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Embedding linearly ordered sets in real lexicographic
products

by
1. Fleischer (Waltham, Mass.)

In a previous paper, the author has studied linearly ordered sets
isomorphic to subsets of the real numbers; here representation by lexico-
graphic products is treated. Sets embeddable in countable products ave
characterized as containing no uncountable well-ordered or inversely
well-ordered sequence. Subsets of finite products are treated in greater
detail; the unigueness of their representation is also investigated.

Tor a mapping ¢ of a linearly ordered set L into a linearly ordered
set L', we shall use the term monotone to mean that ¢ is monotone non-
decreaging; if ¢ is strictly monotone or monotone increasing, we shall
say it effects an embedding of L in L'; ov if also L is completely covered
by ¢, that it is an isomorphism of L with L'. The inverse image of a single
element under a monotone mapping is an infervel; that is, a set which
contains with any two elements also all elements between. Conversely,
if I is partitioned into disjoint intervals, the set L’ of these intervals
inherits from I a unique linear order, while the mapping ¢ which sends
every element on the interval containing it, is monotone.

Let I and L' be linearly ordered sets. Their lewicographic product
is, by definition, their Cartesian product ordered by appeal to the first
differing component. Bxplicitly, L xL’ consists of pairs (#,z’) with wel,
2’ eI’ under the ordering convention: (%, ') < (y,y’) means w <y or
# =y and #’ < y'. Clearly the definition can be extended to any finite
number of factors presented in a definite order; and indeed to infinitely
many factors provided that for any two elements in the product “firgt
differing component” has an unambiguous meaning; in other words,
provided that the set indexing the components is well-ordered.

We recall that a cuf in a linearly ordered set L is a decomposition
of I into two disjoint non-empty intervals. Equivalently, a cut is a mono-
tone mapping of L on the two element set. Every linearly ordered set
of more than one element has cuts; the intervals of & cut, insofar as they
do not consist of a singlé element, may be cut again, effecting & monotone
mapping of L into the lexicographie product of the two element set with
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itself. This process of cutting an interval may be continued, indeed, ever
transfinitely often inasmuch as the intersection of intervals is an interval,
and will only terminate when all intervals consist of a single element,,
at which stage the associated monotone function is an embedding. Thus,
every linearly ordered set may be embedded in a product of two element.
sets. (This result is due to Sierpinski [11.)

Now, if uncountably many cuts were used to effect the embedding,
then there exists an uncountable nested strictly decreasing sequence
of intervals. For we may choose from the first cut one of the intervals.
which is cut uncountably often thereafter, and then proceed by transfinite
induction in this way past any countable ordinal. It is then a simple
matter to construct by transfinite induetion an uncountable well-ordered
or inversely well-ordered sequence of elements of L. Thus, if L contains
no such sequence, it was necessarily embedded in a countable product.

It will be recalled that the first uncountable ordinal Q is characterized
as an uncountable well-ordered set, every proper initial interval of which
is countable. It follows that every terminal interval is isomorphic to Q.

Suppose that ¢ is a monotone real-valued function of 0. Because
the monotone image of a well-ordered set is well-ordered, and in view
of the denseness of the rationals, @ can take on only countably many
distinet values; since countable subsets of Q are bounded, ¢ is ultimately
(i. e., for some terminal interval) constant. More generally, let ¢ map Q2
monotonically into a countable real lexicographic product. Since the
projection of a product on its first component is monotone, one ean find
8 terminal interval of © on which the first component of ¢ is constant.
Each terminal interval being isomorphic to £, there will be a still smaller
terminal interval on which the first two cormponents of ¢ are constant,
and so on. Countably many terminal intervals of Q always have a non-
void intersection; since only countable Lmit ordinals occur in the in-
dexing set of the produet, one concludes by transfinite induction that ¢
is ultimately constant. In particular, in a countable lexicographic product
of copies of the real numbers, every well-ordered subset is countable.
In the same way (or by noting that such a lexicographic product is anti-

isomorphie with itself), one establishes that every inversely well-ordered
subset is countable.

TEEOREM 1. A necessary and sufficient condition that a Uinearly ordered
set be embeddable in a countable real lemicographic product is that each of
its well-ordered or inversely well-ordered subsets be countable.

‘We shall next address ourselves to a closer investigation of embedd-
ability in finite real lexicographic products. .

Let I be a linearly ordered set. The binary relation ¢ valid for exactly
those pairs «, y for which the interval lying between = and y is embeddable
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in the real numbers is readily seen to be an equivalence relation whose
equivalence clagses are intervals. Thus, o is induced by a monotone mapp-
ing of I on a linearly ordered set L'. If L is the monotone: image of a §ub~
set S of real lexicographic n space, then the equivalence induced by g in §
identifies at least all elements differing only in the last eom.ponent (the
monotone image of a real subset being real). It follows that L’ is the mono-
tone image of the set obtained from § by identifying last co}nponents;
that is, of the subset of lexicographic (n—1) space made up of f}lst (n—1)
components of elements of 8. The equivalence g may .also be introduced
in I’ and defines a monotone mapping of L' on thfa 'lmearly orfiered set
of its equivalence classes; and so on, but not ad inflm?um. For it follows
easily by ordinary induction that the procedu:l'e a,.pphed to a mopotone
image of a subset of lexicographic n space will yvield the one point set
most 7 iterations. '

after(}?)iversely, the validity of thig last condition ensures embeddability
in lexicographic n space in the presence of the condition of Theorem 1.
For the absence of uncountable well-ordered or inversely Well-ordeIIed
subsets in L yields by transfinite induction that every snpset contains
& countable subset cofinal in both directions (i. e., generating the same
interval). This being so in particular for the equivalence classes of ¢, one
deduces that these are each embeddable in the real numbers. Qh01ce of
an embedding for every class effectively furnishes an embedding of L
in the lexicographic product of L’ with the real numbers. The result now
follows by ordinary induction. N

THEOREM 2. A necessary, and for seis satisfying the condition of lfh.e-
orem 1 also sufficient, condition for the embeddability of' L in real lexico-
graphic n space is that the equivalence ¢ applied sucgessm{aly to the ‘?ets‘ of
its own equivalence classes, shall yield after at most n iterations the universal
equivalence. o

The embedding achieved in the proof has the char.act»er%stle th‘at
the last component of the image is made as large as possible: in precise
terms, the equivalence obtained by identﬁying last compo.neuts in terms
of any other embedding is finer than e. If this pl:operty is specl.ﬁed for
the image of L as well as for those of the successive sets gf e(llmval'enee
«clagses in the lower dimensional spaces, then the embeddmg is unique,
except for the arbitrariness associated with the representation of each
equivalence class by real numbers: that is, for fixed @, ..., i1, Fisa, - » @n
one has the freedom to replace the linearly ordered setftof x; for which
{@sy vuey Biy ..., Tn) € L by any real subset isomorphic to it.
o A’n;n;;xg ’eq:ll)iva,len;s Ofl- L with real equivalence cla.sses, ¢ may be
identified as that one for which every interval of L’ contains uncountab%y
many equivalence classes with more than one element. The proof will
be omitted.
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That equivalence elasses of one element may ocecur even for the
embedding of the theorem may be seen by referring to the lexicographic
plane with the ¥-axis except for the origin removed.

The uniqueness considerations valid in finite products no longer
hold in the infinite case. For example, let L be a subset of the lexicographic
product over the positive integers, 6 a real number occuring as the first
component of an element of L, and I a real interval containing 6. There
exists an isomorphism of the elements less than 6 into those less than I
as well as one of the elements greater than 6 into those exceeding I;
let such an isomorphism be applied to all first components other than 6.
For elements whose first component is 8, let the second components be
mapped into I (by some isomorphism of the real numbers into I) and
all succeeding components be moved back one index. The result is an
isomorphism of L with another subset of the produet. If L is the subset
of all elements with irrational first component, then both it and its image
appear in all finite dimensional products as required for the previous

uniqueness conclusions, but their first components are clearly not iso-
morphie.
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Sur les familles d’ensembles infinis de nombres naturels

par
W. Sierpinski (Warszawa)

F étant une famille donnée d’ensembles, le.a probléme se pose de
trouver les conditions pour qu'il existe au moins un ensemble ayaint
avec tout ensemble de la famille F' un eb un seul élément commun, re-
spectivement un nombre fini non nul d’éle’menﬁs communs. i

Dans le cas oit Ia famille ¥ est formée d’ensembles non vuies disjoints,
P’existence d’un ensemble ayant un et un seul éléme_nt commun avee
tout ensemble de cette famille résulte de Paxiome dl.l choix. Or, la q1\1esdtlon
se pose d’étudier le cas oil les ensembles de la fa,'ml]lg F 0n‘§ "ie:ilfgz :I?é
au plus un élément commun, respectivement un nombre fini d’¢lément
Com§$2~ pous occuperons iei seulement des familles F d’ensembles
infinis de nombres naturels.

TatoREME 1. 11 ewiste une famille dénombrable ¥ densembles infinis
de nombres naturels ayant deux & deux au plus un édlément commUN etF telle
qu’il nexiste aucun ensemble qui ait avec tout ensemble de la fomille F un
et un seul élément commun.

Démounstration. Soit p, le n-idme nombre premier. Soit

B ={2,2,%,.), B=1{3,3,3,.}.

On gait que tout nombre naturel # peut étre mis d’upe seule mamélre
sous la forme n == 2%"Y(21,—~1), olt %k et I, sont des nombres naturels.
Posons, pour n=1,2,3,...,

3
Frye = {zk", 31”7 Pnyey Pi-,\-z, DPrtas o}

Nous démontrerons que la famille F = {E,, B,, ...} satisfait & notre thé-
oréme. : . '
Les ensembles B, et H, sont disjoints. Or, il e_st évident que ehacu:;
‘des ensembles B, et B, a avec chaque ensemble Fnyo (n=1, 2, luléx
un seul élément commun. Si Pon admet que les ensembles By et Enis
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