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Undecidable and creative theories

by
J. R. Shoenfield * (Durham, N. C.)

1. The basic method of proving that a formal system is undecidable
{i.e., has an unsolvable decision problem) is the original method of
Chureh [1], which requires that recursive functions or sets be represen-
table in some sense in the system. Other methods are given in [9]; but
in each case, it is shown that the decidability of the given system would
imply the decidability of a system already seen to be undecidable by the
basic method.

To formulate the precise results, we recall some definitions. By
a theory, we shall mean a formal system, formalized within the first order
predicate caleulus with equality. We suppose Godel numbers assigned
to the terms and sentences (1) of each theory by one of the usual methods.
‘We say that a theory is decidable if the set of (Godel numbers of) theorems
of the theory is recursive. A theory is axiomatizable if the set of theorems
of the theory is recursively enumerable (2). .

We shall suppose that in each theory T a sequence of terms

0,1,2,..

is fixed 30 that the Gédel number of 7 is a recursive function of n, -and
so that if m s n, then —,m = 7.

Let A(x) be a sentence of the theory T containing no. free Vanable
other than ». We say that A4 (x) strongly represents a get K if

e K—pA(R)
and
¢ K- ¢ A7)

for all n. We say that A (x) weakly represents K if
' e K o -1 A7)

* This research was supported by a grant from the National Science Foundatlon
of the U.S.A.
() We do not require {as in [9]) that a sentence conta.m no free variables.
(*) This is eqmva.lent to more usunal deflmtnons of axiomatizability by Crmgs
theorem.
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for all n. If A(xz,y) contains no iree variables other than # and y, we
say that 4 (x,y) defines the function f if

o A(7,y) <>y = f(n)

for all =.

We can now state the basic result ([9], p. 49): A consistent theory T
is undecidable provided that:

(A) EBuery recursive function is definable in T.

H. Putnam ([7], p. 53) has shown that (A) may be replaced by:

(B} Every recursive set is strongly representable in T.

{It is easily seen that (A) implies (B).) Actually, we may replace (B)
by the weaker condition (3):

(C) Every recursive set is weakly representable in T.

For let J(m,n) be the predicate ‘m is the number of a sentence
4 (») such that A(%) is provable’. If T were decidable, J would be re-
curgive. Bub by (C), every recursive set is of the form #J (m, n) for some m.
By the usual diagonal argument, it follows that J is not recuesive.

We can now ask: in any of these cases, ean we conclude that T is,
in some sense, effectively undecidable? In the case of a recursively enu-
merable set there is a precise formulation of the idea of being effectively
non-recursive, viz., Post’s notion of creativity (see, e.g., [6]). We say
that a theory is creative if the set of theorems of the theory is ecreative.
The question then becomes: if a consistent axiomatizable theory 7' satis-
fies (A), (B), or (C), is it necessarily creative?

This question was first considered by 8. Feferman [3], who showed
that if 7' satisfies some further conditions, which state that T contains
a formula ‘@ <y’ about which certain of the usual properties of < can
be proved, then I' is creative. The author [8] showed that Feferman’s
conditions could be replaced by weaker ones. Ehrenfeucht and Fefer-
man [2] showed that if 7' satisfies (A) and either the conditions of [3]
or those of [8], then every recursively enumerable set is weakly repre-
sentable in 7. This conclusion implies that T is creative; indeed, if any
creative set is weakly représentable in 7 then 7 is creative, as is easily
seen.

In this article, we show that the additional conditions cannot be
eliminated. We give an example of a consistent axiomatizable theory T
satisfying (A) (and hence (B) and (C)), which is not creative, and in which
1o non-reeursive set is weakly representable.

We shall actually prove slightly more about 7. We first recall that
if A is recursively enumerable, then A has degree << 0'; and 4 has degree 0’

) (%) This fact was pointed out to the author by R. L. Vaught. The author would
like to thank Vaught for several helpful conversations on the material of this paper.
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if and only if every recursively enwmerable set is recursive in 4. To
a theory T we assign the degree of the set of theorems of 7. We shall
prove that our theory T has degree < 0'. By [6], Theorem 20, it follows
that T is not creative.

In § 2, we construct a recursively enumerable set B; no formal systems
are involved in the construection. In § 3, we use B to construct our theory 7.

2. Concerning recursive functions, we use the notation of [4], as
supplemented by footnote 2 of [5]. In particular, {e}* designates the partial
function which is recursive in o with Godel number e. It is defined at =z
if and only if Ti(a(y), e, 2} for some g, where a(y) is the number of the
sequence a(0), a{l}, ..., a{y—1); in this case, {&}°(x)=TU(y) for any
guch y. Also (#)» represents the exponent of the (n—1)-st prime in the
prime power expansion of .

We shall sometimes identify & set with its characteristic function;
this explains such notation as A4 (z). We write <e, v} for 2°3%; this may
be thought of as the ordered pair of ¢ and ». We set

A9 = 5(¢e, vy e d).

The set of all natural numbers is designated by N; the empty sets is
designated by 9.

Levma 1. Let Z be a recursively enumerable set such that for all e, 29 is
finite or equal to N. Then is a recursively enumerable subset A of Z having
degree < 0 such that Z©— A® is finite for all e.

Proof. We suppose that a recursive function enumerating Z is
fixed, and let Z; be the set of values of this function for arguments < %.
In addition to 4, we shall enumerate a set B which is not recursive in 4;
this will insure that 4 has degree < 0’. As a number « is placed in B, we
shall define finite gets @ () and R(x) to be used later in the enumeration (4).

We now describe the kth stage in the enumeration of 4 and B. We
say that @ is active (at this stage) if # has previously been placed in B and
no member of @ (z) has been placed in A,

Step 1. Place in 4 all (¢, v) in Z; such that (¢, v) ¢ R(x) for every
active 2.

Step 2. Let A4, be the set of elements already placed in A4, either
in Step 1 of this stage or at an earlier stage. Let (k), ==, (), =7 We

(#) The purpose of Q(x) and R(z) is roughly the following. If = is placed in B,

- it is to ensure that {f}*(z) # B(x) for f = (2),- The members of ¢ (z) and E(z) are those

{e, v> which, if later placed in 4, would make this inequality false. If such an (e, v>
appears in Z, we must establish an order of precedence between two things we wish
to do: place <e,») in A, and insure that the above inequality remains true. If <e,v> ¢Q (),
placing (e, v> in 4 takes precedence over this inequality; if <e, v> ¢ B(z), the inequality
takes precedence.
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place’ » in B if it has not already been placed in B, and if {a)-(e) below
hold.

(a) (Ty)yrT{(An(y), f, ) .

If (a) holds, we set y = uyTi(Axy), 7, 2) .

(b) Ulyy=0.

() There is no active &' with o’ < » and (2), = f.

Assuming (a)-(¢) hold, we let J, be the get of <e, »> such that {e,v> <y
and <¢,v>¢ Ax. Let J be the smallest set such that J,C J, and such that
for all active 2/,

R@)nZynd #0>Qx)CJ.

Since J is included in the union of J, and of the Q(2') for active 2’ at
stage k, J is finite and can be effectively found.

(d) J ~ Ay, = @.

(e) <e,v> ed &e < f & (B)or1 5= 0> (e, v) e Zy.

If (a)-(e) hold, we let Q(z) be the set of <, vy eJ—Zr such that
¢ < f, and let R(x) be the set of (e, v> ¢ J — Z;, such that ¢ > f. This com-
pletes the description of 4 and B.

We say that = Is effective if © ¢ B and Q(z) ~ 4 = &, Then z is active
at every stage after it is placed in B.

Let M (e, v) be the set of such # in B that e, v> e B(w). If (e, v} e %,
then {e, v) cannot be placed in any B(x) at the k-th (or any later) stage.
Hence

(1) e,vy e Z->M{e, v) is finite.

We now show Z9— A9 i3 finite. If ve Z9— 49 then (e, )
containg an effective z. Otherwise, in view of (1), we could choose % so
large that (e, v} ¢ Z; and no member of M (e,v) is active at the %-th
stage; 80 <¢, v> would be placed in A at the k-th stage. Now for any
& € M(e,v), (x), < e. Hence we need only show for any f < e, there are
only finite many effective  with (#)o = f. This follows from (c) of Step 2
above.

It remains to show that B is not recursive in 4. For this, we suppose
that B = {f}* and derive a contradietion.

Case 1. There is an effective z such that (), = f. -

Suppose that  is placed in B at the k-th stage, and use the notation
of Step 2 above. We have {f}(z) = B(z) = 1, Ti(Ax(y), 1, @), and U(y) = 0.
It follows that Au(y) = A(y). Since Ax C 4, it follows that J, ~ 4 8,
and hence that J ~ 4 + @.

Let {e, v) be the first member of J Placed in 4; say it is placed in 4
at the p-th stage. Since J ~ 4, =0 by (4), p> k. Now <e, v> ¢ Q(x),
since # i3 effective. Also (e, v5 ¢ E(x), since # is active at the p-th stage.
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Since J C @ (x) v R(x) v Z, it follows that (e, ) ¢ Zi. But <e, v> ¢ Ay
so (e, v> e R(z") for some #" active at the &-th stage. Then ({3, vy e R(a')
~Zp~d, so Q') CJ. Hence no member of ¢(x') is placed in 4 pei:fore
the p-th stage; so " is active at the p-th stage. This is a contradietion,
since <e,v) e R(x') and e, v> is placed in 4 at the p-th stage.

Case 2. There is no effective 2 with (@), = f.

Let F be the set of ¢ such that 2 = N. Choose # so that

{2) @) =1,
{3} é <f—>((m)e4:1 £ 0+se eF) s
{4) e<f&eéF&Le,v>eZ—+e,v>eZy.

This is possible, since Z® is finite for e¢ F. ‘ .

Suppose « ¢ B; say that # is put in B at the k-th stage. Smce @ is
not effective, there is an <e, v> in ¢(®) ~ A. Then <e¢,v) ¢ Z; (since Q(x)
A Zy = @), and hence (e¢,v)>¢ Z, (since = (k), <%). Also e (2)y=f
and <e, vy ¢ 4 C Z. Hence by (4), e ¢ F; 30 by (3), (#)e11 % 0. Then by (e)
of Step 2, <e, v> ¢ Z, a contradiction.

It follows that ¢ B. Hence 0 = B(z)= {{}{@). Letting
y=pyTi(A(y),1,x), we then have U(y) = 0. Let § consist of all <e,v>
such that either {e,?v> <y and <e,vd>¢é 4, or {e,vd eQ(z'), Wl_lere.m’
is effective and (2'), < y. By (c) of Step 2, S is finite; and <{e,v> ¢ § implies
¢ < y. Now choose % with (%), = # so large that:

(i) Auly) = A(y).

(i) ¥y <k

(i) S ~ZC Zg.

(iv) e, o) <y & e, vy e A—>{e, v) € Az,

(v) No non-effective »' with 2’ < # is active at the k-th stage.

(vi) If ' is non-effective, and ' « M(e, v) for some le,vyeZn 8,
then 2’ is not active at the k-th stage. (This is possible by (1).)

We now show that at the k-th stage, (a)-(e) of Step 2 are satisfied.
This will give the desired contradiction, since ¢ B. :

By (i) and (ii), (a) holds with % as above; so (b) holds. By (v), (¢) holds
(since no 2’ with (z'), == f is effective).

Now we show J C 8. By (iv), J,C 8. Hence we need only show that,
for #' active at the k-th stage, ’

R@)~Zxn 8 #8->Q@)CS.

Let <e,v) e R(@')~ Zr~ 8. Then @’ « M(e,v) and <e,7) ¢ Z ~ 8. Hence
by (vi), 2’ is effective. Also (2'), < ¢ < y; whence @{a’) C §.


Artur


176 J. R. Shoentield

We now prove (d) and (e). Suppose that <e,v>ed ~ Ay. Then
<e,v>e8 ~ A. Hence <e,v)¢@(a') where o is effective. But if & ig
effective, @(#') ~ 4 = @; so we have a contradiction, This proves (d).
Now let <e, v ed, e <J, and (#)er; % 0. Then e, vy ¢8. By (3), ¢ e R
50 by choice of F, (e, v) ¢ Z. Hence by (iii), <e, v> e Z;. This proves (e)
and completes the proof of Lemma 1.

Now let Z be the set of e, »} such that {e} (#) is defined for all z < ».
Clearly Z satisfies the hypotheses of Lemms 1. Hence there is a recur-
sively enumerable subset 4 of Z of degree <0’ such that Z®_ 4@ is
finite for all e. Let B eonsist of all pairs {e, 2> such that either e)y, 2> ed
or z < (e);. For <e,2) ¢ B, define Fle, z) by

4

Fle,2) = ((6)y) if
Fle,2) = {(e)}(e) it
Then we readily verify:

B is a recursively enumerable set of degree < 0', and F is o paitial
recursive function with domain B. For all e, B is recursive. I T {f} is recur-
sive, there is an e such that Fle,2) = {f}(2) for all e

2 (e),

2> (e), .

3. We now construct a consistent axiomatizable theory 7' of degree
< 0’ in which every recursive function is definable, but in which no non-
recursive set is weakly representable.

The non-logical symbols of T are the constants 0, I, and the
one-place function symbols Dy, Dy, By, ... The non-logical axioms of T
are all sentences of the following forms (where B and F ave as in §2) (5.

(I} m # 7 where m = .
(IT) D7) = 7% where <¢,m» e B and Fle, m) = n.

n b
(TIT) (Hay) ... (Hay) (./\190” 7 g & /\1 Dr(y) = 2, &

2]
12, .

¢ a
A Pulay) = U; &N\, #V
b1l A

k2

where 7t s;, the pairs (mi, t;) are distinet, and no @; ocours in any of
the terms U; or V..

Clearly T is axiomatizable. Tf {f} is recursive, there is an ¢ such that
Fle, m) = {f}(m) for all m; then @.(x) = y defines {f}.

Lesma 2. Bvery sentence in T is equivalent to a quantifier free sen-
tence. :

Proof. Tt is sufficient to prove this for sentences of the form

1) (Bay) . (F2a) (S, & ... & 8)

() We use A with indices to indicate conjunctions of several sentences.
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where each ‘Si is an equaliby or an inequality, We first eliminate ail
terms containing two or more @.'s by, e. g., replacing

P (D) =T

» (@y) {y = Prlz:) & Pely) =T},

and then bringing the new quantifier to the front. We then eliminate
all inequalities not of the form x; % 2; by replacing U # V by

(AY) @)y =T &e=V &y +#2).
Then we eliminate equalities of the form
Dofw;) = Pe(27)
by replacing each such equality by
(Fy) (y = Pol(@:) &y = Pe(y)) .

We can thus suppose each 8, in (1) has one of*the forms

) H=

3) w=1U,

(1) Do(21) = 4,

(5) Do 1) =U s

6) U=V,

(7) @ # T,

(8) w# U, )
(9) U#V,

and V contain no . .
Wher%'g eliminate (2) and (3) by omitting =; = %j OT @ = U; omitting
(dz;); and replacing z; everywl(l;re (‘?B)f (.f;f) or U; this converts sentences

-(9) into sentences under (4)-(9).

Uﬂde;‘f gl)eiz)are two sentences (4) or (5) with the same ¢ and 7, we replace
one by the equality of the right-hand sides. If thlS' introduces new ior-
mulae under (2) or (3), we eliminate them as above. Th_ls process termm?, bes,
since an elimination of a sentence under (2) or (3) ehmmate.s a quantlﬁfer.
Next bring all sentences (6) or (9) outside.th.e quantifier. If %n 1%
equality ;% 2; appears under (7), replace the entire sentence by 17;@:
Otherwise, the quantified part is an a,zz:;og1 mllder (III), 8o can be repla
by 0= 0. This concludes the proof of the lemma. .
v By a configuration, we mean a finite set D = {a,, ..., am} andda ﬁmie
set of functions vy, ..., ¥, each having subsets of D as domain and range.
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This may be considered as a partial semi-model (5) for 7T, in which Coy ey Gty
correspond to 0,..,7 and g, ...,y correspond to &, vy @ Tt will
then assign a truth value to some of the sentences which contain no
variables and no non-logical symbols other than 0, ey Wy Dy, oy By
A configuration is allowable if it does not assign falsehood to any axiom
under (II).

Levma 3. A sentence 8 of T containing no variables is uNPprovable
if and only if 8 is assigned falsehood by some allowable configuration,.

Proof. If § is not provable, it is false in some model M of T. Sinece §
has no variables, some configuration ‘included’ in MM assigns to 8 the
same truth value as M, namely falsehood. Since M is a model, the confi-
guration is allowable.

To prove the conmveres, it is clearly sufficient to prove that any
allowable configuration can be extended to a model of 7. Tt is readil_;f
seen that such a eonfiguration can be extended to a model for (I) and
(II). Since every extension of a model for (I) and (IT) is again a model
for (I) and (IT), we need only prove: any model M for (I) and (II) can be
extended to a model for (ITI).

By the completeness theorem, we need only show that M can be
to a model for a finite number of axioms under (III). Now if we write
these axioms with different bound variables, form their conjunction,
and bring quantifiers to the front, we obtain a new axiom under (III).
Thus we need only show that M can be extended $o a model for one axiom
under (IIT).

Leb 41, ..., 4+ be the free variables in (III), and let ¢, ..., ¢ be indi-
viduals of M. Introduce new individuals iy ey bu. Tt is easy to see that
the functions of M ean be extended to the enlarged domain so that the
scope of (IIT) is true when ¥, ..., ¥ y &1y «y @y are interpreted as ¢, ..., ¢,
byy.ous by It we do this for each t-tuple ¢, ..., ¢, and repeat the whole
process infinitely often, we obtain the desired extension of M.

It follows from Lemma 3 that T is consistent; for 0 s 0 is assigned
falsehood by any non-empty configuration.

We now show the decision problem for 7 is reducible to that of the
set B, so that T has degree < 0. Since the proof of Lemma 2 enables
us to effectively obtain a quantifier free sentence equivalent to a given
sentence, and since the quantifier-free sentence will be closed whenever
the given sentence ig closed, we may confine ourselves to closed quntifier-
free sentences, i.e., sentences without variables. The set of provable
sentences without variables is Tecursively enumerable since 7' is axioma-

(%) As usuall, a semi-model differs from a model in that the non-logical axioms
peed not be true in a semi-model. We confine ourselves to semi-models in which equality
1s represented by equality.
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tizable. Hence we need only show that the set of unprovable sentences
without variables is recursively enumerable in B.

Since a configuration is a finite object, we can enumerate all confi-
gurations. The allowability of a configuration aq, ..., @m, ¥y, ..., ¥ may
be expressed as follows: if yea;) = a; and (e,4> < B, then F(e,d)=1.
Hence given a configuration and a decision method for B, we can decide
if the configuration is allowable. Finally, given a configuration and
2 sentence § without variables, we can decide whether or not the con-
figuration assigns falsehood to S. Using Lemma 3, it follows that the
set of unprovable sentences without variables is recursively enumerable
in B.

Now consider a sentence A(x) containing no free variable other
than = Let @, @, ..., Dp include all the function symbols in A (z). Let B’
be the set of <{e,v) in B such that e < p. Just as above, we can show
that the decision problem for the set of sentences

(10) 4(0), 4(1), ...

is reducible to the decigion problem for B’. But B’ is recursive, since B
is recursive for all e. Hence the decision problem for the set (10) is solv-
able. This means that the set which 4 (x) weakly represents is recursive.
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