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Introduction. The notions and theorems contained in this paper
have arisen from some problems of the approximation of sets by
developable sets (i. e. sets which are F, and G, simultaneously) and the
approximation of functions by functions of the first class.

Every measurable set is almost equal to an ¥, and to a @,; never-
theless it is easy to define a set H which is measurable (and even an F,
or a G5) but which fails to be almost equal to any developable set. E. g.
we may consider as H a set which is of positive measure on every interval,
and whose complement has the same property. It turns out that this
example is, roughly speaking, the most general one: A set F is almost
equal to a developable set if and only if, for every closed F, there exists
an interval I such that at least one of the sets EFI and FI—E is of
measure zero (see 3(i)).

This theorem, as well as all the others in this paper, is formulated
not for the class of sets of measure zero but, more generally, for an arbi-
trary o-ideal of sets. Thus, they are valid also for the class of all denu-
merable sets, the class of all sets of the first category, ete.

The reasoning used in sections 2 and 3 is analogous to that followed
in the monograph of C. Kuratowski [2], especially p.64-68.

In the following sections (4-7) we introduce the notions of almost
continuity and almost-limit points and we apply them to the closure
algebras in the sense of Sikorski [5]. '

Finally, in section 8, we formulate some simple connexions between
those notions and the problem of approximation of functions by functions
of the first class. The theorem converse to our proposition 8(iii) has recently
been proved by Lederer [3]: If for a real function f and every closed set F,
the partial function f|F has at least one almost-limit point, then f is
equal almost everywhere to a function of the first class. That is the answer
to the problem raised by one of us. A generalization of this theorem for
mappings in metric spaces is to be found in paper [6].
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1. Generalized closure. We shall consider two separable metric
spaces ¥ and Y. Moreover, We Suppose that ¥ is complete; this hypothesis
is essential only in sections 3 and 8. Let N be a o-ideal of subsets of %, i.e.
a hereditary and enumerable additive class of subsets of X. We denote
the union, the intersection, the complement, the difference, and the sym-
metric difference of sets by +, ', —, and - respectively. The following
terminology will be used: if A C%¥ and BC % then

(t,) A and B are almost equal if A =~ B = AB'+A’"-BeN,

(t,) A and B are almost disjoint if ABceN,

(ts) A is almost contained in B if A—B¢N,

(t,) two mappings f and g of % into ) are equal almost everywhere
or, shortly, almost-equal if f(x) = g(w) for xeN’', where NeN.

The symbol P(E) will denote a generalized closure ([2], . 34-35),

i. . & subset of X such that a&eP(E) if and only if EU ¢N for every neigh-

bourhood U of x. '
Ti N contains only one elément (the empty set) then P(H) is identical

with the closure B of F in the ordinary sense.
The following propositions are obvious:
(i) P(0) =0,
(i) AC B> P(4)CP(B),
(ii) P(4+B) =P(4)+P(B),
(iv) PP(E) = P(B),
(v) P(E) =P(B)CE,
(vi) E—P(E)eN,
(vil) A—~BeN = P(A) = P(B). »
2, Theorem on separation. A subset A of X is said to be developabdle
if there exists a transfinite decreasing sequence {F,} of closed sets such
that

A = (By—TFy)+(Fy—Fy)+. o+ (Fe—Fepa)+...
Let A and B be two arbitrary subsets of X. We define through trans-
finite induction:
X, =%, X, =P(4X;) P(BX,)
and
if 2 is a limit number.

XAmHXé,

§<i

Since by 1(ii) and 1(v)

*) X,,,CP(BX,)CP(X,)CX, =X,
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{X:} is a decreasing sequence of closed sets. Consequently there exists

an enurmerable ordinal number a such that X, = X,.,, i. e.

(%) X, =P(AX,)-P(BX,).

Let Q. = X,—P(AX,) and R, = X,—P(BX;). By () R= YR,
{<a ¢

is a developable set. On account of 1(vi)
AQ; = A(X,—P(AX,) = AX,—P(AX,)eN

and then 4 and @ = 3@, are almost disjoint. In a similar way B and R
f<a .

are almost disjoint.
Since

X=Q+R+X,

A is almost contained in R+ X,.
From thig fact and from (#x) follows the theorem on separation ():.

(i) If the equality
X =P(4X)-P(BX)

implies X eN, then there exists a developable set R such that R and B are
almost disjoint and A is almost contained in K.

3. Approximation by developable subsets.

(i) The following conditions for a subset B of X are equivalent:

(d,) E is almost developable, i. e. there exists a developable set H almost
equal to I,

(d,) E is almost equal to o set which is F, and Gy; .

(d3) for every closed non-empty set F the set P(EF) P(E'-F) 48 NON-
dense in I'; .

(dy) for every closed non-empty set F

P(EF)-P(E'-F) + F.

The implication (d,) = (d,) follows from the fact that every develop-
able get is an F, and a G simultaneously (?).

(*) That is another form of a thcorem of Bikorski [5], p. 173, 3.4.

(* Compare a simple proof in [2], p. 260. Let us remark that, in the present
proof, we do not use the converse implication (which follows from (i) in the case where
N contains only one element, i.e. the empty set).
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To prove the implication (d) = (d;) suppose that the set
K = P(EF)-P(E'-T) is not non-dense in F' and that F and a developable
set D are almost identical. On account of 1(vii) we have

() K = P(DF)-P(D'-F).

Since K is a closed set, there is a subset V of K which is open in F.
By (*) and 1(v) DV and D'V are F, and dense in V. This, however,
contradicts the Baire theorem.

The implication (dg) =>(d,) is trivial and (d,) > (d,) follows from
the theorem on separation 2(i) by puftting A = F and B = E’'. This
completes the proof of the theorem.

4, Almost-limit points. A point y,¢ is called an almost-limit value
of a mapping f of X into 9 at the point x,, if there exists a mapping g
of ¥ into Y, almost equal to f and having at 2, the limit y,. If there exists
an almost-limit value of f at a, we say that x, is an almost-limit point
of f.

I myeP(X) there is at most one almost-limit value of f at x,. In
fact, if in this case two mappings g, and g, are almost equal to f and have
at », the limits y, and y, respectively, then there exists in every neigh-
bourhood of x, 2 point »' with

whence ¥y = ¥,.

If @, ¢ P(X), then the almost-limit value of f is not determined; more
precisely, every point y,e? is the almost-limit value of f.

Let us denote by @,,Q,, ... and RI,RZ,
bourhoods of % and 9 respectively.

(i) The following conditions for a point y, of D are equivalent:

(L) yo ts the almost-limit value of f at xy;

(Ly) for every subset A of X, if myeP(A)—A then g/oem_);

(1) for every meighbourhood V -of vy, there exists a neighbourhood U
of @y such that U-f~(V')—{m}eN, in other words mydP(f™(V')—{x});

(L) for every natural number n with y,eR, there ewists a natural
number m such that

the bases of neigh-

206Qm  and  Quf (RN —{z) eN.

The equivalence (1;) <= (1,) being trivial, we will prove successively

1) = (L) = (o) 5 (L)
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If (1) is satisfied, then there exists a mapping ¢ almost equal to f,

having the limit y, at x,. Let us suppose that 4 C % and 2yeP(A)—A4,
and put

4y = 4-{z: f(2) = g(w)}
‘whence 4 —A4,¢N and, by 1(vii),

@yeP(4y)—4,C 4,— A4,

and consequently

Yoeg(4o) = f(4y) C f(A).

Condition (1,) is thus satisfied.

In order to prove the implication (1,) = (1;), let us suppose that (1)
is satistied and (1) is not. Therefore there exists a neighbourhood V of ¥,,
such that z,eP(f™"(V’')—{m}). Putting 4 = f(V')—{x,} and applying
(1,) we obtain

Yoef (4) CHH(V)CV =V,
which is not true.
Let us suppose, finally, that (I,) is satisfied and let V,, V,,... be
a sequence of neighbourhoods of ¥, such that
() Yo = Vi Voo

By (l;) there is, for every =, a meighbourhood U, of #, such that
U, (V) — (@) eN. Put

Zn = U f (Vo) —l2o}y, 2 =Z+Zy+...,
fl@) for xeX—-2Z,
g(z) =
Yo for wxeZ,

Consequently U,g~*(V,)—{z,} = 0, whence U,—{z,) C g7*(V,) and
finally

g Up—1{2}) C 997 (V) C V.
Hence, by (%), y, is the limit of g at x,, and, since
fl%—2 = g%—2

condition (1,) is fullfilled, q.e. d.

Obviously

(i) If f and g are almost equal, then they have the same almost-limit
points and the corresponding almost-limit values.

and ZeN,
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5. Almost continuity. We say that a mapping f of % into D is almost
continuous at @, if there exists a mapping g of ¥ into O such that
f(#o) = g(@,), f and g are almost equal and ¢ is continuous at .

Tn other words, f is almost continuous at «, it and only if f(z,) is an
almost-limit value of f at @,.

Therefore, putting in 4(i) y, = f(w,) and simplifying for this case
conditions (L,), (), (1), we find that,

(i) The following conditions are equivalent:

(e)) f 48 almost combinuous at &, o

(eq) for every subset A of X, if woeP(A), then f(m,)ef(4),

(eg) for every meighbourhood V of f(mo) there ewists a neighbourhood U
of @, such that Tf(V')eN,

(ey) for every natural mumber n with flawo) eR, there ewists a natural
number m such that
and

By €Qm Qni M (Bp)eN.

Furthermore, let D, denote the set of points of ¥ at which the
mapping f is not almost continuous, let E,, By, ... denote, as before,
a basis of 9, and let us put 8, = R,,. Condition (¢,) can now be formu-
lated as follows: for every n either f(a,) €S, or @ ¢P(f7(S,)). Consequently
D, = [ S)+P (7 (8a)'}
=1

whence
G Dy= 3 (B (S) =77 (8).

6. The set of almost-limit points and the set of points of almost-
continuity. Let D, denote the set of all points #¢X which are not almost-
limit points of a mapping f. Obviously

(i) Dy DD,

In the subsequent part of this section we suppose that all ome-point
subsets of % belong to the ideal N. Under this essential hypothesis, we
obviously have

(il) @, 48 an almost-limit point of f if and only if there ewists o mapping g
continuous at z, and almost equal to f.

(ili) The set of points of almost continuwity and the set of almost-limit
points of a mapping | are almost equal; in other words Dy DyeN.

In view of (i) it remains to prove that Dy—D,eN. If @yeDy— Dy,
then there exists a point 7,¢? which is the almost-limit value of f at u,
but which is different from f(a,). Thus, there exists a neighbourhood R,
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of y, such that f(mol)¢Rno. In view of 4(i) (condition (1,)) there exists
a neighbourhood @, of @, such that

Qugf (Bl — {0} e .

Since we supposed that z,eN, we have Qmof'l(Rgo)eN and, by the
definition of R, @oef " (R,). Consequently

Dy—D,C Y Qui™(Ry),

where the addition runs over all pairs (m,n) for which Qmf H(RBy)eN.

~ Hence Dy—=D,eN, q.e.d.

Let us remark that (iii) (as well as (ii)) is not true if a certain one-
point set {w,} does not belong to the ideal N. In fact, for a function f
such that f(z,) = y, and f(#) = ¥, 5= ¥, for  #* x, we have x,eDy—D;,
whence Dy— D, ¢N. .

7. Application to closure algebras. Let 4 be a Boolean o-algebra.
The Boolean: operations on elements A4, BeA will be derioted by 4+ B,

AB and A’. The symbol 4—B will denote AB’. The symbol 34, will
n=1

denote the union of elements A;, 4,,... in 4. The symbol []4, will
el ! n=1
denote (Y 4,).
N=1

A closure algebra is 2 Boolean o-algebra A in which a closure ope-
ration is defined in such a way that the following axioms of Kuratowski
are satisfied:

I A4,4+4,=A4,+4, 1II. AcCAd,

. 0=0, . (4)=4. ,

The element A is called the closure of 4, the element Int(4) = (4’
is called the interior of A. An element A is said to be closed if 4 = 4,
and open it A = Int(4).

We say that the closure algebra A has an enumerable basis if there
exists an enumerable class {Q,} of open elements of A such that every
open element of A is a union of elements of a subelass of Q-

It ¥ is 2 metric separable space, then the field S(X) of -all subsets
of % is a closure algebra with an enumerable basis. If N is a o-ideal of
subsets of %, then the field S (%) modulo N will be denote by the symbol
8(%)/N. By [X] we shall mean an element of S(%)/N determined by X,
i.e. a class of gets, X, C X such that X=X, eN.

I Q.,Q,, ... is a basis in §(X), then the class (@41, [Q:], ... induces
in the Boolean algebra S (%)/N a closure operation. Namely, let us denote
by Int([X]) the union of all [Q,,] which are contained in [X] and let
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[X] = (Int([X']))’, by definition. The closure operation defined as above

satisties axioms I-IV and [Q,],[Q.],... 18 a basis in S(X)/N (see [5],
.172).

P LZ%T: B(9) be the field of Borel subsets of the metric separable

space 9. Ry, Ry, ... will denote a basis of neighbourhoods of 9, and let

us put S, = R;. By h we denote a o-homomorphism of B(9) in S(X)/N,

i.e. » mapping of B(9) into S(X)/N such that

h(j A,,) = i‘ M4, and h(d)) = h(4)

n=1 n=1

for every A, 4,¢B(9). Let ¢ denote a mapping of X into 9 that induces
the homomorphism & (i.e. [p7'(¥)] = A(X) for every YeB(9)). In this
paper we suppose that the mapping ¢ exists. (It always exists if the space
Q) is homeomorphic to a Borel subset of the Hilbert cube; see [4], p. 19).

We shall say that the homomorphism % is continuous it h(Y)C h(Y)
for every YeB(Y).

=]

Let D() =nzl{h(R,,,)——Int(h(Rn))}.

(i) b is continuous if and only if D(h) =0 (see [B], p. 177).

(i) D) = 3 {h(8a)—h(8n)} = 21 [Pl (S]] =T (801} -

N=1
Sinee

h(Rp)—Tnt (k(R,)) = h(8;)— (b(8,) = h(S,)—h(8,),

and ginece h is induced by the mapping ¢, we have

BB =[p7' (8] and  R(S,) = [p7 (8,)] = [P(p™* (Su)]
(see [8], p.180). This completes the proof.

From (ii) and 5(ii) immediately follows ‘

(iii) D(h) = [D,], ‘
‘where D, has been defined in sections 5 and 6.

From (i) and (iii) we infer that

(iv) The homomorphism h is continuous if and only if the mapping @
is almost everywhere almost continuous ().

) (*) Professor R. Sikorski has remarked that this theorem snd theorem 21.1
of his paper [5] un.ply the following interesting statement: @ is almost continuous
almost everywhere if and only if there exists a set NeN such that @|% —XN is con-

tinuous. It seems desirable to find a direct proof of this equivalence (i. e. without
any use of closure algebras).
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In the case where N contains all one-point sets, we may, on account
of 6(iii), modify (iii) and (iv) by replacing D, by D, and the almost-conti-
nuity points by limit points.

8. Approximation by a mapping of the first class. A mapping f
of a metric space 3 into a metric space Q) is called a mapping of the first
class if the set (6 is an F, in 3 for every open subset @ of Q).

Let P denote the class of all mappings of ¥ into O which are almost
equal to mappings of the first class. Let M denote the class of mappings
which are of the first class if one disregards the sets belonging to N; in
other words, f< M if there exists a set Z <N such that the mapping f|X¥—2Z
is of the firgt class on X—Z. Obviously

(i) PC M.

‘We will prove the following equivalence:

(i) fe M if and only if the set f~ (@) is almost equal to an F, for every
open subset G of V.

The firgt implication being trivial, it remains to prove the second
one. Let {R,} be an open basis of ¥ and K,, K,, ... a sequence of F -sets
such that K,—=f(R,)eN. Let us put

18

7 =

n

(En=f7(R).

[
-

It is easily seen that the mapping f|X—Z is of the first class, g. e. d.

It follows from (ii) that, in the case where N is the class of sets of
Lebesgue measure zero, the class M is that of all measurable functions.
The class P is, in this case, smaller, e. g. the characteristic function of
the set H quoted in the Introduetion belongs to M—P.

It follows directly from 4 (ii) and from the Baire theorem on fune-
tions of the first class (see e.g. [2], p. 300) that

(iil) If feP, then for every closed subset F of X, the mapping f|F has
ot least one almost-limit point.

The converse theorem. is also true (cf. Inmtroduetion, [3] and [6]).
Here we will prove only a weaker relation (*):

(iv) If, for & mapping f of %X into D and for every mon-void closed set
F C X, the mapping f| F possesses at least one almost-limit point, then fe M.

Let F be a closed subset of 9 and let

D—F = F,+Fo+...

(4) It is a generalization of one part of the theorem of Baire quoted above.
Our proof is a meodification of that of Kuratowski [2], p. 301-302.
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where the sets F; are closed in 9. We will prove that, for every n, if
(*) P(zf(F))-P(ZF () = Z,

then Z = 0. Let us suppose (#) and Z 5 0. The set Z being closed,
there exists an almost-limit point x, of the mapping g =f L?;_In view
of 4(i) there is a point 1,6 such that if x, eP(A) then y,ef(4). Hence

w2 C P(Zf(F) = P(g™* (),

and consequently y,egg” (F)C F =T.
Analogously we obtain y,eF,, which is impossible, the sets I and I,
being disjoint. We obtain therefore Z = 0. .
Now we apply the theorem on separation 2(i) and obtain a develop-
able set H, almost containing f~'(F) and almost disjoint with U,
Thus the set

H=H,H,...

is a @, almost containing £~ (¥) and almost disjoint with f~ (4 Fy+...)
= f~}(F"). The set f(F") is then almost equal to an F,. Applying (ii)
we obtain theorem (iv).

Note that the analogue of (iii) for almost continuity points is nob
generally true. More precisely:

(v) Let N be the class of all sets of Lebesgue measure zero in the unit
interval 1. There ewists & real fumction f on I which is equal almost every-
where to a function of the first class, and which does not possess any almost
continuity poini.

Let K = K,+K,+... be the sum of a sequence of disjoint, closed,
non-dense subsets K, of I, having the following property:

(a) for every interval J C I and every n we have either JK, =0
or |[JK,| >0,

(®) K] =1,
where | | denotes the Lebesgue measure.

Let us put

f(m)zy(w)=—;l;- for  wek,,

f(w)=2 and ¢g() =0 for wel—-K.

It i easy to verify that ¢ is a function of the first class. Congequently,
in view of (b), f is almost equal to a function of the first class.

~We shall prove that, on the other hand, f has no almost-continuity
point.
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If_a;oeI —K then, by (b), meP(K) and simultaneously f(w,)
= 2¢f(K), since if weK then f(») < 1. Hence, by condition (c,) of 5(i),
@, is not an almost-continuity point of f.

If #y< K, then @, K, and f(x,) = 1/n,. The sets K, being non-dense,
it easily follows from (a) and (b) that wyeP (I —K,,). The set f(I—K,)
contains only the numbers 2 and 1/n for = == n,, whence

Flay) = —%mr—xno).

Thus, as in the preceding case, x, is not an almost-continuity point
of f.

The proof of (v) is now complete.

The set of almost-limit points of the function f defined in the proof
of (v) is obviously a residual set. Therefore proposition (v) proves that
the relations between the notion of continuity and that of limit points
contained in [1] are not true for the almost-continuity and almost-limit
points (ef. especially p. 166 and 167). It is worth noticing that, never-
theless,

(vi) If the ideal N is a class of sets of the first category in X and if feP,
then f is almost continuous at one poini at least.

Let g be a mapping of the first class almost equal to f. The set

B = {a: f(2) # g(2)}

and the set D of discontinuity points of f are of the first category (see
e. g. [2], p. 301) and f is almost continuous at every point of X— (E+D).
The space X being complete, theorem (vi) follows from the theorem of
Baire. :

It follows directly from (vi) that, in some particular cases, the ana-
logue of (iii) is true:

(vii) If the ideal N is the class of denumerable sets (or, more generally,
a class of sets always of the first category; see e. g. [2], p. 423 and 424)
then for every feP and every closed subset F' of %X, the mapping f|F' is almost
continuous at one point at least.
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ON THE APPROXIMATIONS OF MAPPINGS
BY BAIRE MAPPINGS

BY

T. TRACZYK (WARSAW)

Let f be a mapping of a metric separable space ¥ into a metric
separable and complete space 9. Let I be an arbitrary c-ideal of subsets
of X, i.e. a hereditary and enumerable additive class of subsets of %,
and let |u—wv| denote the distance between points # and v in @). Denote
by B, the set of mappings of X into ¥ of the Baire class « in the sense
of Kuratowski (see [1], p. 280).

Definition (cf. [2], p. 85). We say that f has property D, at xyeX
if for every e >0 there ewist a neighbourhood @ of z, and a mapping geB,
such that

|f(m)“g($)] <éeae m@,

. ¢ for wed’, where Ael.

Note 1. If I is the ideal of subsets of measure zero and « > 2, then
the mapping having property D, at z, has property D, at ,.

Note 2. If for every ¢ > 0 there exists a neighbourhood G of x, such
that

If (@) —fiz)l < & a. e in &,

(i. e. if the mapping f is almost continuous (see [3], section 5) at z,), then
it has property .D,.

The purpose of this paper is to prove the following theorem, which
is & generalization for mappings in metric spaces of an analogous theorem
concerning real functions and due to Lederer [2].

THEOREM. If a > 0 and for any non-empty closed set F C X the mapping
SFIF has property D, with respect to F at least at one point, then there exists
a mapping geB, such that f(x) = g(x) a.e.

First we prove the following lemma:
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