered. A point p belonging to the interior is said
to have the diameter-property if and only if there exists a plane  such that
p belongs to some diameter (= segment of maximal length) of the set
K ~a. A convex body K is said to have the diameter-property in case
each point of IntK has the diameter-property. With this terminology
we have )

THEOREM 2. The set A* = {K*} of convem bodies in H* which have
the diameter-property s a closed, proper subset of the space K of all conven
bodies in E® (A being considered a metric space in the Hausdorff metric).

Proof. We first show that K* is a closed subset of K. Let {K,} be
a gequence of convex bodies having the diameter-property, converging
(in the Hausdorff metric) to a convex body K, and let p belong to Int K.
‘Without loss of generality we may assume that p ¢ X, for all n. By assump-
tion there exist, for each n, a plane s, and a diameter D, of =, ~ K, such

iom®

ON SOME PROPERTIES OF CONVEX SETS 41

that peD, . Taking subsequences if necessary we may assumne (by com-
pactness) that the sets s, ~ K, converge, as well as the diameters D,.
Obviously, the limit of =, ~ K, is & plane section of K having D = lim D,
a8 diameter; but, sinee p <D, for all n, we have p eD. Thus p, and therefore
K as well, have the diameter-property.

The proof of Theorem 2 will be completed by exhibiting a convex
body which does mot have the diameter-property. A very simple such
example is the regular octahedron. Indeed, assuming the octahedron K
given by .

K ={(=,y,2); l=|+ lyl+ 2] < 1}

in an orthogonal system of coordinates, let p eInt K be the point having
all three coordinates equal to 1/(3 - 2¢), for a suffieiently small positive &
(e.g. 0 < &< 1/4). We shall see that p does not have the diameter-pro-
perty. Bach plane section of K is a polygon; since a diameter of a polygon
is necessarily a diagonal (or a side) of the polygon, » diameter of a plane
section of K has its endpoints on edges of K. An easy computation shows
that if p belongs to a segment D whose endpoints belong to edges of K,
then the endpoints are either

1+e 11 —e 1

4= 2“;:;"’) wa 5 =(500, 1+e)
or one of the five pairs obtained from 4, B by permuting the coordinates.
Without loss of generality we may assume that D = AB. Then, assuming
that D is @ dizmeter of some plane section = ~ K of K, a contradiction
results: Any plane m containing D intersects either the edge B, of K
with endpoints (1,0, 0) and (0,0, —1), or the edge X, with endpoints
(0,1,0) and (0,0, —1) (or both), and this inbersection is obviously
contained in =~ K. But by our choice of p the distance from B to A
is strictly less than the distance form B to any point of B, v B, and there-
fore D is not a diameter of =~ K.

This ends the proof of Theorem 2.

Added in proof: Another result of Steinhaus [6] is that every
convex body K in F* has either continuum many points each of which
is the centroid of at least two different plane sections of K, or a poinf
which is the eentroid of continuum many different plane seetions. This
theorem generalizes both to higher dimensions and to arbitrary proper
mappings. The following related problem seems to be open (except for
n = 2, in which case an affirmative solution is easily established): If
K is @ convex body in E" does there exist a point e Int K which
is the centroid of at least m-1 different (n—1)-dimensional sections
of K% In particular, is the centroid of K such a point?
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STABILITY OF THE FIXED-POINT PROPERTY
A BY

V. KLEE* (SEATTLE AND COPENHAGEN)

Ag is well-known, the fixed-point property is possessed by every
compact absolute retract A; if the mapping ¢ of A into itself is conti-
nuous, then some point of 4 i3 invariant under ¢. We show here that
for such an A there is in the following sense a sort of stability about the
fixed-point property; if the mapping ¢ of A into itself is nearly conti-
nuous, then some point of A is nearly invariant under ¢. An example
is given of a plane continuum in which the fixed-point property persists
but fails to satisfy the stability condition.

Consider a topological space X and a metric space (M, g). For ¢ > 0,
2 mapping ¢ of X into M will be called e-continuous provided each point
2 of X admits a neighborhood U, such that the p-diameter of the set ¢ U,
is at most e. For § > 0, a d-invariant point for a mapping £ of M into M
is a point p «M such that p(&p, p) < 6; £ will be called a d-mapping pro-
vided each point of M is d-invariant for &.

1. PrOPOSITION. Suppose X and Y are topological spaces, M a metric
space, f a continuous mapping of X into Y, ¢ an s-continuous mapping
of ¥ into M, and & a 5-mapping of M into M. Then &gf is an (e-+ 28)-con-
tinuous mapping of X into M.

Proof. Consider an arbitrary point z<X. Since ¢ is e-continuous,
there is a neighborhood V of fx such that diamgV < e And since f is
continuous, there is a mneighborhood U, of x such that fU,C V. Then
diamgfU, < & Since & iy a J-mapping, for arbitrary u, v’ U, we have

elépfu, Spfu’) < e(pfu, pfu)+ olpfu, ofu)+ olefu’, Spfu’)
< b6+ e+6.

Consequently diam &pfU, <C e+ 26 and the proof is complete.
2. PROPOSITION. Suppose P is a compact conver polyhedron in a finite-
dimensional normed linear space, and ¢ is an e-continuous mapping of P
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