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Absolute-valued algebras with an involution
by
K. Urbanik (Wroclaw)

An algebra 4 over the real field B is a vector space over R which
53 closed with respect to a product #y which is linear in both # and ¥
and satisfies the condition A(my)= (Az)y = »(Ay) for any AeR and
z,y e A. The product is not necessarily associative. An algebra is called
absolute-valued if it is a normed space under a multiplicative norm Il
ie. a mnorm satisfying in addition to the usual requirements the con-
dition |zy| = |#|jy| for any @ and y. It is known ([8]) that an absolute-
valued algebra with a unit element is isomorphic to either the real field,
the complex field, the gquaternion algebra or the Cayley-Dickson algebra.
A. A. Albert ([1]) has previously established this result under the
restriction that the algebra is algebraic, in the sense that every element
generates = finite-dimensional subalgebra and F. B. Wright ([4]) has
shown that an absolute-valued division algebra is algebraic. On the
other hand, infinite-dimensional absolute-valued algebras are known {[3]).

An operation * defined on an absolute-valued algebra A is called
an involution if it satisfies the following conditions:

(1) (ot py)* = Az*+uy*,

() a*=w=,

(iii)y =z* =o'z,

iv) (sy)y*=yrz",

") o =1al
for any A, peR and z,y e 4.

Any absolute-valued algebra which is complete and admits an
involution is said to be an absolute-valued *-algebra. Using the well-
known process of embedding linear normed spaces in Banach ones, we
can prove that any absolute-valued algebra with an involution can be
extended to an absolute-valued *-algebra. Therefore we shall be dis-
cussing only absolute-valued *-algebras. .

As wellknown examples of absolute-valued *-algebras we quote
the real field and the complex field with the identity transformation
ag an involution and the complex field, the quaternion algebra and the
Cayley-Dickson algebra with the natural involution (Atui+..)r= 24—
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—pi— ... {Ay 4y ... ¢ B). Now we shall give simple examples of infinite
dimensional absolute-valued *-algebras.

Tet X be an infinite dimensional real Hilbert space with an ortho-
normal basis {&}er. By Zermelo’s axiom of choice the set T of indices
can be decomposed into three disjoint sets Ty, Ty, and T, such that
1< T, <T,=7T, where B denotes the power of the set B. Let ¢ be
a one-to-one correspondence of the class of all two-point subsets of T
(i.e. non-ordered pairs {f;,?,}, where #, #1,, t;,%,¢T) onto the set T,,
Turther, let v be a function defined on the set of all ordered pairs {4y, )
{ty 5 1y, t;, 1, € T') assuming the values 1 and —1 such that ¢ (<, &)+
4 p(Clyy ,3) = 0 both if t,t,e T and if #,6,¢ Ty and (¢, ) =1
otherwise. For example, if the set T is ordered by a relation -3, we put
p(<t,t>) =1 or —1, whenever f, <%, or %, <% respectively and #,,%,¢ T,
or € T,. Let &(t) = 1 or —1 according as t Ty or t¢ T1.

Let us fix an element ty e 7. It is clear that to define a multiplication
and an involution on X it is sufficient to define them on the basis {és}iex.
‘We define the multiplication and the involution of elements of the basis
by means of the formulag :

ep=2e(t)ey, e,6n =Pl b)) buuan L L,
ef = e(t)e;.

Th(_ase operations together with the usual addition and secalar-multipli-
cation make X an absolute-valued *-algebra, which will be denoted by
X(T,, T, Ts, p, p). Indeed, setting (1)

m=2356h yZZHtet

tel teT
we have the equality

@ 2y =D pme(n)e,+

teT

+ ; (9 (<t 103) Ay g+ 9y 13) At 1) Eottuss »
1 2

where t-h.e‘sum is running over all non-ordered pairs {,,%,} satisfying
the condition ¢,  t,. Hence, taking into account the eguality

e(t)e{ts) + (s 2)p(<hy 2D) =0 (4 #1),

R . X oee
() We write =t EZ;' x¢, i for every positive number e there exists a finite set

Jy ¢ T of indices such that [m—-tz‘,; x| < & whenever J is a finite set of indices con-
€

taining J,.
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we get
eyl = [ 3 hane®) + 3 o<ty 1) -+ p Kty ) i) ]
el ti#ts
2 o\l/2 a\i/2 s\1/2 ,
=( Z ltlﬂte)l =(Z }w)l : (Zﬂt)l = |z |y].
i,lseT teT teT

Properties (i), (ii) and (v) of the involution are evident. From (1) we
obtain the formula

@y)* = ( > epme(t)) e+

el
+ Z elp({try 121)) (@ (<t o) Ay ity + 9 (Lo ) 2010 Eptitntan s
fi=t
yro* = (thms(t)) e+
tel
=+ Z (W (Chry tor) & (te) g2 (Be) 2y + 9 (e ) e (ty) proelty) /A“l;) Eolitrta)) -
tyFla

Since, for any & # 1y, (k) (L) p((yy tay) =—({has ha7) and e(t,) e(f)p(<ta, 112}
= —p({t, tay), we get the equality (wy)* = y*x*. Further, according to
the equality

w{{, ) elts) +9 ({Bay 1) E(t1) = p{{bis 022) et oy tin)e(l) .

we have the formula
a* = (Z)?) efu'l” Z }'i1;'tz (1:"(<t1y t2>)5(t2) +

tel {171
: + (<, tl‘f")a(tl)) Eqi iy = AT
which completes the proof.

We note that if T is a linear isometry on 4 which commutes with
the involution, then 4 remains an absolute- alued *-algebra with respect
to the mnew produet woy = Ul(zy). This fact suggests the following
definition: two absolute-valued *-algebras 4 and A’ are said to be
similar if they are isomorphic as normed spaces with an involution:
A ~A’ and the multiplication zy in A4 is defined in terms of the multi-
plieation #’oy’ in A’ by the relation zy~TU{x' oy'), whenever e~
y~y', where U is a fixed invertible linear isometry on 4’ which com-
mutes with the involution.

Tt is not difficult to prove that two algebras X (T, Ty, Ty 959y
X(Ty, T4, Té,¢',w') are similar if and only if T,=Ti, T,=1T: and
T, = T,. Therefore we shall call an absolute-valued *-algebra
XI5, Toy Ty @y p) a  Qny, Mg, Mgy - algebra, where my = Ty, mg= T,
and mg = T;.

For any pair z,y ¢4 we sét

((z, ) = Ylay*+ya*).

Fundamenta Mathematicae, T. XLIX. 17
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The operation ((m,y)) will be called a *-product. It imitates an inner
produect. More precisely, we have the equalities
(@, @) =0 if and only if @=0,
((Z'wl_]' Uilpy @/)) = 1((93'1: ?/)) +H((‘w2) i’/)) ’
((z, ) = ((y, 2))

Moreover, the *-product is invariant under the involution, i.e.

((w} y))* = ((50, 2 )) .
An absolute-valued *-algebra is said to be regular if
(2) ((zy, 2u)) = ((@2¥, y*u)
for any #,%,2, and u. It is very easy to verify that the real field and
the complex field (with #* =2 or #*= &) regarded as *-algebras are
regular. Now we shall gshow that all {my,m,, my)>-algebras are also
regular. To prove this it is sufficient to show that all elements of the
orthonormal basis {e};cr satisfy equality (2). By the definition of the
involution in (my, M, my)-algebras, equality (2) can be written in the
following form:
3) ((ehe'iu etseta)) = &(ty) &(ts) ((etleis: 6;,61‘)) (fytastaytae 1)
If 4, =15, then the last equality is obvious. Therefore we may suppose
that 1, 52 1;.
If 4, =1, and £ =1,, then we have the equalities
((611612, efaeh)) = ((ﬁi,'ﬁ;)) = E(t2)5(t3) ((etoy eto)) = E(tz)a(ta) Bt
(e sy, ener)) = ((entiss enen)) = ((otitnten s Cotitaten))

A = Colttate) Catitnte) = €4
which unply formula (3). o({f2,t3)) Co({ta.la}) X

I 4, =1, and £, #1,, then, taking into account the relations # e T,
and o({ts, t,}) ¢ 71, we get the equality
{(en e, een)) = (<, 1)) ((5?, s Cotttaiten)))
= £{la)p (s, 1) (81 Cptetatan))

= $a(ta)p (Kl 102) (1o Cotitatany + Cottinsta 1) = O -
Further, if ,=1,, we have the formula

((etseres ener)) = ((er61, €3))
= &(t) P (<tas 1)) ((Cottaten» )

= Fe(t) 9 (Ctas 1) (Cptttasteh €10 Oto Cotttnten) = 0 -

.-.Lf 1y 5 1, then the relations p({, t,}) (i, a3}, pl{le, Ga}), 9({tas ta}) ¢ T
imply the equality

Colttatal) Cotita,tah) == ~ Colita,ta)) Oolita b)) -
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Hence we get the equality

{(er, 14 e1,61,)) = (0855 nre0,))

= p((y 1) (<tay 1) ((Cotatan s Cotttnt))
= — Jp (e 1) (Cas tad) (Cotgtatah) Cotttadsd) T Cotitnted Cottintah)
=0,

Consequently, equality (3) is proved in the case &, =1, and fs 5% B4, Th‘e

cage I; = t, and & =1, in view of the commutativity of *-produets, is

reduced to the previous case.

Now let us assmme that ¢, = #, and #, = ;. Then we have

((enerss s,20)) = ((eryte, e1,61)) = ((Eutttatans Cottistan))
* —
= Colltatsh) Colitadad) = Clos
(e ey €re0)) = {(6hss €)= e(ta) £ta) (€, ) = 8(ta) &(ta) s 5
whence equality (3) follows.

Finally we suppose that #, £ b, & # 1 and {f, &} # {ts, t,}. Then
taking into account the relation ¢({t,%}), @({ts, 1)) ¢ Ty, we have the
equality _

Ootitsted) Collists) = ~ Catllata) Cotiin ted)
and, consequently,
((et,e1y ery80)) = P (<Chyy 120) 9 (CHas 1) ((Cotituten)» Eottatsn))
= 39({y, 1) (s 100) (—Cutttuaton Catitssta) —
— Cqtitstan Eotitutyy) = 0 -
If 1, 5 i, and £, 7 1,, then, in view of the assumption 1, 5 3 and {&, i}
= {t,, 1,}, we have the inequality {f;, %} # {f, ) and

(€1, 105 0261)) = 9 (s 1) (Ko Ta7) ((eattuten » Cottatan))
= 20 (<, B )9 (hay BaD) (— Cotity o) Botitadad) —
— ottt Oottiatn) = O -
If 1, = t,, then from the assumption {, &} 5 {&, &} Wwe get the inequality
t, = f, and, consequently,

((erye1,, €1261)) = (e, ener)) = elta)p (<L, 1) ((ey €igintan))
= Ze(lg)p(Cha, 1)) (— 4, Cotttnted T Cotttatn @) = 0

By the commutativity of the *-product, the case f, =1, is reduced to
the previous case. Consequently, equality (3) holds for any system of
indices fy, ta, ty; L, € 7. In other words, we have proved that {my, My, M-
algebras are regular. o
We remark that an absolute-valued *-algebra similar to a regular
oune is also regular.
17*
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In the present paper we shall represent regular absolute-valued
*.algebras. Namely, we shall prove the following theorem, which is an
answer to a problem raised by F.B. Wright.

THROREM. A regular absolute-valued *-algebra is similar to either the
veal field, the complex field (with o* =z or x* =17) or a {my, m,, -
algebra, where my, m, and mg are cardinals satisfying the inequalities
1<my <, My <M, and My 2= 8.

Before proving the theorem we shall prove some lemmas. In the
sequel A will denote an absolute-valued *-algebra. By 4. we shall denote
the sef of all self-adjoint elements of A, i.e. the set of all elements »
satisfying the equality 2* = x. By 4, we shall denote the set of all skew
elements of 4, ie. the set of all elements 2 satisfying the equality
o* = —g. Obviously, both 4, and 4, are linear subspaces of 4 and
Ao~ A= {0}. It is very easy to prove that every element ze.A may
be represented in one and only one manner as the sum @; +,, #, and
being self-adjoint and skew respectively. Moreover, the equalities
= }(z+5*) and @ = }(s—a*) hold. In other words, A is the direct
sum of the subspace 4, and A4,.

LenwA 1. Self-adjoint eclements commute with skew elements.

Proof. Let z ¢ 4, and y € A,. By property (iii), we have the equality
0 =(z+y)a+y)—(@+y)@+y)*
=@-—9e+y)—(@+y)(a—y) =2(ey—ya),
which implies the assertion of the Lemma.
Leaynaa 2. For any xedq, and ye A, we have the equality

ety =|aP+|yp.

Proof. If either » or y is equal to 0, then our statement is obvious.
Therefore we may suppose that @ = 0 and ¥ # 0. Let B be the linear
set spanned by « and y. Since #* = z and y* = —y, B is invariant under
the involution. By Lemma 1, the elements of B commute with one
another. Therefore for every pair 2, 2, of elements of B we have (2, +29)2—
—{(&1—2,)* = 42,%. Consequently, for || = |] = 1, we get the inequality

21 +zgjz+]zl—z2[2 = [(31+52)2]+](21_32)2| = Halla =4.
Hence, according to Schoenberg’s Theorem ({21), B is an inner product
space over E. There are then a number 2 and an elément y, e B ortho-
gonal to z such that y = Az+y,. Since by (v) the involution is an
isometry on B, the element y is also orthogonal to 2. From the equality
Y=3W—y") =20z +y—2o—y) = }(yo—yf) it follows that y and @

are orthogonal. The statement of the Lemma is a direct consequence
of the orthogonality of # and y.
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Tevma 3. If Ag 5= {0}, then there exisis one and only one idempotent
eedy such that .

2=lzPe, y=-—|yle
for any wedg and y < ;.

Proof. Let zed, and y ¢ 4,. Since, by Lemma 1, # commutes
with y, we have the equality (zy)* =y*z* = —yz = —xy. Consequently,
xy € 4,. Further, we have the equality (2°+y*)* = (¥4 (y*)R = 2+ %
which jmplies the relation 2*+y* e 4,. Hence, with the aid of the formula
(x+y)? =a>+y*+2zy as well as Lemma 2, we obtain the following
equality . -

|2+ yl=[(2+y)P =2+ P +4aPlyP.
But |#-+-y[2 = |eP+|y] and, consequently, we have the equality
() |97 = (ol + 1y — 4]aP ]y )= loP—yP

By the assumption there exists a skew element ¥,, with |y,| = 1. Putting

(xeda, yeds).

¢ = —12, we have o = (—y))* = —yi=e¢, le| =1 and, in view of (4),
|42 —Jape] = o+ (alyo?| = |[of— |22 yoP| = 0

for any xe.d,. Thus

(3 2=zl (redd).

In partieular, ¢* = e. The last equality and formula (4) imply the equation
llyke+2] = |(lyler+v] = |lyRleE—lyP| =0

for any y e 4;. Thus y2 = —|yj% for all skew elements y. The uniqueness

of the idempotent e follows from equality (3). The lemma is thus proved.

Leyya 4. Huvery absolute-valued *-algebra with A, 7+ {0} is a real
Hilbert space.

Proof. Let 2,2, be a pair of elements of 4, with lay] = l&| = 1.
Writing 2, = &+ %1, % = %2+ Y2, Where &, &y« Ag and 4, Yo ds, WO
have, according to Lemma 2,

(6) Pty =1, |wP+|nf=1.

Moveover, in view of Lemma 2, we have the equalities

(1) |a—2P= [-”1_952]2‘{']%'_?/2[2; o+ eff = ]m1+w212+1y1+y212-
Using Lemma 3 we obtain the inequalities
{-Tl_mziz‘i'l%‘i‘mz[z = ](991—w2)2+|(931+ )2 i . ,
> |(@y— )" + (1 + 20)"] = 2103 +08] = 2|([mu + [zl e = 2(1aal* ] @) 5

=9+ ly el = K%’?/z)ﬂ'*‘k%"‘?/z)ﬂ o . ,
> (=90 + (72 -+ )] = 2]+ 93] = 21— (il +19a0) 6 = 2ol +192) -
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Henee and from (6) and (7) we get the inequality
151“3212'}“{314‘22[2 = 2([7"1]2+|m212+|?/1!z+[?/2[2) =4.

Thus, according to Schoenberg’s Theorem ([2]), we know that 4 is an
inner product space over R and, consequently, a real Hilbert space.

For any wedaw Adg, 2% 0 we set d(@) =1 or —1 according as
zedg or zed, and 6(0) =0.

LevmA 5. If Ag+ {0}, then for any pair of orthogonal elements
z,yedav A, we have the equality

oy +6(x)d(y)yz =0.

Proof. If 5(z)d(y) =0, then our assertion is obvious. Further, if
d(x)8{y) = —1, then one element of the pair belongs to A, and the other
belongs to 4,. Consequently, by Lemma 1, zy—yz = 0. Now let us
suppose that §(2)8(y) = 1, ie. both elements # and y belong to either
A, or A;. From the orthogonality of # and v and from Lemma 3 we geb
the equality

|8 (@) (|al+1yre| = |aP+]yl = ety = |(@ +y2|
= |a®+ 12 & (ay +y@)| = |8 (@) (|ol*+[y[?) ¢ = (2 +yw)

Hence, zy+4y2 = 0, which completes the proof' of the Lemma.

By (z,%) we shall denote the inner product of two elements # and ¥
(x,yed). .

Lemya 6. If A {0}, then for any pair z,, 2, e A we have the equality
((317 zz)) = (21, )€ .

Proof. Let 2,2, ¢ 4. Since 4, ~ 4, = {0}, the subspaces .Aa and
A, are orthogonal. Consequently, writing 2, = =, +¥,, 2, = %,-+¥,, where
@y, Tpe Ag and ¥, ¥, € A, we have the equality

(8) (21y 22) = (%1, @) + (Y15 ¥2) -

Further, since by Lemma 1 self-adjoint elements commute with skew
elements, we have the equalities

((wn fyz)) = oY+ 9al) = (2 Y T 4e2) =0,
((?/11 m2)) = 3o+ oyl) = S —ap) = 0.
Consequently,
(9) ((zla zz)) = ((5’71: mz)) + ((?/1: ?/2)) .
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Let us represent the elements x, and y, in the form
@y = A0y &3, Yy = pY1+¥a

where A and g are real numbers, z; is a self-adjoint element orthogonal
to &, and ¥, is a skew element orthogonal to y;. Obviously, (21, ;) = A
(3, ¥=) = plyaf* and, by Lemma 5, &%+ T = 0, Y1¥s+Yals = 0. Hence,
in view of Lemma 3, we get the equalities
(@15 %)) = F(@a 4 2%y) = 1203 + @y A+ By my) = Aw,ffe = (2, me,
(2, 92)) = — (@1 ¥a + Yaln) = — 3+ Yy ¥a+ pE - yay) = pltale = Y1, o) -
Taking into account equalities (8) and {9) we get the assertion of the
Lemma.

TEwMA T. Let A be a regular absolute-valued *-algebra and As = {0},
For any System 2y, #a, %, % 0of orthogonal elements belonging to Agu A the
products z;,%5, and 25,9, are orthogonal, whenever the sets of indices {1, faty
{jay Jay are different and j, 3 Gay J5 # Ja (s Jas Jar Ja =1, 2,3, 4).

Proof. First we suppose that {ji, jat A sy fab 7 0- TUsing Lemma 5
we can write

(zhziai z:"azh) = :t(zkzsu ﬁszE) s

where s, # s,. Hence and from the equality

(2sys 21%s;) = F{[Br20, + 20Basf2— 2026 — 2 ¥sa]")
= %Izk‘2(1231+252‘2—1231_— zszlz) = Izklz(zé‘l’ 335) =0,
we get the orthogonality of 27,2, and 27,

Now let us assame that {fy, e} ~ e jsd =0, j.e. the system
jiy Jas Jas a1 2 permutation of 1,2,3,4. Without loss of generality we
may suppose that both 2, and 2 belong to either A, or 4,. Moreover,
we may assume that

(10) 8(z) #0 and O(w)d(s) =1,
because in the opposite case 2, =0, 2, =0 or # = 0 and the ortho-
gonality of 2%, and 25,2, i evident.
Since the algebra A is regular, we have, according to Lemma 6,
(zhzia) z}'azﬁ) = (zhziu thh) .
Hence and from Lemma 5 it follows that
(1) (252275 235210 = (2122, 2a%s)
for any permutation ji, fa, Jas Ja of integers 1, 2, 3, 4.
' Pub % = (#a+2) (7 +2). By the orthogonality of 2, 2, % and 2
we have the relation
(12) julp = (lzef? 41202 CASIEARE
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Further, from Lemma 5 we infer that all the elements z,2;, 2,2y, 2,2, and
72, are skew. Hence we get the equality

—u= ((52317 zzzl)) -+ ((2234; 2"254)) + ((zszl: Zazl)) + ((zszu 232y))
+2((#, 3234)) +2((%21, %))+ 2 ((zzzla #3%s)) +
+2 ((2224, 2331)) +2 ((2'234: 5354)) +2 ((zazn 53"'54)) .

Replacing in the last formula, in view of Lemma 6, the *-product by
the inner product, we get the equality

(13) —u? = (|2 [P+ |2 | 2 + [ o0 P+ 2l |22+
2 (2221, 2a2y) 1 2(2a21, 23%1) + 2 (%221, 2a%y) +
+2 (202, 2321) + 2 (224, %a8y) + 2 (21, '3334)) .
Since © = 2,2+ 2,8+ 2 + %2, and, consequently, is a skew element,

we have, in virtue of Lemma 3, the equality —u®= |u[?. Hence and
from (12) and (13) we get the relation

(23

{2221y 223,) + (2221, 23%1) (2221, %) +
F (22715 23%1) + (2924, 2380) + (2321, %7) = 0.

By the first part of the proof we have the equality

(2o21; Za2a) = (2521, 2a81) = (%, 232y) = (%a?y, 2a2y) = 0.

Thus
(14) (22315 2a%s) + (%80, 23%;) = 0.
By Lemma 3, we have the e iti
qualities 2,2, = —8(2,)6(2:)2,2:, 238 =
— 6(2,) 6 (25)%,2;. Hence we get the formulas ' Voenm,
. (2221, 232) = — 0(2y) 8 (20) (2121, %5%) ,
(%321, 22,) = — 0(21) 6 (25) (125, 20%,) .

Fuwrther, from the regularity of A it follows that (22, 22,) = (5,2, 2a%)
Consequently, according to (10) and (14), (22, 23%8,) = 0. Thus 11:1’ T?ié“;
of (11), z;,2;, and 2;z;, ave orthogonal, ’

) PI‘O(.)f of the Theorem. First let us suppose that 4, = {0}
ie. the involution is the identity transformation. Taking into ziccount,
property (iv) of the involution we infer that A is a commutative absolute-
valued algebra. Consequently, it is isomorphic to either the real field
the complex ﬁfald or the algebra of complex numbers with the producé
of z and y defined as zy (see [3]). But the last algebra is similar to the
comlfTex flleld (as an isometry U we take z—>7).

Now let us suppose that 4, s {0}. By Lemmas 3 and 4, 4 is &

ie:st a two-dimensional Hilbert space. Let 4 be ﬁnjte-dimensional am;j
et {e, €1, &, ..., ex} be an orthonormal basis for A consisting of elements
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belonging to Az v 4, where e is the idempotent defined by Lemma 3.
Tf #>2, then, by Lemma 7, 66 i8 orthogonal to e, ey, ..., €tn.
Moreover, by Lemma 3, g6, is a skew element and, consequently, it is
orthogonal to e. But the set {e, 66y, €6, ..., ez} is also a Dasis for 4.
Thus é e, = 0, which is impossible. We have proved that any finite-
dimensional absolute-valued *-algebra with a non-trivial involution is
two-dimensional. Hence it follows that every element zed can be
written in the form @ = Ae+ ue;, where e e dg, lo] =1 and 4, pe B.
Since, by Lemma 5, ee ¢ 4; and lee,| =1, we have either ee; = ¢ or
¢e, = —¢,. Further, by Lemma 3, & = —e. Thus A is isomorphic to
the complex field if ee, = ey and is similar to the complex field if ¢e, = — e,
(as an isometry U we take the involution).

Finally let us suppose that 4 is infinite-dimensional. Let {e}er be
an orthonormal basis of A consisting of elements belonging to 4zv Asand
containing the idempotent ¢ defined by Lemma 3. By T, we denote the
subset of indices snch that {e}ser, is 2 basis or As. Evidently, {éiemT,
is o bagis of 4. Let B-be the linear subspace spanned by all products
e, where t; 71, and £, %€ T. Since, by Lemmas 1 and 5, all those
products are skew, B is a subspace of A,. Using the axiom of choice,
we can_decompose the set of indices T T, into disjoint sets T, and T,
where T, is the dimension of B and T, is the dimension of the orthogonal
complement of B in 4, (%). By definition, there exists an index fe T
such that e, = e. Further, let ¢,y be a pair of functions satisfying the
requirements given in the definition of ¢my, My, myy-algebras. To prove
our theorvem it is sufficient to show that the *-algebra A is similar to
the algebra A(Ty, Ty, Ts, @, 9)-

Tt is very easy to see that the formula &1, 81~y (hyy 1)) Cotittah
defines o one-to-one correspondence between the family {eqes} (8 5 b
t, 1, ¢ T), which, by Lemma 7, is an orthonormal basis of B, and the
orthonormal family {e}er,. This correspondence and the identity trans-
formation of Ag can be extended to a unitary transformation U of the
whole space A. Obviously, 4, and 4, are invariant under the trans-
formation U. Hence, in particular, it follows that the transformation U
commutes with the involution in the algebra A(T:, Ty, Ts, @, %) De-
noting by o the product in A(Ty, Ts, Ty, @ ,%) we have the equalities

Uleoe) = Ule(t)e) =e(t)e=¢ (teT),
Uy, o 1) = U (p( oy b)) bgttnin) = ens (o # a5ty tae T)e

Consequently, U(zcy) = sy for any 2 and y in A. In other words, the
algebras A and A (T, Ty, Ta, ¢, 9) ave similar.

(*) The dimension of a subspace B is the power of its basis.
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Nilpotent free groups
by

A. Wtodzimierz Mostowski (Warszawa)

The following theorem, proved by A. I. Malcev in [3], will be denoted
further by (M).

(M) Let @ be a wnilpotent free group of class ¢, and X a subset of &
of the cardinality |X|>1. Then X is a wilpotent free generaiing system
for some subgroup of G, of the same class ¢, if and only if X is linearly
independent modulo the derived subgroup @

This paper consists of two parts. The first is devoted to a group
theoretical proot of (M). The proof is based on the following theorem.

(T) If @, ..., %i, ... 48 & free, or nilpotent free, generating system of
a free, or nilpotent free, group G, then a sysiem @y ey T By e 08
free, or nilpotent free, for any i< @', and for any positive imiegers %;.

The proof of (T) essentially needs M. Hall’s theory of basic com-
mutators exposed, for example, in [1].

The second part contains theorems that can be derived from (M):

TaEoREM 1. A subgroup H of o nilpotent free group G is a wilpotent
free group if and only if it satisfies the condition H = H ~ @' or is a cyelic
group. (H' and @’ are the derived subgroups of H and G.)

TaEoREM 2. Huvery retract of o wilpotent free group @, is a nilpotent
‘free factor of G and a mnilpotent free subgroup of G.

The analogous statement fails for retracts of free or solvable free
groups, see [4].

THEOREM 3. An endomorphism of a nilpotent free group G is an
awtomorphism of that group if and only if it induces am automorphism
of G|G'.

The terminology of the paper is the same as that in the book of
M. Hall [1]. Some basic notions concerning varietes of nilpotent groups
are listed in an introductory part. They can be found partly in papers [2],
[5] and [6], and partly in the book quoted.

1. We detfine. recursively the simple commutators as: (@) = 2,
(g, @) = @0 62" o5y - @y ANA (B ey Tngr) = (@1, oovs Zn)s Tny1). A group
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