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Dependence of mappings and équivalence of sets
by
K. Borsuk (Warszawa)

The notion of dependence of maps of spaces ([4], [5] and [7]) permits
the introduction of some relations of an algebraic character between
.maps even in cases in which the introduction, in a natural manner, of
algebraic operations on maps is impossible. In the present note I give
some remarks concerning those relations and some related notions.

1. By a space we understand here always a topological normal space.
The term compact is used in the sense of bicompact. By compactum we
understand & metric compact space. By ANR-set we understand a com-
pactum which is a retract of some of its neighbourhoods in every metric
space containing it. _

By & map f: X—Y¥ we understand & continuous function mapping
a space X into another space ¥. The set of all maps f: XY will be
denoted by Y¥. Two maps f, ¢ Y¥ are said to be homotopic if there
exists a continuous function h(z, ) of two arguments & e X and te {0,1>
with values on Y such that

hiz, 0) =f(z) and hiw, 1) =g(z) for every zeX.

The set of all maps g ¢ ¥ homotopic to a given map fe ¥¥ is said to
be a homotopy class in Y¥¥; it will be denoted by [f] or by f (the same
letter in bold type). The set of all homotopy classes in ¥X will be de-
noted by [Y*]. More generally, if 4 is a subset of Y%, then we denote
by [A], or by 4, the set of all homotopy classes [fu]C ¥¥ with fied.

Tf fe Y%, geZ”, then gf e Z¥ and we see at once that the homotopy
class [¢f] C Z¥ depends only on the homotopy classes [f] and [g]. The
homotopy class [gf] will be said to be the composition of the homotopy
classes [f] and [¢] and it will be denoted by [g1[f]. Hence

[of] =[g10A1-

I XorYisa compactum, then the set Y* may be considered as
a metric space with the distance given by the formula

o(f,9) =Sup o[f(a), g(@)] for every f,ge¥™.
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In the case where Y is a compactum the space ¥¥ is complete.
Tt ¥ is an ANR-set, then ¥~ is loeally connected and we infer that the
homotopy classes in Y¥ coincide with the components of ¥X. )

If X is a subset of a space X', then every map f e ¥¥ such that
the partial map f'/X coincides with f e ¥¥ is said to be an extension of f
over X’. The set of all extensions of f over X’ will be denoted by #x(f).
Tt 9y (f) # 0, then we say that f is extendable over X'. We see at once
that if X is a closed subset of X' and Y is an ANR-set, then the ex-
tendability of f over X' implies the extendability over X’ of every map
homotopic to f. It follows that the extendability is actually a property
of the homotopy eclass and we shall say that the homotopy class f is
extendable over X', Moreover, if f' e ¥X i an extension of fe YX over X ’
then the homotopy class f' ¢ [¥Y¥7 s said to be an extension of the homolopy
dass fe[¥T5)

2. Now let us consider a space X, two spaces ¥ and Z and a collection
X of spaces. For every set 4 C Z%, let us denote by Dx(4) the set of all
maps f e Y* such that for every space X’ <X containing X as a closed
subset the extendability of all maps fseAd over X' implies the ex-
tendability of f over X’. The maps f belonging to Dx(4) are said to be
dependent ([7]) on A relatively to the class X. Evidently, if ¥ CX’ then
the dependence on A relatively to X’ implies the dependence on 4
relatively to X.

In the case where ¥ and Z are ANR-sets let us denote by Dx(A)
the set of all homotopy classes [f] with f € Dx(A). Hence Dx(4) = [Dx(4)]
and we see at once that Dx(4) coincides with the set of all homotopy
classes fe[¥¥] such that for every space X’ ¢X the extendability of
all homotopy classes [f4]e¢ 4 over X' implies the extendability of f
over X’. The homotopy classes f belonging to Dx{4) are said to be
dependent on A relatively to the class X.

By fixing the class X in various manners, we get various kinds of
dependence. The most important are the following three cages:

1. Normal depeﬁdmce, where X is an arbitrary normal space, ¥ and Z
are ANR-sets, and X iz the collection of all normal spaces.

2. Compact dependence, where X is a compactum, ¥ and Z are
ANR-sets and ¥ is the collection of all compacta.

3. n—di'mmsional dependence, where X is a compactum, ¥ and Z
are ANR-sets and X is the collection of all compacta X' satisfying the
condition dim (X'—X) < .

Evidently, if X is a compactum and Y,Z are ANR-seﬁs, normal
dependence implies compact dependence and compact dependence implies
#-dimensional dependence, for n = 0,1, 2, ...
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3. Consider now a set AC Z% and a set T, called the set of indices.

Tet vg assign to every index 7e T the space Z,=Z and a map a, e A

in such a manner that for each map a ¢4 there exists at least one index

z¢T such that a.,= a. Let Zg denote the Tychonoff product PTZ" its
T€

points being all systems {2 }rex With 2.€Z,= Z for every index 7 e T}
in the cagse 4 = T = 0 we understand by Zp the space containing only
one point. Setting

04(®) = {a(@er  for every weX,

we get a map gaq¢€ zZF , called the natural maep of X into Zg.
Now we have the following

THEOREM 1. A map fe ¥, where ¥ is an ANR-set, is normally
dependent on a set A C Z% if and only if there ewists a map ¢ e Y22 such
that the map @€ YX s homotopic to f.

Evidently this theorem can also be formulated as follows:

TrmoREM 1. A homotopy class f e[Y¥], where Y is an ANR-se,
is normally dependent on a set AC [2%] if and only if there ewists a homotopy
class ¢ e[ Y27 such that f= pga.

Tn the case where Y = Z and where A consists of only one map
the proof of theorem 1 is given in [3], p. 82. As was pointed by Hilton [7],
p. 360, by the same argument we get the theorem also for ¥ 5= Z if 4
congigts of only one map. By a remark due also to Hilton [7], p- 376,
the general case may be reduced to this special case, since the extendability
over X’ of the map g« 7% iy equivalent to the extendability of each
of the maps aeA.

Passing to éompact dependence, let us assign to every natural »

o<
the space Z, =% and let Z, denote the product PlZn. Then Z, is

a compactum and we have the following

TrEoREM 2. Lot X be a compacium, ¥ end Z two ANR-sets and A
a subset of [Z%]. Then there ewisis a map g4 < Zo such that the compact
dependence of f e[YX] on A s equivalent to the ewistence of a homotopy
class ¢q <[ Y?°] salisfying the relation f= ¢o8a.

Proof. By our hypotheses the space Z% is separable and 100311y
connected, and consequently the set [Z%] of all eompon_ents of Z7 is
at most countable. Tt follows that the set A is also at most countable.
We can assume that 4 coincides with the collection of all homotopy
clagses [f,], where the index u runs through a subset M of the set T of
all naturals. Let N denote the set consisting of all naturaly which do l}ot
belong to M and let a, be a fixed point of Z. If we identify every point
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{22} € Z, satistying the condition 2, = a, for every n ¢ N, with the point

{2, < 5}:12,, = Zyr, then we can consider Zy as a subset of 7Z,. Setting

ra({en}) = {z,} for every point {2} ¢ Z,,

we see at once that r4 is a retraction of Z; to Zj.

Using the same arguwment as in the proof of theorem 1’, we see that
the compact dependence of a homotopy class fe [YX] on A is equivalent
to the existence of a homotopy class ¢ e [YZT] such that f=¢g,. Now
let us denote by g% the mapping of X into Z, defined by the formula

gh(x) = galx) for every meX,
and by @, the map of Z, into Y defined by the formula
oo(2) = @r(z) for every ze¢Z,.
Then f= ¢ogy. Consequently the compact dependence of fe[Y¥Y*] on

A implies that f= ¢,g%.

On. the oth}?r hand, if f= wg%, where g, ¢ Y2, then let us consider
the map ¢4eZ% given by the formula

galw) = gu(x) for every weX,

and let ¢ denote the partial map of ¢, on the subset Zy of Z,. Clearly
we have

=¢84

and we infer, by theorem 1’, that f is normally, whence also compactly
dependent on 4.

. 4. Now let us consider an abstract set W and an operation 1, assign-

ing to every subset 4 of W a subset A(4) of W, subject to the following

conditions: ‘
1° ACA{A)CW for every set A CW.

2° It ACBCW then 1(4)C A(B).

3° AA(A) = 2(4) for every set AC W.

The set W, together with the operation 1, will be said to be a d-set
(cle'pen.dence 8@) and will be denoted by (W),, or shorter, by W;. The
operation 1 W]ll be said to be a d-operation (dependence operation).

5 The conditions belong to the axiomatic of closure of Kuratowski.

thut thegi;nre fa; weaker than the whole axiomatic of closure, becanse
e condition of additivity is not included .

nonomty. and the set A(0) can be

_ 1M0re .importa,nt. for us than the interpretation of closure is the

interpretation by which W is the set of all elements of an Abelian group
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98 and A(A) denotes the set of elements of the subgroup of I8 generated
by 4, i.e. the set congsisting of the element 0 and of all linear combinations

Wy Gy~ Mgy oo + Mg Ok

where the elements d, g, -.; Gk belong to A and the coefficients
Mgy Wy vy M BT integers. The d-set obtained in this manner from
the group W will be denoted by W(IB).

With this interpretation in mind, let us call the elements of the
get A(4d)—the elements dependent on A. In the special case where A
consists of only one element a the elements of the set A(4)= A{a) will
be said to be d-muliiplies of a.

Many notions belonging o the theory of groups can easily be trans-
ferred onto the theory of d-sets. Consider a subset A of a d-set W,
£ A(A4) = W, then A is said to be 2 system of generators of Wi. TACW
and for every two subsets 4, and A, of A we have

A(Ay ~ Ap) = A(4) n A(4s)

then the set 4 is said to be independent in W,.
Tet W and W’ be two d-sets with d-operations 4 and A’ respectively.
A transtormation ¢ of W into W’ satisfying the condition

1) pA(d) = Np(4) for every set ACW

is said to be a homomorphism of W, into Wi If, moreover, ¢(Wi) = Wiy
then ¢ is said to be an epimorphism. If ¢ maps W, onto a subset of Wi in
a 1-1 manner then ¢ is said to be a monomorphism. Finally, if ¢ is both
an epimorphism and a monomorphism, then it is said to be an isomorphism
of W, onto Wy. Evidently, if ¢ is an isomorphism of W, onto Wi, then
the inverse transformation gt is an igomorphism of Wi onto W,. The
composition of two homomorphisms, epimorphisms, monomorphisms or
isomorphisms is @ homomorphism, epimorphism, monomorphism or
igomorphism, respectively. Two d-sets are said to be isomorphic provided
there exists an isomorphism transforming one of them onto the other.

5. Though the notion of the d-set is rather poor in comparison
with the notion of the group, there exist cases in which the structure
of a d-set determines the structure of a group. Consider an Abelian
group MW which is a weak product of a class {2, of cyclic groups, where
the index » runs through a set of indices K. Hence the elements of T3
are all gystems {a,} with » ¢ K, where a, ¢, and a, =0 for almost.all
indices ». Let us observe that for any such Abelian group tl'le iso-
morphism of two d-sets W () and W(2') implies the isomorphism of
the groups 2B and W'
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In fact, let ¢ denote the isomorphism of W (IB) onto W (‘) and
let y, denote a generator of the cyclic group A,. Then A, = 1(y,). We see
at once that the set G = {y,} is an independent system of generators
of W(I) and consequently the set @(G) = {p(y.)} is an independent
system of generators of W(2B'). Moreover, the set U, = (W) = @[A(1,)]
= V[p(yJ] is a cyclic subgroup A, of I’ generated by ¢(y,). Since ¢
i8 1-1, we infer that 9, and %, are isomorphic. Since (&) is an independent
system of generators of 2B', we infer that the group ' is the weak
produet of the groups U and thus the isomorphism of I and W’ is proved.

By a remark due to Wiliam R. Scott, the last statement does nof
hold if we omit the hypothesis that I is a weak product of cyclic groups.
Consider in the additive group of all rationals two sub-groups: I8,
consisting of all numbers of the form 2% .m, and W, consisting of all
numbers of the form 3*.m, where % and m are integers. Evidently
every element of I, is divisible by 2, and this property does not hold
for I0,. Consequently 8, and B, are not isomorphie.

Now let us observe that the numbers x ¢ 98, and ¥ € W,, distinet
from 0, are given by the formulas

= =2%.3%.5%. 7% .y y= 1800k g gh

where the exponents a; and p; are integers uniquelly determined by x
and y respectively. Moreover, almost all exponents e; and B; vanish and
Ozy Ugy .. ANA By, fis, ... are Not negative. Setting

p(0) =0 and  @(+2%-3%.5%...) = £3%.9%. 5%,

we get a 1-1 correspondence between the elements of 98, and 28,. Let
us show that ¢ is an isomorphism of the d-set W (2B,) onto the d-set W (Bs).

Consider a set ACW,. If A ig empty or A consists only of the
number 0, then ¢(4) is empty or consists only of the number 0 and we
have Ap(4) =(0) = @l(4). If A contains at least one element of the
form +42%.3%.5%. .. and if the collection of exponents a, for we 4,
is not bounded on the left side, then we see at once that A(4) = W,
@A(4) = W, and Ap(4) = ;. Finally, if 4 containg at least one element
of the form # = +2%.3%.5%. . and the collection of exponents «, for
% € A is bounded on the left, then A(4) is a cyelic infinite group generated
by an element = 2".3%.5%. . with the minimal exponent «,. It
follows that ¢(4) is a cyeclic infinite group generated by the element
@(z) = 3™-2%.5%. | and we infer that Ap(A) = gA(A). Tt follows that
@ is an isomorphism of W (W) onto W,

6. Now let ms return to the operation Dy, ag defined in No. 2.
Manifestly, in case ¥ = Z, the operation Dy satisfies the conditions
1°, 2° 3° of No. 4, whenece it is a d-operation in the set ¥~. The set
Y* with the operation Dx will be denoted by YE.
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Moreover, if ¥ =2 is an ANR-set, then the opera“oion Dy ‘is
a d-operation in the set [Y¥]. The set [¥*] with the operation Dy will
be denoted by [Yz]. '

Now let us prove the following -

TagorEM 3. Let p be a continuous map of & compacthwm X' tulo

m X
a compacty P XX
X
and let ¥ be an ANR-set. If we assign to each homotopy class f= [f] e[Y™]
the homotopy class x"(f) = []‘p]e[YX], then we get a transformation
7P [¥E [T

If ¥ is the collection of all normal spaces, or the Jqulleczioofz tgl all compacta,
then the operation yP 48 & homomorphism of [Yx] into [¥x ]

Proof. Let A be a subset of YX. Consider a set of indices T and
a function assigning to every index vel a map a.e A: Let us assume
that this function is onto, j.e. for every ae A there exists at least one
index teT such that a, = a. Setbing

al = qa,p for every zeT,

1 >4 .
we get a function assigning to every index ze T a map a; ¢ ¥~ . In order
to prove our theorvem, it suffices to ghow that

@ 17 Dx(A4) = Dx(x2(4)) .

Tirst let ns consider the case where ¥ is the collection of all no.rrlrlxa,l
spaces. Let X¢ denote the Tychonotf product of spaces X, = f ;nf;ntz
running through the set 7. Let g4 denote the natural map o i
Xr given by the formula

ga(@) = {a (@)} for every @eX,
and ¢4—the natural map of X’ into Xy given by the formula
gule’) = {ala’)y for every o' eX'.

Since a; = a,p, we have
Gar=gaP .
By theorem 1’, the set Dx(4) coincides with the collection of all hor;}(;uo&y) .
classes [pg.] e [¥X], where pe Y7 It follows that the set {;x' ¢
coincides with the collection of all homotopy classes‘[qugﬁpj ) ];;
On the other hand, x?(4) coincides with the collection of all homopoi)y
classes [, p] = [«]. We infer, by theorem 1’ of No. 3, that Dx{x?{ ])
coincides with the collection of all homotopy clagses [pga] = [ngfe,
where p ¢ Y=, Consequently (1) bolds in the case of gormam.l depen1 enus.
The proof in the case of compact dependence 18 qlu:ce analogous.
We apply only theorem 2 of No. 3, ingtead of theorem 1'.
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ProBLEM 1. Does theorem 3 remain true also for dependence in di-
mension n (that is when X is the collection of all metric spaces X’ satisfying
the condition dim(X'—X) < n)?

7. The operation of dependence is intimately related to the problem
of the classification of spaces from the point of view of the properties
of their maps into a given space. This classification may be considered
as & relativisation of the classification of spaces into homotopy types
in the sense of Hurewicz [8].

Let X, be a closed subset of a space X. For every map f, ¢ ¥ let
us denote by #(f,) the subset of ¥¥ consisting of all extensions of f,.
Now we say that X, is a lower reduction of X velatively to ¥ provided
that for every map f, ¢ ¥-° the set 7(fe) is non-empty. We say that
X, is an upper reduction of X relatively to Y, provided that for every
map fye Y™ the set #(f,) is connected.

A set X, which is both a lower and an upper reduction of X relatively
to X will be said to be an eract reduction of X relatively to Y.

Using homological notions, we can say that a closed subset X, is
a lower reduction of X relatively to ¥ if the set 7(fo) 18 acyelic in the
dimension ~1 for every map f, of X, into X. And X,is an upper reduction
of X relatively to Y if the set #(f,) is acyclic in the dimension 0. The
acyclicity of the sets »(f,) in a given dimension = is a condition generalizing
those notions,

In order to illustrate the sense of the notions of the lower and of
the upper reductions, let us consider the following simple examples:

1. Let X denote the set obtained from an (1) - dimensional Euclidean
ball @i by removing the interiors of two disjoint (n-+1)-dimensional
balls Q7% Q27 C Q3. Let 8* denote the 7=-dimensional sphere which is
the boundary of @}, for » = 0,1 » 2. Betting ¥ = 87, we easily see that
each of the spheres S is a lower but not an upper reduction of X re-
latively to I and that the union of all spheres S7, 8%, 82 is an upper
but not a lower reduction of X relatively to Y. However, the union
of two of those spheres is an exact reduction of X relatively to Y.

2. Tf X = @"*" denotes the (n--1)-dimensional Euclidean ball and
X, = 8" denotes its boundary, then one easily sees that 8™ is a lower
reduction of Q""" relatively to an ANR-set ¥ if and only if the n-th
homofcopy group z(Y) of ¥ is trivial. And 8" is an upper reduction
of Q"*! relatively to an ANR-set ¥ if and only if the (n 41)-th homotopy
group m,.(¥Y) of ¥ is trivial.

Now let us prove the following

Leywya. If X, is an exact reduction of a compactum X relatively fo
an ANR-set Y, then, for every connected subset A of X, the set pdycr®
of all extensions over X of maps belonging to A is connected.
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Proof. Consider a decomposition of the set 5(A4) into two non-empty
open subsets M; and M,. Let N; denote the subset of y*o consisting of
all partial maps /X, with fe M;. Evidently the sets N, and N, are
non-empty and

A =N, uN,,

because X, is a lower reduction of X. Moreover, the sets N, and N, arve
open in A, becanse M, and M, ave open in n(4) and the hypothesis
that ¥ is an ANR-set implies that the operation assigning to every
map ge Y™ the partial map g/X, e Y* ig open.

Thus we have a decomposition of the connected set 4 into two open
and non-empty sets N, and N,. It follows that there exists a map
foe Ni A N,. Bubt X, iz an exact reduction of X. Hence the set #(f)
included in 5{(4) = M, v M, is non-empty and connected. Moreover,
fo € Ny ~ N, implies that

7(fo) ~ My #0 7= 9(fo) N M.

Thug we have a decomposition of the connected set #(f,) into two non-
empty and open subsets n(fy) ~ My and 5(f;) ~ M,. It follows that
7(fo) ~ My~ M, 5 0, and consequently also ; ~ M, # 0.

8. The notions of the lower and the upper reductions are intimately
related to the notions of the theory of retracts. In fact, we have the
following simple theorems:

THEOREM 4. 4 sei X, is a retract of a space X if and only if 4t is
a lower reduction of X relatively to every space Y.

Proof. If there existy a retraction r of X to X, then for every
map fo e Y=° the formula f = f,r gives an extension f e ¥¥ of f,. On the
other hand, if a subset X, of X is a lower reduction of X relatively to
every space Y, then setting ¥ = X, we infer that the identical map
defined on X, has an extension onto X with values belonging to X,.
This extension is a retraction of X to X,.

A subset X, of X is said to be a deformation retract of X if there
exists a retraction r of X to X, homotopic in X~ to the identity.

THEOREM 5. An ANR-set X, is o deformation retract of an ANR-sef
X if and only if it is an ewact reduction of X relatively to every ANR-set X.

Proof. If X, is a deformation retract of X, then there exists a re-
traction » of X to X, homotopic to the identity. Consider now a continuous
map f, of X, into an ANR-get ¥. Then for e Y¥ is an extension ;sz fo
over X and every other extension fe ¥¥ of f, is homotopic in ¥ to
#r = for. Consequently, for every ANR-set Y the set n(fy) C = .is non-
empty and connected, i.e. X, is an exact reduction of X relatively to
every ANR-gset Y.

Fundamenta Mathematicae, T. XLIX, 22
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On the other hand, if X, is an exact reduction of X relatively to
every ANR-set ¥, then, setting ¥ = X,, let us consider the identity
map f, of X, into X. Then 7(fy) is non-empty and consequently there
exigts an extension f of f, over X with values in X, that is a retraction
r of X into X,. Moreover, # and the identity map on X are both ex-
tensions of f, over X considered as a map of X; info X. But X, is an
upper reduction of X relatively to X, whenee r and the identity on X
belong to the same component of X% and consequently they are homotopic
in. X%, Thus we have shown that X; is a deformation retract of X.

9. Using the notions of the lower, upper and exact reductions,
we geb, as a corollary to theorem 3, the following
THROREM 6. Let X, be a closed subsei of a compacium X, ¥Y—an
ANR -set, X—the collection of all normal spaces, or the (ollec’mon of all
compacta, and
£ (Y2« [YZ]

the homomorphism induced by the inclusion i: X;—X.

Under those hypotheses:
(1) If X, is & lower reduction of X rel. to X, then y* is an epimorphism.
(2) If X, is an upper veduction of X rel. to ¥, then y' is & monomorphism.
(8) If X, is an exact reduction of X rel. to X, then ' is an isomorphism.

Proof. In order to prove (1) it suffices to observe that if X, is a lower
reduction of X rel. to ¥, then all maps belonging to Y% are partial maps
for maps belonging to ¥E

Now let us assume that X, is an upper reduction of X rel. to Y.
Then all extensions of one map f, ¢ ¥¥° over X are homotopic. It follows
that »* maps at most one homotopy- class « [ ¥*] onto [f,] € [¥>"], whence
7 is & monomorphism, ie. (2) is proved. ¢

Tinally (3) is a direet consequence of (1) and (2).

10. Two compacta X, and X, will be said to be equivalent relatively
to an ANR-set ¥, symbolically
(1) X, =X,rel. ¥,

provided that there exists a compactum X containing two exact re-

ductions Xy and X; rel. to ¥, homeomorphic to X; and X, respectively.

The compactum X will be said to realize equivalence (1). If there exists

a compactum X realizing equivalence (1) and satisfying the condition
dim(X—X,—X,) <m

then we say that spaces X; and X, are equivalent relatively to ¥ in the
dimension m and we Write

. 2 X, =ZX,rel. ¥ in dimension m.
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It is clear that relation (2) implies relation (1) and also the relation
X, = X,vel. ¥ in all dimensions m' > m.

Evidently the relation of equivalence relatively to ¥ (and, for spaces
of dimension <, also relation of equivalence rel. ¥ in dimension m)
is veflexive and symmetric. It is also topological, i.e. we can always
replace in it spaces X; and X, by any spaces homeomorphic to them
respectively.

In order to prove that the relation of equivalence rel. to ¥ (and
also the relation of equivalence rel. ¥ in dimension m) is transitive,
consider three spaces X, X,, X; such that

X;=X,rel. Y and X,=X;rel Y.

We have to show that
‘. X, = Xgrel. Y.

We can assume that X, and X, are exact reductions of a compactum X,
and X, and X, are exact reductions of a compactum X' (in the case of
equivalence rel. ¥ in dimension @ we assume that dim(X—X;— X,) <m
and dim(X'— X,— X,) < m). Moreover, if we apply to X' a suitably
ehosen homeomorphism %, by which all points of the set X, remain fixed,
we can assume—without loss of generality—that X ~ X' = X,.

Now let ug show that each of the sets X; and X; is an exact reduction
rel. ¥ of the space X’ = X v X’. By the symmetry of assumptions,
it suffices to show that X, is an exact reduction of X' rel. X.

Consider a map fe ¥~. Since ¥, is an exact reduction of X' rel. ¥,
the set of all extensions f e ¥¥ of f/Xs is non-empty and connected.
Setting

'(#) = f(z) for every wzedX,

(®) = f'(w) for every wedX’,

. .
we get an extension ' e Y of f and we see at once that the set of all
such extensions f is connected and non-empty. Consequently

(1) X is an emact reduction of X' rel. X.

Now let us consider a map f, e ¥™% Sinee X is a lower reduction of
X' vel, T, the set yx(f,) C X~ consisting of all extensions of f, over X",
coincides with the set of all extensions over X' of maps belonging to
the set nx(f) C ¥ of all extensions of f, over X. But nx(f;) is a connected
and non-empty set, since X, is an exact reduction of X rel. ¥. Applying (1)
and lemma of No. 7 we infer that the set #x~(f,) is connected and non-
empty, i.e. X; is an exact reduction of X'’ over ¥.

Thus we have the following

22*
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THEOREM 7. The relation of equivalence vel. to a given ANR-set ¥,
and, for spaces of dimension < m, also the relation of equivalence in & given
dimension m vel. to o given ANR-sei Y are both reflexive, symmetric and
transitive. .

11, Bxavprms: 1. Let ¥ be the set consisting of two numbers 0
and 1 and let X, be a finite set consisting of & points a;, @y, ..., @z Then
spaces equivalent to X, rel. ¥ coincide with spaces consisting of % com-
ponents. In order to prove this, consider a space X containing two exact
reductions rel. ¥: a set X homeomorphic to X, and a set X; homeo-
morphic to X,. Since X; and X; are upper reductions of Xrel. ¥, we
easily infer that each component of X contains at least one point of
X: and at leagt one point of X;. Since X{ and X; are lower reductions
of X rel. ¥, we infer at once that every component of X contains at most
one component of X;. It follows that X;, whence also X,, consists of
just & eomponents.

On the other hand, it X, has & components (i, Oy, ..., Oy then let
us pick up a point aje C; for i =1,2,.., %k and let us set

X{:{aiya‘év-":allc}s Xi=X,=X.
Then we see at once that the sets X{ and Xi arve homeomorphic with
X, and X, respectively and that they are exact reductions rel, ¥ of the
space X. Hence X, and X, are equivalent rel. Y.

9. Let X, and X, be two compact subsets of the Euclidean n-di-
mensional space E™ and let us assume that each of them decomposes
E" into the same finite number % of regions. Let us prove that the sets
X, and X, are equivalent in dimension « relatively to the (n~—1) di-
mengional Fuclidean sphere 8"

For n = 1 this follows by example 1. Hence we can assume that
n > 1. Bince the relation of equivalence is transitive, it suffices to give
the proof of our statement in the case where X, coincides with the union
of k—1 disjoint (n—1)-spheres 8, Sy, ..., Sg—1 which are boundaries of
k-1 disjoint n-dimensional balls Q,, Qs, ..., Qr— lying in B™

X,=8uvSuv.. vl and @;n@Q;=0 for 4],
Let y, Gy, ..., G4 be the components of B"— X;. Since # > 1, one of
these components, say Gy, is unbounded and all the other are bounded.
Without loss of generality we can assume that €; lies in @, for
i=1,2,..,k-1.

Let us denote by @r a ball in E® containing the sets X, and X,.
It remains to show that each of the sets X, X, is an exact reduction

of the set X = Qp— U (Q;— 8;) rel. 871 But this is an immediate con- '

sequence of a theorem proved in [2], p. 227, 1° and 5°
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3. Let X, denote the subset of the Buclidean 1-dimensional space B,
consigting of 0 and of all numbers 1/n, where n = 1,2, .., and let X,
denote the subset of E' consisting of all numbers 0, 1/» and 1-+41/n,
where » = 1,2, ... Let us show that X, and X, are not equivalent re-
latively to the get Y consisting of numbers 0 and 1.

Suppose, on the contrary, that X; = X,rel. ¥. Then there exists
a space X containing two exact reductions rel. ¥: a set X{ which is the
image of X, by a homeomorphism k;, and a set X; which is the image
of X, by a homeomorphism h,. Let fe ¥Y*. Then, for almost all points
x e X1, we have f(z) = f(0). Consequently there exist only a finite number
of indices 7, %y, ..., % such that

f(hl( ));éf(hq(O)) for i=1,2,..k

Since X; is an exact reduction of X rel. ¥, we easily infer that f(w)
# f[h,(0)] only if @ belongs to a component of X including one of the )
points Ay (1)), hy(1/m), ..., la(1fng). It follows that X has only a finite
number of components in which f is different from f[k,(0)]. On the other
hand, since X is an exact reduction of X rel. ¥, at most one point of
the set X; lies in every component of X. It follows that

f(#) =7 (hy(0)) for almost all points 2 eX;,
and consequently
f(ha(0)) = (ho(1))  for every map fe Y.

But this is not true, because the function f, ¢ ¥, defined by the formulsa,
1 .
fa (Rel®)) =1 (7&2 (ﬁ)) =0 for n=2,3,..,

u (ho(1) = o (hz (1+ %)) —1 for w=1,3,..

has an extension fe ¥*.
Let us observe that this example shows that the hypothesis thait
the number %k appearing in examples 1 and 2 iz finite is essential.

12, Two ANR-sets X, and X, arve said (after Hurewicz [8]) to .be
of the same homotopy type provided that there exist two continuous
maps f, e X2* and f, ¢ X3* such that f,f, is homotopic to the identity
in X and f,f, is homotopic to the identity in X3* By a theorem of
Fox [6], two ANR-sets X, and X, are of the same homotopy type if
and only if there exists an ANR-get X such that both the set X, and
the set X, are homeomorphic with some deformation retracts of X.
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It follows by theorem 5 that X; and X, are exact reduetions of X rol-
atively to every space Z. Hence two ANR -gets of the same homotopy
type are equivalent relatively to every ANR-get Y.

ProBrmy 2. Let X and X, be two ANR-sels such thal
X,=X,rel. Y,

for every ANR-set ¥. Is it true that Xy and X, are necessarily of the same
homotopy type?

" ProBLEM 3. Ts it true that the equivalence
Xy=X,rel. 8" for every n — 0,1,2,..

implies the equivalence
' X, =X,rel. ¥
for every ANR-set Y?

As a simple corollary we get from theorem § the following

THEOREM 9. Lot X, X, be compacta, let ¥ be an ANR-set and lot

X denote the collection of all normal spaces, or the collection of all compacta.
Then the relation

X,=X,rel. ¥
implies the isomorphy of d-sets [¥5Y] and (Y&

18, It would be interesting to find the relations between topological
invariants of two spaces X, X, which are equivalent relatively to a given
ANR-set Y. As yet this problem is far from being solved. We can ouly
prove the following, rather special,

TEEOREM 10. If X,, X, are compacta of dimension < m, equivalent
n the dimension m-+1 to the Buclidean sphere 8™ of the dimension

%22 (m+2)2, then the n-dimensional cohomotopy groups = X,) and
o X,) are isomorphic.

Proof. We can assume that X, and X, are exaet reductions relatively
to 8" of a space X satisfying the condition
dim X <m-+1.

Since m+1 < 2n—1, we infer, by [1] and [9], that for every two maps
X
fs9 € 8™ there exist: a decomposition of X into two closed sets M and N

and two maps 79 e Kl homotopic to f and ¢ respectively, and a point
28" such that

(@) =a for every we M,
g@)=a for every axeN.
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Then setting
hz) =g'(x) for every weM,
Lh(m) =f'(x) for every weXN,

we get a map he S”X, called the undon of the maps f and g. Consider
the partial maps:
fi=1Xe;  g=9/Xs;  [fi=F|Xy gi=g|Xy hW=WX

for i =1, 2. Evidently f; is homotopic to f;, and g; is homotopic to ¢} in
8% for i = 1,2, and h; is the union of f; and ¢;.

Since dim X; g m < 3n—2, we infer ([1] and [9]) that the homotopy
class a(h;) depends only on the homotopy classes fi=f and gi=g,.
By the definition of the w-th cohomotopy group a(X;), it coincides

with the set [;S’"Xi] in'which the group operation (addition) is given by
the formula

Jitgi=h;.

On the other hand, sinee X, and X, are exact reductions of ¥
ré]atively to 8", the operation w; agsigning to every homotopy class
fie [S”“"j the homotopy class fe [S"X] of an extension f of f,is one-to-one
and it transforms [S"‘X‘] onto [8™]. Setting

—~1
W= gy

we geb a one-to-one operation transforming [S"Xl] onto [S”XEJ.
In order to complete the proot, it: suffices to show that the operation
& is & homomorphism, i.e. that
W) =4(fi)+9(g).

But this is evident, because

9 (hy) = 0z (b)) = 72 () = h,,
M) =) =9l ) = f) = fi = fi,

P(g) =05 (i) = 7 mlgl) =na'(e’) = gb = g,
and

(he) =fi+gi=fo+g.
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