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Note on arcs in semigroups ™
by
R. P. Hunter (Oxford)

Koch ([1]) has shown that a compact connected continuous semigroup
with unit element must contain an are. If § is such a semigroup then,
under certain conditions, § must be arcwise connected. This is true,
for instance, if § is one dimensional and has a zero element (Theorem 3.2
of [61).

This note is concerned with the arcwise connectedness of certain
semigroups and the existence of subsemigroups which are ares. We recall
now some of the standard terminology. An element e is called idempotent
if ¢ = ¢. The collection of idempotent elements is denoted by E. If 8
is a compact semigroup then F is compact. A non-empty set A is a left
(right) ideal if SM C M, (M8 C M). The minimal (two-sided), closed
ideal is denoted by K. We note that if S is compact, K exists and must
be the minimal ideal of §, since K = 8§28 for any = ¢ K. If & is any point
of § we define Ly as {#| #w Sz = a U Sa}and Ry as {z| s v a8 =av aS}.
For each a the set Hy is defined as Ly ~ Bs. If e ¢ B then H, is the maximal
subgroup containing e.

It is easy to show that if § is compact the sets Ly (as do Ry and H,),
form an upper semi-continuous decomposition.

We shall, for the sake of simplicity, assume that § is metric.

A semigroup is said to admit relative inverses ([8]) if for every
element & there is an idempotent e such that @ = a¢ = e¢ and an element
& such that aa’ =a'a =e.

TeroreM 1. Let § be o compact connected semigroup which admits
velative inverses. If 8 has a zero then B, and consequently 8, is arcwise
connected. '

Proof. We first form the upper semi-continuous decomposition of §
whose elements are the sets Hs. It is easy to see that since § admits
relative inverses, each set H, contains af least one idempotent. We assert
that it contains no more than one. To see this let 6, f e B ~ Hy so that
Lo~ Re=L;~ Ry. Since eeL;, we see that ef =e. But since feRe,
we see that ef = . Hence we see that ¢ = .

* The author would like to gratefnlly acknowledge support from the Sarah H.
Moss Memorial Foundation.
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If we denote the hyperspace of § by &', we see that 8§ and B are
homeomorphie. The homeomorphism from B onto § being obtained by
considering the canonical mapping from § to &, cut down to E. In
particular then, ¥ is a continuum.

Now for ¢ and f in B, define ¢ < f if and only if ¢f =fe = e.

For ge E let L{g) = {#] v ¢ E, < g}. We assert now that L{g) is
a continuum. We note that L(g) = F ~ gS¢. Since 8§ admits relative
inverses, gS¢ admits relative inverses. For if a ¢ g8y there is an e and
an a’ such that ea = a¢ = a and ae’ = a’a = e. We see that ge = g(aa’)
= (ga)a’ = aa’ = ¢ and ga’ = g(ea’) = (ge)a’ = ea’ = a’. In the same way
eg = ¢ and a’g = &’ s0 that ¢ and a’ are in ¢Sg. Hence gSg admits relative
inverses and, from the first part of the argument, B ~ ¢Sg = L(g) is
a continuum. An eagy argument shows that “< is a partial order with
closed graph, ie. {{a,b)] a <b} is closed in §x 8.

EKoch ({Corollary 1 of [1]) has shown that if (X, <) is a compact
partially ordered space with unique minimal element 0 such that the
graph of < is closed In X x X and L(z) is connected for each z ¢ X, then
X is arcwise connected.

It follows from this that ¥ is arewise connected, the minimal element
being the zero of §.

Finally, to show that § is arcwise connected, let 2,y ¢S and ¢, f ¢ B
be such that xe = ¢ and yf = y. If [0, ¢] and [0, f] denote arecs from ©
to ¢ and 0 fo f, the continunm 2[0, é] v y[0, f] is arcwise connected and
contains z and y. Hence § is arcwise connected.

Let X be 2 continuum and ¥ a closed subset of X. We denote by
X[ the space formed by identifying the elements of ¥, i.e. shrinking ¥
to a point.

Let S be a compact semigroup and M a closed ideal of §. We recall
that the Rees quotient S/M is formed by identifying the elements of M.
It follows that 8/3 is a compact (continuous) semigroup (with zero
equal to M/M).

By an I-semigroup we shall mean a semigroup which is an are
having a zero at one endpoint and a unit at the other.

An inverse semigroup ([15]) is one having the following two properties:

(1) For every a there is an idempotent ¢ such that ea = a and the
equation az = e is solvable.

(2) ef = fe for arbitrary idempotents.
TEEOREM 2. If 8 45 a compact connected inverse semigroup then:
(i) X is a group;

(i) B is homeomorphic to the hyperspace of the upper semi-continuous
decomposition of sets {B,};
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(iil) 4f % ds the unit of K and g any idempotent, then there is an
I-semigroup from k to g;

(iv) 8 is arcwise connected if and only if K is arcwise connected.

Proof. (i) Tt is known [9] that if § contains a minimal right (left)
ideal, then K is the union of disjoint right (left) ideals. Let I and I’ be
minimal right (left) ideals of 8. Then, again from [9], we know that
T = eS (I = Se)and I' = 8§ (I' = Sf). It follows that ¢f e I and ef = feel’,
which implies (since I’ and I are disjoint), that I = I" = K. Hence K is
a group. We let k& be the unit of K.

(ii) Since for each @ in S there is an idempotent e such that ex = a
and az — ¢ is solvable, we see that for each a there is an idempotent e
such that a8 = eS. Hence each set B, contains an idempotent. Further-
more, R, contains only one idempotent, for if e,f ¢ Ko ~ E we see that
eS8 = f8 and it follows that f=¢f = fe=e. We now let & denote the
hyperspace of the upper semi-continuous decomposition of 8§ whose
elements are the sets Ry. Define {R.} < {R,} if 28 C y8. It follows that
¢ iy g partial oxder on &, with & closed graph, and with unique minimal

“element {R }. Furthermore, the set L(E;) = {R.| R.< R,} is connected

since L(Ry) = o(#8) where a: §—+& is the natural mapping, a(p) = {£:}.

From Koch’s theoremn quoted in the proof of Theorem 1, we see
that & is arcwise connected.

Now the mapping a considered over B defines a contim_loushl-l
mapping from E on to &. Hence E and S are homeomorph.m‘ Since
(ef)2 = (ef)lef) = e(fe)f = e(ef}f = (ee)(jf) = ef, we see that E is a sub-
semigroup. B is then a compact connected semigroup with zero element k.

(iii) Koeh (Corollary, [2]) has shown that it § is & compact (?onnected
semigroup with zero and unit and is such that a8 = b8 implies a = b,
then S containg an I-semigroup from its zero to its unit.

Now the semigroup eBe = B’ where e ¢ E is compact connected with
unit ¢ and zero k. We assert that if 7, ¢ € B’ then fE' = g&’ implies f = ¢.
For if B = gF’' then gf = f since f ¢ gF and fg = ¢ since gefH 80 that
f = g. Hence, by the above corollary of Koch, there is an I-semigroup
[k, e] from & to e.. '

(iv) T @,y arve points of § let ex = # and fy = y. If K is arcwise
connected then [k, €]z [k, flyw K contains an arc from # to y. The
asgertation that K is arewise connected if 8 is, follows immediately from
the fact that if © ¢ K then K = §x 8.

An arc from @ to y wil be noted by [z, y] and the half open
arc [x,y]—y will be denoted by [z,¥).

TaeoreEM 3. Let [0, 6] be an I-semigroup contained in a compaot
semigroup S. Then [0, €] is contained in an I-semigroup [0, f], mazimal
with respect to having 0 as a zero.

16*
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Proof. Let T be the collection of all I-semigroups of the form
[0, 4] where [0, ¢]C [0, g]. Define on T the partial order < as follows:
for [0, m], [0, 2] elements of T, let [0, m] < [0, n] if and only if [0, m]
C[0, nj. By the Hausdortf maximality principle, the partially ordered
set (T, <) contains a maximal linearly ordered subcollection (chain), T,.
Denote by 7 the point set which is the union of the elements of T,
ie. Iy=1J[0, e, [0, e € T.

We assert fivst that if g e Ty ~ E then T,—[0, g] contains no points
from [0, 4], ie. [0,9) is open in T;. Suppose on the contrary that
ze[0,9) nT;~[0, g]. Now 29 = go = » since [0, ¢] is an I-gemigroup.
If ¢ is any point of T,—[0, g] then gi = tg = g. To see this we note that
since ¢ ¢ I, —[0, g] there is an I-semigroup [0, 7] such that [0, ¢] C[0, ]
C[0,7], and from 1.2 of [10], we see that gi = g.

Since the set of all points » such that @y = go = ¢ is compact it is
clear that z¢ T,—~[0, g].

‘We now assert that the compact connected semigroup 7T, is irreducible
between two points, one of which iz 0. For let g be a point of the common

part of the sets T,—[0,e,) where e,¢ T; ~ B. (Such a point p exigts

since § is compact.) We agsert that 7, is irreducible from 0 to p. To show
this let # ¢ T, such that # # 0 and # = p. From the above argument we
know that [0, #) is an open subset of T, and it follows that x separates
T, into two sets, [0, «) and T,—[0,®). Tt is clear then that no proper
subcontinuum of 7, contains 0 and p.

Now certainly T3 = T, since every element in 7T, has an identity
in 7,. By continuity, it follows that (7,)? = T,.

From Theorem 2.1 of [6], we know that if X is any compact con-
nected semigroup with zero, irreducible between two points and satisfying
the condition M2 = 3 then M is an arc, one endpoint of which is a non
zero idempotent.

Hence T; = [0, f] where f* = j. Clearly [0, f] is the desired I-semi-
group. For the existence of an I-semigroup [0, IT such that [0, f1S10, I3
would confradict the maximality of 7,.

TeHEOREM 4. Let § be a compact semigroup which contains o unique
arc between the poinis 0 and 1. If 0 is a zero, and 1 is a unit for [0, 1] then
[0,1] 48 an I-semigroup.

Proof. Let « and y be points of [0,1] and assume oy ¢ [0, 1],
The continuum [0, y] contains an arc [0, zy]. Let 2z be the last point
of [0, 11~ [0, zy] in the order from 0 to 1. Now [y, 1] contains zy and 2.
A straightforward argnment using the fact that [0,1] is the only arc
from 0 to 1 and the fact that [y, 1] is arewise connected shows that
zealy,1]. Let # = where te[y,1]. Now ¢S contains an are from 0
‘to ¥ 80 that we must have y = #s for some s ¢ §. We further note that
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[0,2]s contains an arc from 0 to zs=(wt)s= (1) = Y. From the
uniqueness of [0, 1]. It follows that [0, 2] C[0,5]s. But since both [0, 2]
and {s, &, &, ...} are compact sets, we can apply Corollary 1 of [3] to get
[0, #] = [0, 2]s. This implies that oy = &s < [0, z].C [0,1% ' .

This includes the known result that a dendion contains an I-semi-
group from its zero to its umit ([10]). '

For the convenience of the reader we now state a topologieal ex-
tension of a theorem of Rees-Suschkewitsch (Theorem 1, [4]).

THnoreM. Let § have o compact minimal ideal K, and let ec K ,;\14?
Form eSex (e8 ~ E) % (Se ~ B) with the multiplication (t, ¢, ne,d, 1)
= (lgf't’, @', f) and define @: eSex (eS8~ E)x (Se ~ E)—a'K by o(t,q, ].‘)
= jgt. Then eSex (¢S ~ E)x (8e ~ E) is a compact semiyroup and_zp 18
a topological isomorphism. Further, if o2 K —K s defined by. “n(t) is the
idempotent in the group containing 17, then r: S—>K defined by (=)
= wn(qe) is a retraction of § onto K.

Lemmas 1. If eS ~ B or Se ~ B is degenerate then eSe is a group.

Indeed: Suppose eSe ~E = ¢ or Se ~ E = ¢ then since eSe C eS. and
¢Se C Se, we have eSe ~ B = e. Buf since § is compact, any left (right)
ideal T of eSe containg an idempotent. Thus ¢ « I and consequently eSe = I,
which proves that eSe is a group. o

We also state the following corollary to the above which is proved
in [4:[‘ ‘ . - . f. d

By multiplication of type (i) we mean the multiplication define
by @y = = for all ,y. By type (ii) we mean that defined by ay = y for
all z,y. . -

COROILARY. Let K be a continuum and suppose K is not the car tesum'z
product of two non-degenerate continua. Then either K is a group or multi-
plication in K is of type (i) or (). '

We now consider further consequences of the Rees-Suschkewitsch
Theorem. . ) o N

By a simple semigroup S, we mean one which sa’msﬁes_ thfa COIldlltIODS
S8 = 8 for each z in 8. When K exists we note that § is simple if and
only if §=K. '

THEOREM 5. Let 8 be @ compact connected simple semiyroup which
is a subset of the plane. Then

() multiplication in S is of type (i) or (ii) or 4 .

(b} 8 is the cartesian product of two arcs, multiplication in the first
being (i) and in the second type (ii) or ' .

(¢) 8 is the usual circle group or is a cartesian proé%uct. of @ simple
closed curve ¢ and an arc A, where multiplication in C ’LS-(I), (1{) or the
usual circe group ond in A the multiplication i8 of type (i) or (il).
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For our proof we shall require the following:
Leywma 2. Let X and Y be two non-degenerate continua such ihat

X x Y is embeddable in the plane. Then either X or Y is an arc and the
other is an arc or a simple closed curve.

Proof. We assert first that both X and ¥ are locally connected.
Suppose on the contrary that say X is not locally connected. Then X
contains a non-degenerate continunm of convergence M (see p. 18 of [197).
Now M x Y since it is two dimensional must contain a dise (Corolary 1,
D. 46, [21]), say .D. Now D clearly contains an open subset of X x Y.
It easily follows that this is impossible since M was a continuum of
convergence. (One may, for ingtance, use the fact that the projection
mapping is an open map.) Hence it follows that both X and Y are locally
connected. We now assert that neither X nor ¥ can contain a triod.
Suppose that X contains 7, a triod. Then X x ¥ contains uncountably
many triods in violation of the classical theorem of Moore. Now a con-
tinuum which is locally connected and contains no triods must be either
a simple closed curve or an arc (Theorem 71, Chapter 4, [12]). Clearly
we cannot have both X and Y as simple closed curves. Our proof of the
Lemma is complete.

Proof of Theorem 5. We recall the description of § as

eSex (S NEYx(Se~nEB) (ech).

Clearly only two of these three terms can be non-degenerate. If, in fact,
only one term is non-degenerate then it follows that multiplication in §
is either (i), (ii) or 8 is a group using Lemms 1. If § is a group then,
since S is in the plane, 8§ must be the circle group. Hence we suppose
that exactly two terms are non-degenerate. If eSe is non-degenerate
it is the cricle group and then e§ ~FE, (Se ~ E), is an are with multi-
plication (i) (or (ii)) again using Lemma 1. This, of course, is from Lemma, A,

If, on the other hand both e8 A ¥ and Se ~ E are non-degenerate
then one is a simple closed curve or an arc and the other is an arc. In
this case since eSe = ¢, we see that multiplication must be

(67 e,f)-(e,e’, f’) = (eef’e, 6’: j) = (6, 6’7 f)

TeEOREM 6. Let 8 be a compact connected semigroup such that 2 = 8.
Suppose that K contains no non-degenerate compact connected group. If S
containg one and only one idempotent not in K, it is arcwise connected if
and only if K is arcwise connected.

Proof. The Rees quotient S{K = T is a compact connected semi-
group with zero element. Furthermore, since 7% = T, we know that
T = TET (Corollary 1 of [5]). Letting e denote the non-zero idempotent
of T' we have 7' = TeT. Now the semigroup eTe containg an I -semigroup
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from e to %, the zero of T (Corollary of [13]). %et us denote this E)lyk[k, ej.
Letting  denote the natural map from 8§ to §/K we note tha}t a 'k, 4[61]._t
_ K = A is homeomorphic to a half open interval. We a.lbo.no’te Kxa.t
K o A is a semigroup. If for some a,bed t_he productlab is in z i
follows that an arc exists from K to_f.the unit of 4 (ae) = 7) ‘0311
the other hand A is a semigroup then A 1§ a cvompa;ct conr‘xect;:d sexinfg} thle
with unit 7, which is irreducible from K ~ 4 to f. Cl:zﬁly R 112 e
minimal ideal of A. From Lemma 2.1 or Theorem 2.2 -E]f (6] WZ now
that K ~ 4 is a group and a continnum. Our hypothesm de]flall' s‘ -
K ~ A be degenerate. In any case there is an arc (mde'ed an‘I -b&]:];légl)(()) ulyh
[p,f] where p e K. Now if «# and y are 1)91nts of AS,. theleq e_mé R )He_s
c :Z r. s such that z = cfd and y = rfs. This follows since S‘ = 8§ imy
S’ _ éES = 8f8 (Corollary 1 of {5]). The continuum elp, fldwrip, flsv
u-l_( is arcwise connected yielding in particular an are fl‘O%INl tw ‘ceof gl p
E is, of course, arcwise connected, whenever the same i tru ,
since K = 8p8, p « K. '
TeaeorEM 7. Let S be compact and con:nected. Suppos‘e NE = ;;;ﬁ
that § contains no arc. Then S i isomorphic to the cartle?u;fz, i”o (jz z;n !
two compact connected semiagroups I a,?z,d N suc.h ?hat mu tLé) izca % J
satisfies (i) or (ii) and multiplication in N satzsq‘ws (i) or (ii)- s
Proof. We assert that § = K. For if K is a proper su"r;;e r(;m 37,
then since 82 = 8, there is an idempojcent ¢ such that e¢ ltif é Cez;)j gﬂ)uP
of [57). eSe meets K and § — K, and, being a compact cor%lree Ce ! comigron
with unit, contains an arc b};& K;)l?h’s S‘ﬂzog;xjx; (t[ﬁg);enﬁz, rof; P.gsg hat
= § te that by Koch’s re ) ;
ge—dgé:z;a?:ei.z? gSg = g, where g is any idempotent. (Otherwise gSg
Conta;AuclSoj;nagc:c)o the Rees-Suschkewiteh theorem for gomlzagt S%I)n;-
| i is isomorphic to the semigroup eSe X (¢ lr\ ) 7
gio(gl;i %l)e (Ss imhgr :?),fv;;ere multliplica’cion is defined by (t,’ 4 f)(}j R qu,l{i)_
= (tgf't’, q': ). Since eSe = e, we cone}ude tha‘E‘K g:lfei >Z geazgc Nm= o
plication defined by (¢, A,y = (¢, ). Taking M =
o %;Zoi;iecoc? 1?2:35‘3, that I or & may well be degenerate.
’ 2 I
THEOREM §. Let § be compact and co;tvnvAected. é’-uppo.}e; ;S; ;65,“0;;2{2
that § containg no continuwum N such thaff, S/N is an are..ﬂI]; (i)z 0,: oy
between two points then multiplication in S must be eithe o
Proof. We assert that K = 8. For.if K were proper W%V o ude
Theorem 2.1 of [6] that the Regs q;ll;tleii hS/Tli eljr :I]!ll a:;. e at K
= K. By the Rees-Suschkew: m,
f;l ;irzl;?r:nfrphic to zhe cartesian product of 'the con;nnuaeeii, :hﬂészng hf:é
Since 8 = K is irreducible between two points, only ons
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continua is non-degenerate. If K = eSe then K is a topological group
using Lemma 1 and is an indecomposable continuum sinee it is homo-

geneous and jrreducible between two points (Theorem 4 of [207). If eSe
is degenerate we have (i) or (if).

TEroREM 9. Let 8 be @ compact, connected and one-dimensional semi-
group such that 8 = 8. Suppose that 8 contains no continuum N such
that S|N is arcwise connected. Then either S is a group being an inde-
composable continuum or the multiplication in § is of type (i) or (ii).

Proof. If K iz a proper subset of 8, form the Rees quotient
S/K. Since S/K is one dimensional, with (8/K)- (8/K) = 8/K, and has
a zero, it is arcwise connected by Theorem 3.3 of [6]. Sinece § is assumed
to contain no such continuum, we conclude 8§ = K. Since § = K i3 one
dimensional, it cannot be a non-degenerate cartesian product. Hence
8 = K is isomorphic to one of ¢8e, Se, or ¢8. By Lemma 1, if § = K = efe
then 8 = K i3 a topological group and being such that it containg no
subcontinuum N such that §/N is arcwise connected, it cannot be a simple
closed curve. It follows that § = K is an indecomposable continuum if
S=K=-eSe. If 8§ =K eS8 then multiplication must be of type (i).
It §=FK =~ 8¢ we have type (ii).

We have seen then certain continua such that any continuous
associative multiplication, subject to the condition &% — 8, must be one
of two trivial types, ie. (i) or (ii). If 8% = § the situation is somewhat
more complicated. For let ¥ be any subcontinuum of & such that Ais
2 mapping from 8§ to ¥. Then any multiplication on N may be extended
to 8. Explicitly let »: Nx NN and i: §—N be continuous with »
associative. Then 6: 8 x §—8 defined by

b(s,2) = »(A(s), A(t))

is associative and continuous, but not, of course, outo if ¥ is proper.
Aside from describing all continuous functions of the form 6 one

ecan, however, in certain cases, describe products of three or more elements.
Consider the following.

THEOREM 10. Let § be a compact, connected semigroup containing no
arcs. Suppose further that if N is any subcontinuum of 8§ and M is any
subcontinuum containing N then I is irreducible from N to some point.
If K is non-degenerate, then S = K.

Proof. Suppose that K is a proper subset of $% Then 82 is irredueible
from K to, say, the point zy. Now 8y contains zy and meets K so that
Sy = 82 Also, Sy = (8*)y = S(8y) = 85 = 8% and in general we have
Sy* = 8", However, from Corollary 1 of [3] we know that [} Sy» — Se
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where ¢ is some idempotent. We assert that e ¢ K. For if fzéK then eSe

ig irreducible from K to some point. But then leSe contains more 'bha;g

one point and consequently by [1], since eSe is a compact cognecte
i it it, it contains an arc.

Seml%rgxuvplgl f;l c?rjilzz,inllg cnot a non-degenerate cartesian pr.oduet (bej‘mg

irreducible between two points). From the Regs—Suschkertch theorem

we conclude that K is composed entirely of right (left) zero elements.

n+l _ ™ — —
Taking ¢ then to be a right zero we have ECN8" = QSy Se=¢

so that K is degenerate which is a contradiction. (If ¢ is taken as aS left
: “ » = . - s
sero one obtaing the same contradiction by consideration of (n] zn8.)

We note that if § satisfies the conditi.ogs of.Theorem 1(; ‘fheﬁ
multiplication must satisfy one of the c..ondmons (i) a}m = gb tf)()ln az) .
a,b,cin 8 or (ii) abe = be for all a, byein ’S. The severe res ricti
indecomposability on multiplication is seen in the following.

TrEorEM 11. Let 8 be a compact connected semigroup with ziro 0.
I every subcontinuum of 8 which contains 0 is indecomposable then 8 = 0.

Proof. We show first that §° = 0. The continuum & is méée;conla-
posable. Let zy, be in a composant of §2 different from Ehat (_)th. ia,?ni
then, we have #8 = 8. Now since the composant of 8 Whlc coon ai s
] i’s dense in 82, we may take a sequence 2y; CONVerging to,gz %10
th;t &2 ig irreducible from 0 to zy;. We note'that' &8 = Sy; = 8% D 1?}:;
let yn, be a convergent subsequence of y; which eonve.rgei toj)r isg,then
point y. Then 2y, converges to ay and xy = ()2 by contil}l.u Y- Now hen
we have, again by continuity, a8 = Sym; = 82 = Sy wi L a;y -I-f Sm o
28 w 8y is indecomposable, we must h?we SzDyS or So:sa_z 0 e Eyg)
then 0 = (8z)(y8) D (¥8)(y8). Multiplying by 8 we have o —C g Weyhawe
= (8y)(8y)8 = §° so that 8% = 0. If on the other hand mS__y o)
0 = (82)(y8) D (8)(Sz) and multiplying 08 = 0 = (82)(8z)§ =

5 5 5
=5 ’VViginWisselg.that St = 0. Now one of 48 and 8% contains the oéhgr.
If 4S8 D Sty then zyS D xSty = §* but zy8 =0 80 tha} 6’40: 0. It yS C 8%
then EzyS(_:_S'-‘y_C_Sﬁ= 0. But S8 = @’4 so that S§* = .Ss s

We show finally that 8% = 0. Again, we have y8C 30} __yel..
If 82 D yS then 8D SyS = 8 = 0. Let us assume thensthat »S; -1_s a: gro_po
subset of yS. We note first that if y§ = 52 then 83 = 82 = mgier—.ng.r
Hence we may take §2SySG 8% Now let ys; be a s,equen(]:le cone uflll e
to s e 8* such that ¢S is irreducible from ys; to ss. SuTc a,lst (i o
exists because yS8 is indecomposable. Clearly S8s; D y8. 1\1§)W es méon-
a convergent subsequence of s; converging to s. We 'bhens2 aﬁ:rJeSy §"= .
verging to ys so that ys =s3ef? Now 8s DyS so &% IOy
But S2s = Sys = Ss; C §4= 0. Hence & =0.

E]


Artur


[N
g
Do

R. P. Hunter

DEFINITION. By a local one-parameter semigroup at | we mean an
a(m:rE [pl ], 1] such that for some open set ¥V about I we have ([p, ]~ V)
=1P, bl

Exaypre 1. (See Fig. 1.) We construct here a compact, connected
locally connected semigroup with unit and zero containing no 100&1
one-parameter semigroup at the unit.

Consider first the positive additive Teal numbers. Identify, modulo 1
the real numbers ¢ greater than or equal to i. Explicitly for ¢ > %:

¥ >4 define ¢t =1t if [{—¢'| is an integer. The hyperspace of this de-

Fig. 1

composit‘ion is a simple closed curve ¢ with a free arc which is a semi-
group Wth unit element f. If we denote the identity of the cricle group
which is the minimal ideal, by ¢ we note that ¢ is not the single poin‘é
of order 3. P-enote this semigroup by § and the usual unit interval
%y [0,1]. TUsing coordinatewise multiplication, form the semigroup
m{; (g)r,dlé[xcc)’u{l}z;S')/{O}xC. We note that D is simply a disc
it -group as boundary with a inati i
whieh is nogt thle unit of g}?::}glfxﬁ)l. " free are emiating from & point
o DLe]’E DITDZ,D‘,, .be a sequence of semigroups each isomorphic
. Let f; be the unit and e; be the zero element of D, for each i
(ionstruct D’ as the union of the semigroups D;, such tl;:;t DimD-_L;
s-(—) ]‘Eh_tei;l and Dy~ Dy =[] if d #4i—1,4, or i-+1. Algso, construct TZI)’
tha t e sequence D; converges to a single point 7. To define multi-
Pheaﬁtxon in IV, let 2, a; be two points of D' with @;e Dy, 2; e D;. If
©=§ the product x;x; is already defined (as in D). 1f lz’ < ;', de:fine Ja‘wm,
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= @;@; = %;. It follows that D’ is & compact connected semigroup with
identity 7 if we define finally f&' =d'f = d' for each d' eD’. We note,
however, that D’ contains no I-semigroup from e; to f; = é;41. With
thig in mind it is easy to see that although D’ is locally connected it
does mot contain a local one-parameter semigroup at its unit f.
FxaMpie 2. (See Fig. 2.) We construct here a compact connected
semigronp Wwith no arc at its unit element. First of all let S be the usual
complex unit dise considered as a semigroup. Let [0, 1] be the usual
unit interval and form & x[0,1]. Let Z = {(z, y)| =", y=e%
s = 0). The semigroup (Sx {0}) v Z = T may be described as the complex
unit dise with an infinite half-ray spiraling upon the boundary. For
each i=1,2,3,.. let D; be a semigroup isomorphic with 7. Denote
the unit of D; by f; and its zero by e;. Construct the semigroup D' as

fi

=D

Fig. 2

the union of the D; such that D;n Dioy = fi = €0 and D0 D; =0
if §i—1,4, or i-+1. Also construct D’ so that the sequence D; con-
verges to a single point j. To define multiplication, let z;e D;, #; e D;.
If § = j, the product z;x; is already defined. If ¢ < j, then define x;x;
= g;; = x;. Also, define fd = df =d for any deD". It follows that
D" is a compact connected semigroup with zero e, and wunit f. Clearly,
D' has no arc containing f.

ExawpLe 3. (See Fig. 3.) We construct now a compact connected
semigroup § with zero such that &2 = S having the property that it
geparates the plane. Tt is based upon a semigroup constructed by Faucett.

Tet D denote the five element semigroup defined as follows: let
the elements of D be 6,w,z,y,e The multiplication is as follows:
my=1w, ze=12, &y =Y, =26 all other produets being equal to 6.
We note that D? = D. Let I =1[0,1] be the usual unit interval. Form
the semigroup D xIfJ =D’ where J is the ideal D x {0} v {8} % Iwu
wiw} x{1}. We note that 7) is the union of a simple closed curve and
a triod, joimed at the branch point of the triod. It is clear that D’
separates the plane. D’ also shows that a translate of an are need nob
be an arc. Tt is also not difficult to see that the simple closed curve in
D’ may be replaced by any loeally connected continuam.
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EXAJ&FPLE 4. Let © be an indecomposable continuum which is
a topological group with unit e. Let I be the unit interval with the

(8,0) fe,1)
{y:0) (]
(x,0) (x,1) =px1I,

(#0) ————————— (1)

(6,6) +—rerrr s (g,1)

(eo) +
{yo) -
(xo) - =J

(W7D) * * (W:1)

{80) ~—————————s (5, 1)

=0xI/3=D'

Fig. 3

multiplieation z-y = minfmum (z ¥ i i
ipli y). Form & x I with i
multiplication. Let S denote ’ ondinatemise

Sx {0} u {e} xI.

Then S is a compaet connected inverse serigroup (S also admits relative

inverses) which is not arcwige Conﬂecbed (Slnce its mmlmal ldeal 18 not
arcwige ConneCtEd).
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