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that if ol elm, m £k, holds, thon m == k- ¢gd for somo q 2 0. Since
?: k@, the algebra o, cannot have any rank 4, sueh that - .s~v - ]
It rema-ins b0 prove that 7 is a rank of «fp. Tndead, if § = (ayy ... a,,a)‘i;;
‘ohe. basic sequence of the free gencrators of oy, then the Huq‘uun:an ()
defined by (7) is a basic sequence composed of I olementy (ef. Lemmy 4-)’
This completes the proof of Theorem 2. } -
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Independence and homomorphisms in abstract algebras
by
E. Marczewski (Wroctaw)

I have shown in. 1958 that many notions called independence in
different branches of mathematics are particular cases of a certain general
notion defined in terms of abstract algebra ([4]).

This general concept of independence has subsequently been treated
by several authors. They have diseussed some of its properties in finitely
generated algebras (Swierezkowski [10]), algebras in which all elements
are independent and, more generally, algebras in which every » elements
form a basis (i.e. a set of independent generators; Swierezkowski [10],
[12], Marczewski and Urbanik [7]), bases of an algebra and the set of
their cardinal numbers (Goetz and Ryll-Nardzewski [2], Swierczkow-
ski [13]), and self-dependent clements of an algebra (Goetz and Ryll-
Nardzewski [2], Nitka [9]). The study of algebras in which independence
has the properties of linear independence (Marczowski [6], Urbanik [14])
constitutes a special domain in this research. A discussion of independence
in the algebras of sets and Boolean algebras (Marczewski [6]) is the first
gtep in the study of this general concept in particular classes of algebras
usually considered.

The purpose of this paper is to formulate and to prove explicitly
geveral simple but fundamental properties of the notion of independence,
no special hypotheses about the algebra in question being postulated.
Some concrete algebras quoted below serve merely as counterexamples.

Chapter 1 contains preliminaries without any new results. Chapter 2
contains some lemmas on the extension of mappings to homomorphisms
(2.1), the definition of independence, and some equivalence theorems
(2.2); one of these (iii) enables us to define the notion of independence
by that of homomorphism (*). The following section (2.3) treats of some
propertios connected with the idea of independence but defined by the
notion of the algebraic closure only, i.e. without the use of algebraic
operations. It seems interesting that these properties (ag well ag other

(*) The notion of independence is related to that of free algebra, and the equi-
valence theorem 2.2 (iii) is a particular case of the known equivalence of two definitions
of a free algebra.
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conditions of this kind, not exproessed here) are essentially woeaker than
independence (defined in 2.2). Further (2.4) a sexies of simple {heorems
are proved by a uniform method, namely by using the definition of
independence in terms of homomorphism. The last of those theorems
says that the numbers of elements of all bases of an algebra form an
arithmetical progression (iv). The paper ends with some remarks on
independence and mappings (2.5).

1. Algebras

1.1. Operations. Wo denote by 4 x B the Cartesian product of
4 and, B, by A" the n-th Cartesian power of A, by B? the set of all
mappings of 4 into B and by 24 the dlass of all subsets of A,

Any A-valued funetion of many variables running over .4 will bo
called an operation on A. The class of all n-ary operations on 4, i.c. the
set 44" will be denoted by O™(4), or briefly O™, Wa put O = 0(4)
=0"4)u0%4)u ...

If @, 0"™(4) and the set 4 is fixed, then the identity

@@y ey @) = (0, .y @)
means that
P(B2y ooy @n) = P(By, ooy @a) TV oVery (@, .., ) e A"
() . - X ot et q L :
‘XVB dgnote by E (4) or E@ the set consisting of » trivial operations

(or “identity-operations”), i.e. operations defined on A by the formulas

) — . )

65" (B, vy tp) =0;  (f=1,2,..,n; n =1,2,..).

We put E=E(4) = EY4) GCED(U4) o ...
In general, for any class FC O we denote by F™ the class of all
n-ary operations belonging to F, so that

F® _ Fn O(n), F o= F(l) w F(ﬂ)u o

for any ¢ e 0™ and §C 4 we denoto by ¢|8 the restriction of ¢
to 8% or, in other terms, we put @8 = ¢ ~ (8" x A). For any class FC O
we put .
F|8 = {p|8: peF}.
For'any class FC 0(4), we say that & set B C 4 iy closed with TONpect
to F, whenever F|B C O(B)

I ¢ € 0™(4) and ¢ o) Ay ) . L
vy Pme O(4) then the operat lafine
by the formuly 1y ey Pm (4) operation on A defined

Y@y s B0) =gy, ..., Dn)y very Pl @1y ey )
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will be denoted by
Y= P(Pry ey Pm) -

If FCO(4) we put further F= {¢: ¢ € F}. Following the common
usage, we omit the sign ~ when no confusion can arige.

1.2. Algebras and algebraic operations. A pon-void set A
with a clagss F of operations on 4, or, more precigely, the system W = (4; F),
where FC O(A), will be called an algebra (2). The class F will be called
the class of fundamental operations of 2.

I A={a,b,..} and F=={f,¢,..} we sometimes write (a,b,..;
fy0,...) instead of (4; F).

In this paper the following examples of algebrag will be used several
times:

Jp=1(0,1,.., k—1; +(modk)) (k=1,2,..)

and the Boolean algebra B, of all subsets of the Z%-element set
Xp=1{1,2,..,k}, ie. the algebra

By, = (2X7E§ v,y ) (k= ]‘-: 2,..)

v

where * denotes complementation.

In a fixed algebra A = (4; F), for n = 1,2, ..., we denote by A™(9)
(or A™(A; F), or A™(4), or briefly 4™) the class of all algebraic n-ary
operations (3) in A, i.e. the smallest class of operations satisfying the
conditions:

10 E(ﬂr)cA(n)Co(ﬂ)’

2° it FeF™, f1, oy fun € A™, then F(fo, ..., fm) € A™.

We put further 4= AV v 4?0 ...

B.g. the class 4™ (%) consists of all functions of the form m,w, -+
+ ...+ mamy where the coefficients m; assume the values 0,1, .., k—1,
and the class A(’“(EB;E) consists of all so-called Boolean polynomials of
n variables.

Since for every f e F
1° and 2°:

(1) FDCA™ for m=1,2, ..

An auxiliary réle in some proofs is played by the classes 4
(Mo==1,2,.; k==0,1,..), defined recursively as follows:

™ we have = f(eM, ..., e™), we obtain from

(n
i

A(n) . E(n) A(’n) o A(n) @ e IR A(n) . F(m)
0 == ’ Jep1 = Ap T W 1{/(/17 --wfm)- ffe Ity fe ¥
=

(* Cf. e.g. Birkhoff [1], p. vii.
(*) Cf. e.g. MceKinsey and Tarski [8], p. 160.
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We obviously have '
AncAmc..

Tt is easily seen that 4 u 4™ U ... is a subclass of A™ and satistios
1° and 2°. Hence, by the definition of 4™, we obtain .

(i) A =4 v AP o for w=1,2,..

In order to prove the theorem

(iii) If fed™, and fiy ..., e A™, then f(fiy e fm) £A(M’
it suffices, in view of (ii), to prove the same implication under the hypo-
thesis f e 45 (k= 0,1,2,..). This iy eawy to verify by induction with
respect to .

(iv) If feA™ (n=1,9,..) and

G(@ey oy Pny Ca) = [ (Wyy ey n)

n)

then ge AT,
In fact, g = f(e**?, ..., ™), whenee, by (i), g ¢ 4™+,
(v) If e A™ (n=1,2,..) and

§(®ry vy ) = F (@, oo, Tny n)
then geA™.
In fact, g = f(&, ..., &, ef), whence, by (iii), g e 4™,
; (vi) If an operation f « A™™ does not depend on the (n-1)-th variable,
an

then ge A™ 9@ ey @) =J(B1; 0 By D)
€ .

In fact, we have

9@y ooy 00) = F(@1, ooy Bay )
and we apply (v).
From (vi) we directly infer that

(vii) If an operation fe A™ is constant:

F@yy oy a) =0,
then the wnary operation g(w) == ¢ belongs to 4™
(vill) If [ e A™, (ky, .., Tn) is a s [ positive & /
1y g Hm) 08 @ Sequence of positive tntegers with
1<k <m, and ! !
Gy ey B) =2 F (@, ..y g
thon geA(m)_ f( K1y veey kn)
_ (m) ;
In f:(i,(;‘b, g =16k, ..., ), whenee, by (iii), g ¢ 4™,
n) . ’
. erIf,‘A denotes, as it has done so far, the class of all n-ary algebraice
cp .gudmn; on an. algeb_ra (4; F), then every operation f el may be
onsidered as an operation on 4™ (see 1.1), so that (4™; F) (or, more

precisely, (A™; F)) forms a new algebra: t ]
algebra: the algebr - o
operations on 9L §ebr e algebra of n-ary algebraio
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Tn all further considerations the class of algebraic operations plays
a fundamental part. All the notions concerning algebras congidered here
can be defined by means of algebraic operations without using funda-
mental operations (cf. 1.3 (iv) and 2.1). Consequently, two algebras
A= (4,F) and A*= (4,F*) are considered as identical whenever
A(U) = AA*).

The letters f and ¢ (with or without indices, asterigks, ete.) will
always denote algebraic operations in the algebras in question.

1.3. Subalgebras, algebraic closure and generators. Let us
congider an algebra % = (4; F). A non-void set BC A is called a sub-
algebra of A (or of A) if it is closed with respect to F, or (which is equi-
valent in view of 1.2 (ii)) to 4. Bach subalgebra B of A may be treated
ag a new algebra: B = (B; F|B). In order to prove that

(i) If B 4s a subalgebra of (A; F), then

A™ (B; F|B) = A™ (4; F)|B
it guffices to verify by induction that
A (B; F|B) = A (4; F)[B  for k=01,..
(which presents no difficulty) and to apply 1.2 (ii).

It is easy to see that the notion of subalgebra has an absolute char-
acter: any subset § of B is a subalgebra of B if and only if it is & sub-
algebra of A.

We denote by C(4) or briefly by C the set of all algebraic constants
of U (4), i.e. the set of all values of constant algebraic operations in %,
or else (which is equivalent in view of 1.2 (vii)) of all values of constant
unary algebraic operations in 2. Obviously the set C(4) is a subalgebra
of A contained in every subalgebra of A. Nevertheless the notion of
algebraic constant has no absolute character: an algebraic constant of
a subalgebra may not be an algebraic constant in the whole algebra. -

If § ig 2 non-void subset of 4, then the smallest subalgebra contain-
ing § will be denoted S (°) and called the algebraic closure of S. We suy
that S is the subalgebra generated by 8 or else, that § is u set of generators
of 8. The symbol 0 will denote the set C(4). In view of 1.2 (iv) and
1.2 (iii)

(il) Tor any non-void set SC A

S = H{f(al, vy )t By ey @n € Sy fed™).

(%) Sometimes it is convenient to denote ¢ by the symbol A© (cf. o.g. [5] and [9]),
i.e. to treat algebraic constants as  algebraic operations of 0 axguments’’.

(%) The correspondence S8 is a so-called closure operation (cf. e.g. Birkhoff
(11, p. 49).

Fundamenta Mathematicae, T. L (1861) 4.
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For non-void sets, the operation of algebraic closure has an absolute

character, i.e. if B is a subalgebra of 4, and 0 % 8 C B, then the closure,

of 8 in the algebra 4 and the closure of § in the algebra B ave identical.
(However, the symbol 0 may have another sense in these two algebras.)

The representation: d = f(ay, ..., %) of an element 4 of 8 by the
elements @, ..., an of 8 is called drreducible if ay, ..., an arve different
and f depends on every variable. It follows from (ii), 1.2 (v) and 1.2 (vi)
that

(iii) Bvery elements deS\C(A) has at least one drreducible repre-
sentation by the elements of 8.

We will prove that

(v) If an algebra has an infinite minimal set of genorators @, then
any of its minimal sets of generators G* has the same cordinal number.

In fact, if @ € G* then there is a finite subset 1, C @ such that a ¢ 7',.
Thus the set '

U Ta

aeG*

is a set of generators contained in G and, consequently, identical with @.
Consequently |6*| > |@| and thus 6* is infinite. Hence, by the same argu-
ment, |G| > |G¥.

The hypothesis that @ is infinite iy essential: see 2.4.

2. Homomorphisms and independence

2.1. Homomorphisms and isomorphisms. We establish in this
chapter an algebra A = (4; F) and suppose that 4 contains at least
2 elements.

‘If B, and B, are two subalgebras of 4, then a mapping b of B, into
B, is called a homomorphism of B, into B,, provided that for any fe F

(+) Wi @1y oy @) = F(B(@), ooy B{@n))  for @y, .., @ e By,

It fo]lowg from the definition of algebraic operations that if & is

a homomorphism of By, then (+) is true for any algebraic operation 7.
Congequently, for any non-void SC B, we bhave () = #(K)

- ¥ = h ) ; '

h(B,) is a subalgebra of A. ' ® (5): Hence
It may happen that two algebré;ic 0 it gt i

' > operations different in 4 ar

equal in a gubalgebra of 4. Nevertheless, 1 e

(i) If A is a homomorphic image of a subalgebra B of A: h(B) = A

then two algebraic operations f and ¢ equal in B are equal in A -

In fact, if @,..,4,¢A, then th
; , ere are MUy, .., Us e B h  that
h(u;) = @; for j =1, 2, ... Hence ot e B ek that

j(mly sery mﬂ) = h(f(’ul, ey un)) = h(g(ul’ very ’M”)) = g(wld vy wn) R
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Now let us consider some problems of the extension of mappings
to homomorphisms.

(ii) Let p be @ mapping of a set 8 C A into A. The following conditions
are equivalent:

(h) there ewists an ewtension of p to a homomorphism h of 8§ into A,

(a) #f Ay .oy Gminel, fed™, ged™ (m,n=1,2,..) and

Fl@yy ooy ) = G(tnp1y <oy Omn)
then

f(p(‘a1)7 [y p(va‘m)) = .(I(P (I“;:-H); ) p(am-\-n)) .

Roughly speaking, condition (a) says that p preserves all algebraic
equalities.

The implication (h)=(a) follows eagily from (+) In order to prove
that (a)=-(h) let us define the mapping h of § by putting

Bf(@yy ooy ) = f(P(%): ) P(Wn)) .

Tt follows from (a) that this definition is consistent. In the case of
f(@) = @ the above formula gives the identity of » and p on 8, whence,
applying once more the same formula, we see that % is a homomoxphism
of § into A. Theorem (ii) is thus proved.

(iii) For any mapping p of SCTA into A condition (a) i equivalent
1o each of the following:

(a') Of Gyy oy OneSy frgeA™ (n=1,2,..) and

(%) Fldyy ey @n) = g(@, ey On)
then
(%) Fp(ay), ooy p(an)) = g (p(ar); - p(an);

(') if @y, ..., an are diffevent elements of S, f,ge€ A™ (n=1,2,..)
and (x), then (%)

The implications (a)=-(a’)=-(a') are trivial.

Tn order to prove that (a’’)=(a') let us suppose that p satisties (a’).
Thus the implication (x)=-(sx) is true for any system @, .., &n of dif-
ferent terms. Let us suppose, by induction, that this implication is true
for any system for which there ave at most k pairs ¢ < j such that
a; = a;. If there are k-1 such pairs in a system dq, ..., da, Wo may admit,
without loss of generality, that @,—, = an. Lot 1y suppose farther that

Flyy oory Gnety @n) == G{Gyy <oy Bn1y Un) -
and put

Fol@yy covy Bnma) = f( @1y ooy By Tne1) s GolBay ey Prmi)
2 (@ vy Trm1y Tnt) «
,1.*
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Hence f, and ¢, are algebraic by 1.2 (v) and
Joly vy @nea) = Golayy <oy Bny) .
There exist in the system ay, ..., @, at most & pairs ¢ < § with a; = a;.
Consequently, in view of the identity p(@n—1) = p(an),
Hp (@) oy p(n), P(an)) =Fo (P ()5 -ors P (W)
=00 (P(@); ey P () = (P (@), ey P(Gna), P (0m)).

In order to prove that (a’)=-(a) let us suppose that p satisties (a’)
and that
f(aq, sy a,m) == g(am+1, aeey am.l.n) R
The operations
hi@y ey Tongn) =f(@y o0y Om), P By weey Ompn) = {](mm+1 wey Pren)

are algebraic in view of 1.2 (iv). Successively we obtain
fil@yy vovy @mn) = g1y, vy Gmin)
ip(01); s D (Oman)) = 01 (P (@), -ory P(@min))
F@); s D(@m) = (0@ s P(Oman)),  qed

Theorem (i) and (iii) give the following corollary:

(iv) For a mapping p of a subalgebra B into A, each of the conditions
(a), (') and (a") is necessary and sufficient in order that p be o homo-
morphism.
) A one-one homomorphism % of a subalgebra B, onto a subalgebra B,
Is called an isomorphism (of B, onto B,). Its converse mapping is an
isomorphism of B, onto B;. If h is an igomorphism of B, onto B,,
fre A"(B,), and the operation f, is defined by the identity

foY1y ey Yn) = By (h_l(?/l)r ) hul(yﬂ)) for 91, ., Yne By,
then the correspondence
A™(B)) and 4™ (B,).

Consequently all properties defined by the aid of algebraic operations

in B, and B, respectively are invariant with respect o isomorphisms
(of B, onto B,).

fi~fy 18 & one-one correspindence betweon

2.2.' !)efinition of independence. Equivalences. Wo say
that a finite set I = {0, .,8,3C A i3 a set of independent elements
(or, that a, ..., a, are independent), when, for any f, g eA™ if

(%) F@yy veey n) = g(@yy vy @) >
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then f and ¢ are identical. It easily follows from 1.2 (iv) that all subsets
of a finite set of independent elements are also sets of independent
elements. An infinite set is called a set of independent elements whenever
any of its finite subsets is a set of independent elements.

The condition “I is a set of independent elements’’ will be denoted
by (I). Further, we say that a set § satisfies conditions (H), (A), (A")
or (A) if any mapping p of § into 4 satisties (h), (a), (a") or (a’) re-
spectively (sece the preceding section). We will prove that

(i) Conditions (I), (XI), (A), (A") and (A") are equivalent.

The equivalence of (L), (A), (A’) and (A”) follows from 2.1 (ii)
and 2.1 (iii). The implication (I)=-(A’") iy obvious. In order to prove
that (A’)=(I) let us suppose that (x), where ay, .., a, ave different
elements of A. Let @y, ..., @, be an arbitrary sequence of elements of 4,
and p a mapping of 4 into A4 such that p(a;) =a; for j=1,2,..,n
On account of (A”) we have

Hayy ooy &) = 7(1’(“1); XS] P(an)) = .0(?(“1)1 R} p(a'n)) = (@1, ..., Tn)

and thus condition (I) is satisfied. Theorem (i) is proved.

Let us write separately the most important equivalences: (I)<== (A)
and (I)<= (H) (%):

(ii) I 4s @ set of independent elements if and only if for any sequence
a1y wey Omn € 1, O
(%) @y ooy Om) = gl@mpay o) Dmin)

then, for any mapping p of I into A, we have

f(p(%); ey p(%)) = g(p(‘amﬂ)a e p(“’m«kn)) .
(in other words, if (%XF), then

F(@ry ooy @n) = §(@ms1y vy Pren)

for any sequence @y, ..., Lmin Satisfying the condition: if a; = a;, then
@y =y, where i,§ =1, .., m-++n).

(iii) I 4s a set of independent elements if and only if any mapping
of I imto A may be extended to a homomorphism of I into A.

We pass to another equivalence:

(iv) I 4s a set of independent elements of and only 4f the following two
conditions are satisfied:

(Ry) mo algebraic constant has an irreducible representation by ele-
ments of I,

(R) the irreducible represemtation of every eloment of INC by elements
of I is determined up to the order of these elements.

(%) See the Introduction and Marczewski [4], p. 732-723, 2 (i) and 2 (ii).
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The implication (I)=(R,) is obvious. In order to prove (I)e(R)
let us suppose that

(%% a=f(tg; ey Om), d=g(by..,bn)

are two irreducible representations of deI\C by elements of I (see
1.3 (iii)). It must be proved that m = n, that the sequences @ == (@, ..., ay)
and b = (by, ..., by) differ only in the order, and that f and g differ only
in the corregponding permutation of variables.

Let us assume that a certain element of the first sequence, e.g. a,
does not belong to the gecond. We infer that f does not depend on the
first variable. If dy, ..., dm is & sequence of clements of A, dy 4 df e 4,
P ig a mapping of I into 4 such that p(as) == dy and p* iy & mapping of I
into A such that p*() = p(2) for @ # a; and p*(ay) == df, then, by (i),

Hp (@), ., plam)) = g(p (b)), ..., p(bn))
and
Hp*a), ., p*am)) = g(p*(b1); .. P¥(bn)) -
Since a, does not belong to b, the right-hand sides are equal here,
whence o
f(vdu dzx ey dn) = 7((1:: dzv vy d”) .

Consequently, f does not depend on the first variable, which is

impossible, the representations (¥¥) being irreducible.

Hence, the sequences & and b differ only in the order of clements
and the representation may be written in the following mamner:
6 =f(ty .., m), ©¢=g*"ay, ey Om)

where g* and g differ only in the order of wvariables.

;n view of 1.2 (viii) the operation ¢g* is algebraic. Since e, ..., an
are independent, f = g*. T

It remaing to prove (Re)(R)= (I). Suppose
. . Su wl ey Oy AT
different elements of I. ’ ) o (el YRETO ey 10

In view of (R,), if one of the functions f and ¢ i ]
N i iy constant, the
15 tho othar, e+ o00 f g onstant, then so

If neither f nor g is constant, let us reject i i
] all variabley or sh f
and g respectively do not depend,: : ples on rhich /
f(@yy ...y @n) = fol@iyy ory Bi)y (@, ey a) =o(az, v, 1) ,
where p>1 and ¢ >1. Hence, in view of (%),

fo(a"l,; ey aﬂp) = go<a11; ey a’i&')

and, on account of (R), the systems (3,

P woy 1p) and (j;, ..., §,) are identical,
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Theorem (iv) is thus proved. Let us remark that (Ro) and indepon-
dence are equivalent in some algebras (Boolean algebras (%), Jx, vector
gpaces, ete.).

Tet us conclude with the following remark: the definition of in-
dependence given at the beginning of this gection for finite sets may
be applied also to finite sequences. And thus we obtain a simple relation
between the notiong of independence:

(V) (ay, ..., @) 8 @ sequence of independent elements if amd only if
there is no repetition n it and {a, ..., an} 8 @& set of independent elements.

The sufficiency of the condition is trivial. In oxder to prove the
necessity it suffices to show that a sequence @, ..., dn—i, dn with a re-
petition, e.g. when a,—y = @, I8 a sequence of dependent elements. In
fact, we hava

6 (@, orvy () = Gy = G = 05 (B oovy By

although e, # ei.

The following example is important:
(Vi) @y, eeey @ny gy ony Gu) 98 @ SEQUENCE of dependent elements.
Let us suppose that ay, .., tn, f(a1, ..., dn) are independent and put

flay, ooy @n) = Gggr
Let be aX,y # ans1. Then, by (if),
Flayy ooy @n) = 641,
which is impossible.
2.3. Conclusions following from independence.

(i) If {a} is a one-element set of independent elements then a is not
an algebraic constant.

In fact, if ¢ is an algebraic constant, then the constant function
f(@) = ¢ satisties the eonditions:

¢°(c) = f(e) and e #f,

whenece {¢} is a set of dependent elements (5).
The theorem converse to (i) is not true: in the algebra J, the element 2
iy not an algebraic constant while {2} ix & set of dependent elements.
Gi) If {@, b} ds @ set of two indeépendent clements and fa) == g(b),
then f and g are constant and equal.

(") Marezewski [6], p. 140, theorem 4 (i).

(¥ Or, in other terms, ¢ is a self-dependent element. Somo properties of self-
dependent elements have been proved by Nitka [9] and Goelz and Ryll-Nardzewski (2],
p. 161, Theorem 8.
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In fact, theorem 2.2 (ii) and the equality f(a) = g(b) imply the
equality f(2) =g¢g(y) for any @,y e A4.

(iii) If I is a set of indopendent eloments of A, B — a subalgebra of A,
and, I C B, then I is a set of independent elements in B.

This follows from the fact that any two operations identical in 4
are identical in B.

The converse of (iif) is not true. The set {0, 2} is a subalgebra of RN
in which {2} is & set of independent eloments, while it is not in 3,.

In a certain speeial case the converse of (iff) is valid:

(iv) If A is a homomorphical image of a subalgebra B of A, then
independence in B implies independence in A.

That is a direct consequence of the definition of independence and
proposition 2.1 (ij.

Proposition 2.2 (vi) implies

(v) If I is a set of independent elements, then

(G) I is a minimal set of gemerators of I, or, in other words, for any
ael we have a¢ I\{a} (*). .

The converse implication is not true: the set {2, 8} is @ minimal set
of generators of J; while 2 and 3 are dependent. Tn fact, the operations
H@) =20 and g(a) = 3% are algebraic in Js and f(3) = ¢(2). ‘

We shall consider one more conclusion of independence, which is
interesting but will be not used in the sequel.

(vi) If I is o set of independent elements, then

" The relation
UAVCTAYV
being trivial, it remains to prove that
UAVOUAT.
This inclusion is true if U=0 or ¥ =0, Thu,
U#0+V and deU ~ V. Hence

() =ty ey ) = (B, ..., by)
where a = (ay, ..., ay)

8, lot us suppose

whore 18 @ sequence of different eclements of 7 and
th_ (b1y ...y ba) & sequence of different elemonts of V. Rirst lot us econsidor

e case W:!le].‘e @ and b are digjoint. Since T ig a get of independent elomonts
we have, in view of 2.2 (ii), ‘ ‘ ’

j(‘vlr ey w'M) = g(bly reey bn)
(*) See Marczewski [4], p. 783, 2 (iii).
(*) Condition (T) is congidered by J. Sch

Zeitschr. Math. Logik Grundlagen Math. 2
. 19,
(Added in proot.) g (

midt, Mehrstufige Austauschstrulituren,
56), pp. 283-249, in particular Pp. 248.
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for any sequence &, ..., &, of elements of 4. Consequently f is constant
and d an algebraic consgtant in 4. Hence d e U~ V, by the definition
of the algebraic closure.
Let us pass to the case where there is an element in the sequence a,
say @, which belongs to the sequence b. In the sequence
0= (o) Qyny by oeey bn)

we replace by a, every element of b not belonging to a. Thus we obtain
8 new sequence

oX = (‘ala evy Oy a‘iky ] a;:)
guch that if two :elements of ¢ are equal, then the corresponding two
elements of ¢* are also equal. Consequently, the olements of I being
independent, we have in view of (+) and 2.2 (ii):

Flag, oy am) = glaf, ..., af) .

Every element of the sequence af, .., a; belongs simultaneously

to @ and b, whence
d=g(af,..,ah) ¢ T~ 7,

It is easy to see that the converse of (v) is not true. Namely a set
satisfying (T) also satisfies (T) after a set of algebraic eonstant has been
added, while a set containing an algebraic constant is a set of dependent
elements (see (i)). There are also examples of sets of dependent clements
containing no algebraic constant but satisfying (T), e.g. the set {2, 3}
in the algebra J,.

Finally, let us remark that

(vil) If a set I satisfies (T) and contains no algebraic constants, then
I satisfies (G).

In fact, in view of (T),

{a} n IN{a} C {a} nT\a} =0

and, since a is not an algebraic constant, we obtain a¢ T {a}, q.e.d.

The converse implication is not frue: in the algebra (a, b, ¢, d; f)
where f(a)=f(b)=0¢ and f(¢)=f(d)=d the set {a,d} satisties (G)
without satisfying (1).

q.e.d.

2.4. Exchange theorem and bases.

(i) If I = Iy wd is a set of independent elements of A, where I, and J
are disjoint, and if hy is @ homomorphism of I, inte A, and p an arbilrary
mapping of J into A, then there ewists a homomorphism h of I imto A which
s a common extension of hy and p.

Since I is a set of independent elements, it follows from 2.2 (iii)

R|I, = h,. Consequently h|I; = h, and theorem (i) is proved.
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And now we can prove the following “exchange theorem’:

() If I = I,wd is o set of independent elements of A, where Iy and J
are disjoint, and if I, is a set of independent clements of A with Iy==I,,
then I, v J is a set of independent elements.

Let p denote a mapping of I, wJ into 4. The elements of J; being
independent, we carn apply 2.2 (iii) and we obtain a homomorphism h‘1
of I; =1, into A with kI, = p|I;. Since I iy a set of independent
elements, there exists, by (i), » homomorphism % of TeIo O w2 I, O
into 4 such that h|I, = by|I; = p[l; and h|J = p|J. Therefore A is an
extension of p, whence, by 2.2 (iii), Iy wJ is a set of independent ele-
ments, q.e.d. ‘ ‘

(i) If I and J are two sets of elements independent in the algebra A
and have the same cardinal number, then the subalgebras I and J are
isomorphic.

Let b denote a one-one mapping of I onto J. In view of 2.2 (iii)
there exist a homomorphism % of J into A such that All = p and also
a homomorphism h* of J into 4 such that A*|J = p-t. Obviously h(I) = J.
We have

) W (h(a) = @

for 2 ¢ I, whence also for © e 7. On account of (% & is onc-one, ¢.e.d.

_ Let us add that, in proposition (i), the hypothesis of independence
in 4 can not be replaced by independence in I or J. In the fo]lowiug
faxample I is a set of elements independent in I, J is a set of elements
}ndependent in 4, I and J are one-element sets and yet I and J are 1161:
;iogng‘phi(;hL:tA‘lI ———ﬂ(lA; @) be the Cartesian product of J, and T, in
nse tha is the set of i f integers (§ here § ==
i h o T all pairs of integers (7, k), where j = 0,1

(71, B)® (Jay ky) = (]1 +f2(1110d2), Ty - kz(m()d‘ﬂ)) .

It suffices to put I = {(1,0)} and J = {0, 1)}.
. A get of ind:ependent generators of 4 is called a basis of 4. There
exigt algekfms with bases and algebras with no bages, o.g. it iy easy to
ﬁrove tha} t.he Boolean algebra By of all subsets of an k-olomont sot
as a],g basis if and only if % is of the form 2" ().
ach basis is & minimal set of generators, but not ‘
M J vtors, but not conversely (ef. pro-
fotm}go‘n ;.3 (v) and the exa.xpple following it). Hach basis is & maximal
:t of in ependent elements (in view 2.2 (vi)) but not conversely (e.g. the
set {a} in the Boolean algebra of all subsets of the set {a, b, 0})

(*) That is connected with the well-kn.
. : -known theorem that DBy is a
algebra if and only if % = 27, See e.g. Birkhoff [1], p. 163. i o e Boolwn
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For any algebra U = (4;F), the algebra (A™, F') (ie. the algebra
of all n-ary algebraic operations in 4) has an n-element bagis; namely
it is not difficult to verify that the trivial m-ary operations in A form
a basis.

This fact permits us to define an algebra having bases with different
cardinal numbers. Here is an outline of this construction (*?). Let us
put 4 = {1, 2, ...} and denote by f a one-one transformation of 4% onto
A and by ¢, the inverse transformation:

(@, 4)~f(®, %), w”’*((l’(‘w)i’!)('“‘)) .

Tor the algebra % = (4; @, v, ), the algebras of algebraic operations
AO = (AP g, p, ) and AP = (4”, ¢, y,f) arve isomorphic and since
AY hag a one-element basis and AP a two-element basis, the algebra
AV hag bases with different cardinal numbers.

In this connection we shall prove that (1%)

(iv) If an algebra has bases with different cardinal numbers, then all
these numbers ave finite and form an infinite arithmetioal Progression.

The finiteness of the numbers under consideration follows from
1.3 (iv) and consequently it only remains to prove that if there are in 4
bages with m, m-% and n elements (k, m,n=1,2,..), then there
exists a n--k-element basis of A.

Let us denote by B, v B, a m+k-element basis, where B, has m
elements and B, k elements. In view of (iii) the algebras A and B, are
isomorphic and, consequently, B, has a n-element basis Bf. The elements
of B are independent in B; and, by 2.3 (iv), in 4.

Since B = B,, we may apply the exchange theorem (ii). Therefore
Bf U B, is a set of independent elements. Obviously

BfUB,=B,uB,=4;

in other words B¥ u B, is an n-k-element basis of A.

The theorem is thus proved.

The converse theorem is also true: Any arithmetical progrossion is
the set of numbers of elements of all bases of a certain algebra (1)

(#) Cf. Jénnson and Tarski [3], and ‘Goetz and Ryll-Nardzewski [2], p. 159.

() That is a strengthening of a theorem by Swierczkowski ([1], ']E‘heomm 2,
p. 760). I use here some ideas of Ryll-Nardzewski. Another proof of (iv) is contained
in the paper of Goetz and Ryll-Nardzewski [2], p. 167-159, Theorem 5. Recently
8. Swierczkowski proved a theorem on free algebras containing (iv) as a special cage
([18], Theorem 1).

() The theorem first proved by Goetz and Ryll-Nardzewski [2] under some
additional hypotheses concerning the progression considered and then, without re-
striction, by Swierczkowski [13].
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2.5. Independence and™mappings.

(i) If & homomorphism h of J into A is one-one on J and if h(J) is
a set of independent elements, then J is also a set of independent clements.

In fact, if a,, ..., ¢, ave different elements of J and

Hay, oy tn) = g(ay, ..., an)
then
B(f(ay, ...y an)) = hg(ay, ..., an)),
whence
f(M“J,)) ) h(a”n)) = .(](h(("‘l)) ) h(a'n)) .

Since h(a;) are different and independent by hypothesis, we have
f=g, qed.

() Lot tyy...rage A and fy, .., fue A If fulay, ooy @)y ooes fulay, ..., @)

are ndependent and by, ..,b, are independent, ihen Fa(by, ooy be)
falbyy ..., BY) are indépendent.

Let wus suppose that

3 eren

GUFlus oy Ba)y ooy Py, ooy Ba)) = g (D, vy B)y ey il ooy by)) -

Hence, in view of the independence of byy ooy by,

g(fl(au vy g)y ey fulag, oy “s)) = g*(fl(a’u ey Ug)y ey fulaty, r) aa)) y

and, finally ¢ = ¢* by the independence of fy(ay, ..., a,), woy ful@y, ooy ag)

References

[1] G. Birkhoff, Lattice theory, New York 1945.

,[2] A. (_}oetz a.n.d C. Ryll-Nardzewski, On bases of abstract algebras, Bulletin
de I’Académie Polonaise des Sciences, Série des Sc. Math. Astr. eb Phys. 8 (1960)
Pp. 157-162.
[3] B. Jénnson and A. Tarski Two general theorems comcerning fr !
; L s ce algobras,
Bulletin of the Americal Mathematical Society 2 (1956), p. 554. v7 ¢
mati [4:]]3?1:1 i{[azczle‘zvs];ié, A general scheme of the motions of independence in mathe-
ics, etin de I’Académie Polonaige des Seciences, Série des Se. Math. Asty. ot T
rtvem oy ath. Astr. et Phys.
[6] — Independence in some abstract algebras, ibidem, 7 (1959), pp. 611-610.

[8] — Independence in algebras of sets and Boolea { 3 Nt
g & v g f olean algebras, Tundamenta Ma-

[7] — and K. Urbanik, Algeb
de I’Académie Polonaise des Scienc
pp. 157-161.

[81J.¢C.C. McKinsey and A, Tarski,
thematics 45 (1944), pp. 144-191,

.[9] W. Nitka, Self-dependent elements
maticum 8 (1961), pp. 15-17.

7a8 in which all clements are independent, Bullebin
e8, Série des Sc. Math. Astr. ef Phys, 8 (1960),

The algebra of topology, Annals of Ma.

of abstract algebras, Colloguinm Mathe-

icm

Independence and Tomomorplisms in abstract algebras 61

[10] 8. Swierezkowski, On independent clements in finitely generated algebras,
Bulletin de I’Académie Polonaise des Sciences, Série des Sc. Math. Astr. et Phys. 6
(1958), pp. 749-752. N

[11] — Algebras independently generated by every m elemenis, ibidem 7 (1959),
pp. 501-502.

[12] — On algebras which are independently generated by every n elements, Funda-
menta Mathematicae 49 (1960), pp. 93-104. ) )

[18] — Omn isomorphic free algebras, Bulletin de I’Académie Polonaise des .Scxence;?,
Série*Math. Astr. et Phys. 8 (1960), pp. 587-588, and Fundamenta Mathematicae, this
volume, pp. 35-44. ) -

[14] K. Urbanik, Bepresentation theorem for Marczewski’s algebras, Bulletin de
1’Académie Polonsige des Sciences, Série Math., Astr., et Phys. 7 (1959), pp. 617-619,
and Fundamenta Mathematicae 48 (1060), pp. 147-167.

Regu par la Rédaction le 2. 8. 1960


Artur




