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ON A PROBLEM OF INTERPOLATION
BY PERIODIC FUNCTIONS

BY
JAN MYOQOIELSKI (WROCLAW)

E. Marczewski and C. Ryll-Nardzewski have asked whether there
exists such a sequence of real mumbers %,,1,,... that

(x) For every sequence &, €,, ..., where &; = 41, there is a continuous -
periodic function f(t) with :

flt) =g for i=1,2,...

It is the purpose of this paper to solve this problem in the affirma-
tive; namely we will prove the following théorem:

THEOREM. If @ sequence ty,1,, ... satisfies the inequalities
@ - >0 and t,, =B+, (=1,2,..; 6 >0),

then it has property (*).

I do not know (P 315) if the sequence t, = 3" has property (+). A class
of sequences without property () is given in a paper of S. Hartman (*).
The method of the present paper permits us to prove, by easy modifi-
cation, the existence of sequences t,,1,,... satisfying a strengthened
version of (x) obtained by allowing the &;’s to take values from any fixed
finite set of real numbers. But we do not know whether any infinite set
is admissible (2).

Remark. If t,,%,,... has property (+) then for every bounded
sequence of real numbers g,, ga, ... there exists such a function p(2),
almost periodie in the sense of Bohr, that

p) =@ for i=1,2,...

(1) 8, Hartman,- On. intergolation “by> almost periodic. functions,” this: volume, - -
Pp- 91-101.

(%) ‘Added in proof: A positive answer to this question was recently given by
J. Lipifiski (to be published in Bulletin de T’Académie Polonaise des Sciences).
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This follows easily from the main approximation theorem for almost
periodic functions.

Proof of the Theorem. We suppose that the sequence by tay ...
satisfies (1). Let us choose some positive numbers 7, 4 and o such that

2 , 2L <s and 4>20 )(1+ “’)
(2) n <<l 1?77 < L= n =)
‘We adopt the notation
1—9 3—1
(3) a= g B = R

Let ¢(t) be a continuous function with period 1 defined in the inter-
val {0,1) as follows: ¢(0) = —1, ¢ is linear in <0, 7/2>, ¢(f) =1 in
2, , ¢ is linear in {}, (1+4%)/2> and ¢(t) = —1 in {(1-47)/2,1>

(see the figure).
] I\—“V——“ /—

i L/
. (8 = +1). We shall

Let us fix (arbitrarily) the sequence sy, s,, ..
prove the existence of such a sequence Ay, A,, ... that

o+d,  ellk) =g

This will be & proof of our theorem since then obviously

i~

(4) o<s<h< for j=1,..,64=1,2,..

@(t;/lim supl,) =& for i=1,2,..,
00

But first we shall prove the existence of such sequences
dy = A,4,, 4y, ... 30d 0, = 0, 0, 0, ...

that the following conditions are satisfied for n = 1,2,

(Aq) O Koy < Oyt Ay < 0 4;
(Bn) for every Aelw,_y, 0,14+ 4, > there is @(t;/1) = g for
t=1,...,n—1; . ‘
[/ 1,
a ', - 0 > 8.
( n)' W1 wn—1+An—1 ﬁ
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Propositions (A,) and (B,) are obvious and (C,) follows from the
third inequality of (2) and from (3). Let us suppose that (A,), (B,) and
(C,) are established; we have to prove (A,.;), (B,,;) and (C,y,).

The geometrical sense of (C,) is the following:

(C,) When 1 moves in the interval {w,_,, w,_,+ 4, >, then
a fraction B of the period of the function ¢(i/1) moves over the point ¢,.

‘We will prove that one can chose such 4, and w, that

(A) Wy K 0 < wn+ 4, < 0+ Anq;

(B) for every Aelwy, w,+ 4,y there is ¢(i,[A) = &;
C) t?'b tn = a

¢ wp  wpt Ay

In fact (C,) implies on account of the definition of ¢ that (B) holds
for some interval {w,, »,~+ 4,> which is contained in (w,_;, ws_1+ dn_1>
and fulfills (C).

Clearly (A,) & (A) > (Anp)
to prove (C,,,). Since by (C)

and (B,) & (B) = (B,,,); it remains

2
awy,
Ay = ——
1 — a0y,
one has ) p
Wy (t,— ao,
(5) ﬁwn(l’i‘ﬁ‘j‘n‘) "‘ﬂwn (1'1“'——_ )=—tﬂ'

Now applying (1), the second inequality of (2) and (3) we have

B

27 )
LA 0N, St
(®) L= (3 T <t

From. (5) and (6) follows

ﬁwn (1 + ) tn+1$

" which implies (Cy,.1)-

The statements (A,) and (B,) being proved fo? n= 1,2,..., we.
infer the existence of a sequence A, Ay, ... as required in (4), q.e. d.
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