

COLLOQUIUM MATHEMATICUM

VOL. VIII

1961

FASC. 1

ON INTERPOLATION BY ALMOST PERIODIC FUNCTIONS

BY

S. HARTMAN (WROCŁAW)

In connection with the preceding paper of Mycielski [2] I will point out a class of "bad" sequences of positive integers d_n , if "bad" means that one can assign to each n a value 0 or 1 so as to make it impossible to find not only a periodic continuous function but even a Bohr almost periodic function assuming these values on d_n . There is no problem of giving an example of a bad sequence: for this purpose we can put $d_n = n$, since for every Bohr function f the sequence f(n) is almost periodic, thus having special properties. However, it appears that also sequences increasing more rapidly can be bad, according to the following

THEOREM 1. There is a sequence a_n of zeros and unities such that for every integer k > 0 and every Bohr function f one has $f(n^k) \neq a_n$ for some n.

This theorem asserts that the sequences $d_n = n^k$ (n = 1, 2, ...) are "uniformly bad", and the sequence a_n will be shown to satisfy all requirements if the lower density of zeros and that of unities in it is 0. Assume this, fix an integer k > 0 and let f be a Bohr function with Fourier series $\sum_{n} c_n e^{2\pi i \mu_n t}$. Take numbers λ_i so that $1, \lambda_1, \lambda_2, ...$ be arithmetically independent and that for every i there exist rational numbers $r_i^{(i)}$ $(j = 0, 1, ..., s_i)$ with

(1)
$$\mu_i = r_0^{(i)} + r_1^{(i)} \lambda_1 + \ldots + r_{s_i}^{(i)} \lambda_{s_i}.$$

Denote in general by [a] the integer part and by $\{a\}$ the fractional part of the number a. There are an integer N>0 and a $\delta>0$ ($\delta<1$) such that

(2)
$$\{\mu_i \tau\} < \delta \quad (i = 1, 2, ..., N)$$

implies $|f(t+\tau)-f(t)| < 1$ for every t. Denote by Q a common denominator of the numbers $r_j^{(i)}$ $(j=0,1,\ldots,s_i;\ i=1,2,\ldots,N)$. We thus have

(3)
$$r_j^{(i)} = \frac{p_j^{(i)}}{Q} \quad (p_j^{(i)} \text{ integers}).$$

There must be integers $u_0 \ge 0$, $u_0 < Q$ and $v \ge 0$ such that

(4)
$$b_n = (\nu + nQ)^k \equiv u_0 \pmod{Q} \quad (n = 1, 2, ...).$$

As is well known, for every system $\lambda_1, \ldots, \lambda_m$ such that $1, \lambda_1, \ldots, \lambda_m$ are arithmetically independent, the sequence of points

$$p_n = (\{\lambda_1 b_n\}, \ldots, \{\lambda_m b_n\})$$

is uniformly distributed in the m-dimensional unit cube ([3], Satz 14). Hence putting

(5)
$$m = \max_{1 \le i \le N} s_i$$
, $M = \max_{1 \le j \le N} |r_j^{(i)}|$ $(j = 1, 2, ..., s_i; 1 \le i \le N)$,

we can prove the existence of a sequence n, of positive density such that

$$(6) \quad \{b_{n_r}\lambda_j\} < \frac{\delta}{2Mm}, \quad [b_{n_r}\lambda_j] \equiv 0 \,\, (\mathrm{mod}\, Q) \quad \, (j=1,2,...,m).$$

In fact, let $\varphi(t_1,\ldots,t_m)$ be the characteristic function of the set

$$\bigcup_{n_1, \ldots, n_j = 0}^{\infty} \bigcap_{j=1}^{m} \left\{ n_j Q \leqslant t_j < n_j Q + \frac{\delta}{2Mm} \right\} \subseteq E^m.$$

Then (6) is equivalent to

$$\varphi(b_{n_m}\lambda_1,\ldots,b_{n_m}\lambda_m)=1.$$

But $\varphi(t_1Q,\ldots,t_mQ)$ is of period 1 in each variable and thus, since $\lambda_1/Q,\ldots,\lambda_m/Q$, 1 are arithmetically independent, we have

$$\lim_{l\to\infty}\frac{1}{l}\sum_{n=1}^l\varphi(b_n\lambda_1,\ldots,b_n\lambda_m)=\left(\frac{\delta}{2QMm}\right)^m$$

according to Weyl's theorem. Then (6') must be satisfied by a sequence of positive density.

If we had $f(n^k) = a_n$ for every n, then there would be a value $v = v_1$ such that $f(b_{n_{v_1}}) = 0$ and another $v = v_2$ for which $f(b_{n_{v_2}}) = 1$. If $\tau = b_{n_{v_2}} - b_{n_{v_1}}$, we find by (4) and (3)

$$r_0^{(i)}\tau \equiv 0 \; (\bmod 1)$$

and by (3), (5) and (6)

$$\sum_{j=1}^{s_i} \{ au r_j^{(i)} \lambda_j \} < \delta \hspace{0.5cm} (1 \leqslant i \leqslant N) \, .$$

Thus, in virtue of (1) we get (2), and finally

$$|f(b_{n_{\nu_1}} + \tau) - f(b_{n_{\nu_1}})| = |f(b_{n_{\nu_2}}) - f(b_{n_{\nu_1}})| < 1,$$

which is a contradiction.

It is quite easy to see that if for a sequence $a_n \uparrow \infty$ of real numbers and a fixed number λ the multiplies λa_n are uniformly distributed mod 1, then it is impossible to prescribe a non-constant 0-1 sequence a_n in such a way as to find a continuous function with period $1/\lambda$ and $f(a_n) = a_n$. In fact, by reducing $a_n \mod 1/\lambda$ we get a dense set in $(0, 1/\lambda)$.

On account of [3] (Satz 21) λa_n are uniformly distributed for almost all λ . Thus, for a "good sequence" and an arbitrarily prescribed non-constant sequence of values 0 and 1 in it, there is not much possibility of choice as to the period of the interpolating function: the virtual periods are in a zero-set. Further, given a denumerable set, we can choose 0-1 values at a_n so that no continuous periodic function with period from this set satisfies the requirements. This can be generalized to

THEOREM 2. If Λ is a countable set of real numbers and a_n are arbitrary reals, then there is a sequence $a_n=0$ or 1 such that no Bohr function with exponents in Λ satisfies $f(a_n)=a_n$ $(n=1,2,\ldots)$.

To prove this observe that the group of reals can be continuously and isomorphically imbedded into a metric compact group K in such a way that all Bohr functions with exponents in Λ admit a continuous extension over K (see e.g. [1], p. 186). Thus, the sequence a_n must contain a subsequence a_{n_k} which is convergent in K. Putting $a_{n_k}=0$ or 1 alternatively for $k=1,2,\ldots$ we get the desired effect, irrespectively of the values of the remaining a_n .

The author is indebted to C. Ryll-Nardzewski for his useful remarks.

REFERENCES

[1] S. Hartman und C. Ryll-Nardzewski, Zur Theorie der lokal-kompakten abelschen Gruppen, Colloquium Mathematicum 4 (1957), p. 157-188.

[2] Jan Mycielski, On a problem of interpolation by periodic functions, this volume, p. 95-97.

[3] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Mathematische Annalen 77 (1916), p. 313-352.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 1. 4. 1960