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Iifi_f be a set, S=m>=r,, F(a) a set-mapping defined on 8 such
that F(z) <n<m for every zef, for an n < m. Let further {She
be a system of disjoint subsets of § satisfying the conditions: g, = 7;:
for every » < g and g <m. Then there exists a free subset §'C & such
that 8" ~'8, = m for every » < ¢.

The proof given in [7] makés use of the generalized continuum hy-
pothesis in the case when m is singular.

It is easy to see that using the idea of the proof of our Theorem 1
this generalization of the Ruziewicz conjecture can also be proved without
using the generalized continuum hypothesis.

On the other hand in his paper [8] G. Fodor states the following
generalization of the Ruziewicz conjecture.

. Let 8 be a set, § =m >x,, and F(z) a set-mapping defined on 8.
satisfying the condition F(z) < n < m for every @ 8 for some n < m’
Let further /7(S’) den 4 f 'y §'C 8

' (8") denote the set ww‘%w' (F(@) ~ F(y)) for every 8'C §.
Then there exists a subset 8’ C 8, 8§ = m such that TT@";) < m.

'Fodor proves this theorem for singular m using the generalized
continuum hypothesis; our method does not enable us to prove this
theorfam without using this hypothesis. The simplest unsolved problem
here is: Ts it possible to prove Fodor’s theorem without using this hypo-
theses for m = &,, or for m = 8y, ?
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A new analytic approach to hyperbolic geometry

* by
\

W. Szmielew (Warszawa)

Introduction

Hilbert was the first who constructed in plane hyperbolic geometry
without the axiom of continuity a commutative ordered field &
=(H#, +,-,<> and founded an analytic geometry over it (see [3]
or [2], Appendix IIT). The field € is known in the literature as the end-
caleulus since the class H consists of pencils of parallel half-lines, which
Hilbert refers to as ends. The analytic geometry over & is based upon
a coordinate system for straight lines. . _

In this paper a new commutative ordered field & = ¢S, +, s, <>
is constructed in the same system of geometry. This field seems to be
conceptually simpler and more adequate for the foundation of analytic
geometry than & It is generated by a hyperbolic calculus of segments,
more precisely by an algebraic system & = {S, +, «, <) in which the
class S consists of the segments. The operations + and « of © are defined
in terms of such simple notions as the Lambert quadrangle and the right
triangle and are not relativized to any fixed geometrical objects, while
the relation < coincides with the usual less-than relation for the segments.
Finally a rectangular coordinate system over S can be constructed (the
two coordinates of a point being elements of S), and moreover the analytic
geometry based on it is identical with that of the two-dimensional Xlein
space the absolute of which coincides with the unit ecircle.

Chapter I is algebraic. We introduce there the notion of a unit interval
algebra and reduce the problem of constructing a commutative ordered
field to that of constructing a unit interval algebra.

Chapter IT is geometrical. In Section 1 we describe the axiomatic
theory 9’ of the hyperbolic geometry in which the field & is to be con-
structed. In Sections 2-13 we counstruct the system &, furthermore we °
prove it to be a unit interval algebra, and consequently, using the result
of Chapter I, we obtain the ordered field &. In Sections 14-18 we outline

the foundations of the analytic geometry over G.
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Chapter ITL is also geometrical. In Section 1 we clarily the relationghip
between the end-caleulus and the hyperbolic caleulus of segments. In
Section 2 we study the field & in the full hyperbolic geometry with the
axiom of continuity.

The present paper is closely connected with the author’s article [11].
That rather metamathematical article includes, in particular, a con-
struetion of the hyperbolic caleulus of segments in the space geometry,
The present paper gives the first presentation of the plane construction
of G. We algo point out the author’s note [10], where an absolute calculug
of segments, closely related to the hyperbolie one, has been constructed.

I. The unit interval algebra i

1. Postulates. Consider an algebraic system & = @&y A+, <
with two binary operations + and - and a binary relation < in a non-
empty set S, the two operations being not assumed to be always perform-
able. To express the fact that &4y does or does not exist we shall write
©+ye8,n+y¢ 8, respectively. We shall use the same notation for the
operation -. We refer to the system &= <8, +, -, <> as a unit interval
algebra if and only if it satisfies the following postulates:

o) If “"l.‘ 8, then # non-< .

() If 2,9¢8, then e =y or v <y or else y<w.

(i) If »,9,0+Yy €8, then T+Yy=9y+wm.

(iv) If z,y,0+y, (@+y)+2e8, then y+2¢8 and (@+y)+2 =

T+ (y+2).

(v) If ,2¢8, then o<z iff () x+y =2 for some yel.

(vi) If @,y 8, then zyel and -y =y .x.

(vii) If ,y,2¢8, then (@y)2=0(y2).
(vil)) If @,z¢8, then ¢ <& iff 2 =y for some yel.

(ix) If @, y,s», &+9y ef, then (o+y)2=m24y-2.

. It is seen at once that if § is an arbitrary commutative ordered field
with the zero element 0 and the unit element 1, then the open interval (0, 1)

of § is a unit interval algebra. The aim of the subsequent discussion is

to show that, on the contrary, ever it int
s Y unit interval algebra can be ext
t0 a commutative ordered field. ’ be extended

3 5 f h -I] 1 i)-(ix
W e st art wit h sSome S]mple COIlBequenees of t (c} pOSﬁL ates ( ) ( )'
2 In a.]l bhe f()l'mula)s the V&Ila:bles w, i/ ,Z, i, u', v are &Bsulned LO la‘ngu
over the Seb S. . J ' . |

—_—

() We use iff for if and only if.
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11) Ifz<y and y <z, then 2 <z.

(1.2) If o+yelS and z2<y, then v+zef.

(1.83) If a+ye8 and v+y = w42, then y ==2.

(14) If z+y eS8, o+y =241, and v <z, then t < y.
(1.5) If oy =2, then y==2.

(1.6) If z-y =121t and <z, then t <y.

(1.7) If vox=19y-y, then . =4y.

(1.8) s<y iff zz<y-2.

(1.9) z<yiff v-o<y-y.

1.10) If z-2+y-2=1t-2, then w4y =1.

The statements (1.1)-(1.4) are easily derivable from the postulates
(1)-(v); the statements (1.5)-(1.9) are easily derivable from the postulates
(i), (ii) and (vi)-(viii). To prove (1.10) let us notice that from z-z-+y-2z
= t.2 it follows by (v) and (1.8) that -+ u =1 for some « in §, which
by (ix) implies z-2-+u-2 = t-2. Consequently by (1.3), (1.5), and (vi)
we get v = ¥, and thus o+y = 1

2. Complement of ». Given an element ¢ in S, there is for every »
in § a unique element x; such that

(2.1) PRE

(by (v), (vi), (viii), (1.3), and (1.5)). The element #; does not depend on
the parameter . For, given two different parameters ¢ and u, say w <1,
we have % = t-v for some v in 8, and with the help of (ix) and (vii) we
derive from (2.1) the identity #-#+#i -4 = u, which implies } = .
Consequently, for every x in S there is a unique element «' in S such that

(2.2) o it+a’ t=1t for every teS.

We shall refer to @' as the complement of a.
On the other hand,

(2.3) if y+2 =1, then y=a-t and 2 = 't for some welS .

In fact, by (iii), (v), and (viii) we have ¥ = -t and 2 = w-{ for gome »
and w in 8. Hence -1+ u-¢ = t, and with the help of (2.2) we get u = o'.
From (2.2) and (iii) we derive at once

(2.4) @ = .
Moreover
(2.5) if <y, then y <a,

which follows with the help of (1.8) and (1.4) from @-t 4" -t=1y -t +y -t =1.

Fundamenta Mathematicae, T. L (1961) 10
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Furthermore we have
(2.6) if oty =2, then w42 =y,
since from #+y ==z and t-z+1-2' =t-y+t-y' =1t we deduce t-w-i.z
=t.y’, which by (1.10) gives us o+2' =y’

Finally, let us notice that

(2.7 o+a' ¢ 8 and vty eS8 for every y< o' .

In fact, were 2+’ ¢ 8, then by (2.2) and (ix) for any ¢ we would have
(z+a')-t =1, which by (viili) would imply ¢ <, contrary to (i). On the
other hand, if ¥ < #', then ¥ +2 ==’ for some 2 in 8, which with the help
of (2.6) and (2.4) implies at once x--y ==2’. Thus w4y 4F.

8. One-half element. Congider the equation
o=q.

It follows at once from (2.5) that it has at most one solution in §. Actually
there is an element in § satisfying the equation. To find it we pick an
arbitrary y in 8. If y = ¢, we put @ = y. If ¥ < 9/', then y +y € § by (2.7);
let y +y = ¢. Then by (2.3) we have &1 = y = &' - for sgome @ in §. Cleaxly
o =o' If y’ <y, we repeat the argument for y’ instead of y. Consequently,
the condition @ = @' is satisfied by a unique element in 8; we denote this
element by }. Hence

(8.1) 1=,

By (2.7),

(8.2) if #e8, then t-w+}ed,

since }-# <} = (4. From (3.2) with the help of (L.2) we derive
(3.3) if w,yel, then t-wt+}yel.

. 4. 'Euclidean unit interval algebra. From (3.1) it follows
In particular that } @442 =« for every » in & consequently

(4.1) if e, then o =y+y for some yeg.
The analogous statement

(x) If we8, then o =y.y for some yel

for the operation - by no means follows from the postulates (i)-(ix). On
the other hand an wunit interval algebra § may obviously satisfy the
postulate (x); in this case it is said to be Huclidean.

Let € = (8, +, -, <> be a Buclidean unit interval algebra. By (x)
and (1.7) the equation o=y -y has for a_given # a unique solution for y;
we denote it as usual by J/» Thus

@2) o=v2v3.
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From (4.2) with the help of (1.7) and (1.9) we deduce

(4.3) . sy=2 iff Vayy=Vz
and, :
(4.4) <y iff Ve<yy.

Let us introduce a new operation -’ by putting
(4.5) e+'y=z iff Vaty=ve.

‘We shall refer to the algebraic system &' = (8, +’, +, <) as the square
root derivative of &. From (4.2)-(4.5) it follows at once that the function f,
f(z) = Y@, maps the system & isomorphically onto the system &’. In
consequence we get

THEOREM 4.6. The square root derivative G of a Buclidean unit in-
terval algebra © is again a Huclidean unit interval algebra.

5. Embedding theorem.

THEOREM 5.1. Any wunit interval algebra S =<8, +, -, <> can be
imbedded in a commutative ordered ﬁeld_@ =8, +, -, <> in such a way
that 8 consists of all those elements T e S for which 0 < <1, provided 0
is the zero element and 1 is the unit element of the field S. In fact, S is up to
isomorphism uniquely determined by & in the following sense: if S, and G,
are_two ordered fields generated by &, then there i3 an isomorphic mapping
of S, onto S, which leaves all elements of 8 unchanged. In addition, if &
s Buclidean, then © is also Huclidean.

Proof. We construct the algebraic system &, = <8, 41, -1, <
defined as follows. §; is the Cartesian square § x § of 8, and for any two
elements {(w,, s> and (¥, ¥.,> of 5,

By @) +1 <Y1y Ya> = <5 (@1 Ys) + 3 (@a-y1) 5 - (@292)D
@y B2) 1 {Yry Yoo = By Yuy Ta- Y2 o
By, @) <y Yy Yo ML @th <209y
Let us notice that in the definition of -+, we made an essential use of
statement (3.3). Furthermore, we introduce the relation =,
By @) =Y, Yo ML @Y =209,

between elements of S;. It is easy to check that = is a congruence
relation in &, and that the quotient algebra /= is a commutative semi-
field. More precisely, the algebra <8, +,,<;)/= iz a commutative
semi-group ordered in the natural way, the algebra &, -)/= is
a commutative group, and the operations -+,/= and -,/= are connected
by the distributivity law. Clearly, the unit element 1 of the group

10*
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¢(8,, /= coincides with the coseb consisting of all elements <a,, o,
with @, =@, Let §; be the subclass of §; consisting of all couples
{wy, 3,y With #; < ;. By (1.6) the class 8, is closed under the relation =.
The algebraic subsystem {8y, +i, -1, <u)/= of &/= ocasily proves to be
isomorphic with the unit interval algebra &. In consequence, by applying
the well-known exchange theorem (compare e.g. [13], p. 46) we modify
©,/= to an isomorphic system & = (8, +, -, <) which is an extension of
G =<8, +, -, <). The class 8 consists then of all those elements % of §
for which # < 1.

By an @nalogous procedure we construct a commutative ordered
field & = ¢S, +, -,<)> which is an extension of & = (8, 4+, ., <>
such that § consists of the positive elements in §. This {ime both the
operations -+ and - are always performable (in &) which makes the con-
gtruction still simpler. _

In conclusion, the ordered field & is an extension of & such that
for every # in S

@) FeS it 0<F<1,

where 0 is the zero element and 1 is the unit element of g.

It is easily seen that, if two ordered fields &,; and @a are extensions
of &, both satisfying the condition (1), then the identity function on 8
can be extended to an isomorphic mapping of &, onto @2.

In case the unit interval algebra & is Buclidean, postulate (x) im-
mediately implies

(2) it e, then Z =77 for some jeJ,

and since § i the set of the positive elements in § this means that the
ordered field & is Euclidean.

II. Hyperbolic calculus of segments
and the related inner coordinatization of the plane

1. The theory 9%'. Hilbert constructed the end-calculus in the
subsystem 9 of the plane hyperbolic geometry based on the first three
groups of his absolute axioms (i.e. on the plane axioms of incidence, of
order, and of congruence) and on his hyperbolic axiom on tho intersecting
and non-intersecting lines (see [2], pp. 162). Tt is convenient to put the
lagt axiom in the form of two separate axioms:

Ax 1. For every line L and for every point a outside of L there are at

least two distinct lines K, and K, both passing through a and neither in-
tersecting L.

_ Ax 2. ‘l7'o'r every point o and for every half-line H there is a half-line @
with the origin a and parallel to H.

icm
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In [8] Szész showed that Ax 1 can be equivalently replaced by
a weaker axiom

Ax 1'. For some line L and for some point a outside of L there are
at least two distinet lines K, and K, both passing through o and neither in-
tersecting L.

Ax 1’ i just the negation of the Euclid’s axiom as formulated by
Hilbert in [2], p. 28. Ax 2 is a special consequence of the continuity axiom.

In what follows we shall refer to the axiomatic theory described
above (with Ax 1 replaced by Ax1’) as 9. It is understood here in
a slightly modified way by assuming the lines to be point sets (the incidence
relation thus coinciding with the membership relation), not individuals
distinet from points, as Hilbert does.

The hyperbolic calculus of segments may be constructed in the
theory <. It is more convienient, however, to deal with an axiomatic
theory %’ which is equivalent to % and moreover satisfies the following
two conditions:

1. All the primitive notions coincide with relations among points.

2. All the axioms are formulated in the elementary language, i.e. by
using only variables ranging over points.

On the other hand, %', as well as %, is assumed to be provided with
some get-theoretical bagis; thus in %’ besides the variables ranging over
points there are also variables ranging over arbitrary point sets, over
arbitrary classes of point sets, etc., and the membership symbol e is in-
cluded among the logical constants of the theory.

‘We do not specify the primitive notions and axioms of the theory ¢’
It is known that in %’ the ternary relation L of collinearity may serve
as the only primitive notion (see [7], Corollary on p. 93 (%)), hence the
ternary relation B of befweenness can serve this purpose as well.
Among other relations with this property let us mention the quaternary
relation E of equidistance (see [6], Section 3). Clearly, one may assume
a larger system of primitive relations, e.g. consisting of all the relations
L, B, and E. In the latter case an axiom system for 9%’ could easily be
obtained from that for %9 under approriate definitions of the notions
involved.

At any rate, each of the relations L, B, and E is a primitive or defined
notion of 9, and each of the axioms of 9 iy an axiom or a theorem, of ¢’
In particular the sentences Ax 1’ and Ax 2, and consequently Ax 1, are
theorems of .

(*) Royden does not give the proof of Corollary in all details. At any rate his
proof works without any doubts for 9’ instead of 9¢* described in [7].
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2. Hjelmslev’s theorem. The first fundamental theorem on
which our construction is based is
b THEOREM 2.1. Given a convew quad-

ramgle abed with right angles af vertices

b and d (Fig. 1), if ¢ is the perpendicular
projection of the vertex a wupon the diago-
nal bd, then the angles bac and cad are
congruent.

This theorem had been well known
as a theorem of Euclidean geometry.
Hjelmslev was the first who proved it
d in absolute geometry (see [5]), and thus
in a subtheory of H.

Fig. 1

3. The class S of free segments. By a segment we understand
here any non ordered pair pg of distinet points p and ¢. We shall
write pgzzp,q; to express that the segments pg and p,g, are congruent.
The set of all segments congruent to a given segment pq is called the
free segment determined by pg and is denoted by [pg). Free segments
will be represented by variables 4,B,0,X, Y, Z,P,Q, R, ..., possibly
with subscripts, and the set of all free segments will be denoted by S.
Obviously,

(3.1) S£0.

A definition of the usual less-than relation for free segments follows.

(3.2) X <Y iff Blpgr), X =[pgl, and Y = [pr]
Then for some distinct points p,q,r.
(3.3) X non- < X;
(3.4) X=Yor X<Yorese Y <X
(3.5) if X<Yand Y<Z,then X <Z.

Asg usual tl}e gymbol > will denote the relation converse to <.
. E?he operation of the wusual addition for the free segments will play
in this work a preliminary role only. We give its definition and list its
fundamental properties.

(8:6) X+Y =27 iff Blpgr), X =1[pql, ¥ =[¢], and Z = [pr]
Then for some distinct points p,q,r.
(3.7) X+Y=Y+X;

(3.8) (X+Y)+2Z = X+ (Y +2);

icm
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(3.9) X<Z iff X+Y=2Z for some YeS;
(3.10) X=Y+Y for some YeS.

From (3.3), (3.4), and (3.7)-(3.9) we easily derive

(3.11) if X+X=Y+Y, then X=01;

(3.12) if X+Y, =X+Y,, then Y, =T,

(3.18) if X 4+Y, =X, 4+ Y, and X, < X,, then ¥y > ¥,.
We put

(3.14) X-Y=272 iff X=Y+Z.

4. Free angles. By an angle we understand here any non-ordered
pair GH of half-lines ¢ and H which are supposed to be non-collinear
and to have a common origin. We shall write GH=<GH,; to express that
the angles GH and G H, are congruent. The set of all angles congruent
to a given angle GH is called the free angle determined by GH and is
denoted by [GH]. Free angles will be represented by variables a, 8, v, & 1,¢,
possibly with subscripts. All right angles form a free angle; we refer to it
a8 the right free angle and denote it by o. All other free angles consist of
only acute, or else of only obtuse angles. Therefore one can speak about
the acute (or obtuse) free angles. ‘

We introduce the relation < and the operation -+ for free angles
in a complete analogy to the way in which we have done it for the free
gegments, only the betweenness relation B for three points on a line should
be now replaced by the betweenness relation B for three half-lines in a half-
pencil (see e.g. [1], pp. 47 and 50). The addition of free angles is then
not always performable; at any rate the sum of two acute free angles
always exists. Bxcept for performability all the properties of < and +
stated for free segments apply to free angles. In particular, for every
free angle £ there is a unique free angle % such that & = n-+%. We denote
by o/2 the angle 5 such that ¢ = 5. The symbol > will denote the
relation converse to <, and the formulas é—#n = and &= n4-{ will be
used interchangeably.

5. The Lobachevskian function II. Given a free segment X,
by I1(X) we understand the free angle defined as follows. Take an oriented
line I and a point p not on L such that X = [pq], where ¢ is the perpen-
dicular projection of p upon L (Fig. 2). Let & be the unique half-line
which has the origin p and is parallel to L (see Ax 2), and let H coincide
with the half-line pg. We then put I7(X) = [GH]. In other words II(X)
is the angle of parallelism for p with respect to L. It is well known that
this definition does not depend on the line I and the point p, but only
on the free segment X itgelf.
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With the help of Ax 1 one can easily prove that

(5.1) if X<X¥Y, then II(X)>IIY).
Moreover,
(5.2) the ramnge of IT consists of all acute free angles.

In fact, (5.2) is equivalent (in absolute geometry) to the statement on
the existence of a line parallel to both sides of a given angle, the latter
statement being proved by Hilbert in the theory 9 (see [2], Theorem 3

P
4

6
I \ V}

Fig. 2

on p. 165). By (5.1) and (5.2) the function IT establishes a one-to-one
correspondence between the free segments and the acute free angles.
We make the following convention: A free segment and the corresponding
free angle are denoted by the corresponding letters of the Latin and
Greek alphabets (%), with the same subseript or superseript, if any; e.g.

IA)=a, IX)=¢, OY)=7n, IX)=¢.
In this notation the statement (5.1) takes the form
(5.3) if X<X, then &>n.
6. The auxiliary operation ’. For every free segment X the
condition

(6.1) INX)+II(X) = o

defines a unique free segment X’ which can be referred to as the com-
plement of X. Clearly

(6.2) X=X,
and by (5.1)
(6.3) if X<X then X'>T7Y.

By the convention of Section 5 the operation ” on free segments

induces an operation ’ on free angles. In fact, the f i i
. ormul . -
alent to the formula ’ e (0T equiy

§+E =0
(*) This notation is adopted from [6].

icm
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and hence
(6.4) & =o—¢&
for every acute free angle é&.

7. The free right triangle. We gay that an ordered quintupel
XoZBY, formed by three free segments X, Z, Y and two free angles a, /3,'
is a free right triangle—symbolically, T (XaZBY)—if and only if. there is a
right triangle abc with a right angle at the vertex ¢ (Fig. 3) guch that

X =[ac], ea=[xda], Z=[ab], A=I[xb], Y=[bd].

We then say that abe is a representative of XaZBY. We refer to X, a,
Z,B,Y as the terms of XaZBY.

Obviously
(7.1)
(7.2)
(7.3)
(7.4)
(7.5)

T(XeZBY) iff T(XBZaX);
for every X and Y there are a, Z, p such that T(XaZBY);
for every Z and f there are X, a, ¥ such that T(XaZBY);
if B> Y, then there are X, a, Z such that T(XaZfY);
if T(XaZBY), then any two of the five terms X, a, Z, f, Y determine
uniquely the remaining three.

a

Fig. 3 Fig. 4

8. The free Lambert quadrangle. We say that an ordered
quintupel XAZBY, formed by four free segments X, 4, Z, ¥ and a free
angle B, is a free Lambert guadrangle—symbolically, Q(XAZBY)—if
and only if there is a Lambert quadrangle a,abc with right angles at
vertices a,, a,, ¢ (Fig. 4) such that

X =[ac], 4A=[am), Z=I[ad], p=[x10], Y = [be] .
We then say that a,abe is a representative of XAZBY. We refer to
X,A,Z,B, Y as the terms of XAZBY.

Obviously
(8.1) Q(XAZBY) iff
and it is easy to check that )
(8.2) f Q(XAZBY), then any two of the five terms X, A, Z,B, Y de-

termine uniquely the remaining three.

Q(AXYpZ),


Artur


icm

140 W. Szmielew A new analytic approach to hyperbolic geometry 141
9. Liebmann’s theorem. The last theorem fundamental for our Thus for any given X and ¥ there is a unique Z such that XO ¥ = Z.
construction can be expressed in terms of the free right triangle and the Let us notice that

free Lambert quadrangle as the equivalence ,
(10.2) if X €S, then X = YO for a unique YeS.

9.1 7, ) f i
(9.3) T(XaZfY) iff Q(XA'ZnB). In fact, putting X = X, +X; we have X = YO if and only if
This equivalence had been known only as a theorem of 3-dimensional

hyperbolic geometry until Liebmann proved it in the theory U (see [6],
p. 189). For the convenience of the reader the Lisbmann proof of (9.1)

is repeated, in a somewhat different form, in Appendix, p. 155. 5
By (8.1) and (9.1) we have ‘
. Y Y
Q(XA’ZyB) iff Q(A’XByZ) iff T(A'EBLY); X &
hence )
(9.2) T(XaZBY) iff T(AEBLY). | ; . e X4 %
c

T(XlaYg Z) for some o and Z
b

Furthermore, by (7.1) and (9.2) we have : Tig. 5 Fig. 6
T(A’¥BLY) iff T(YLB&AS ,
) (i fi ET()Z izroan o (Fig. 6). By (3.10), (3.11), (9.4), and (7.5) the latter statement determines
Jende wXBAT) it T(ATBXTZ); uniquely ¥ for the given X.
. i ~ . Y and Z
(9.3) T(XaZ ; ’ ror 11. The operation . Given three free segments X,_ L Z,
(XaZPX) iff  T(ABX"Z) we put X.¥ = Z if and only there is a right triangle abe with a right
(cf. [5], p. 191, where this equivalence iy proved in a much more involved angle at the vertex ¢ (Fig. 7) such that X =[ab], 7 =[< D], Z = [be].
Way.%‘r ’ In other words,
ha fg]ﬁ v(;,’;3), (7.4), and (7.1) with the help of (9.2) and (9.3) we deduce ‘ (11.1) X.Y =2 iff T(ABXnZ) for some A and §.
Tt follows at once from the definition that for any given X and ¥
(9.4) for every X and B there are a, Z, ¥ such that T(XaZpYX); there is a unique Z such that X.Y = Z, in other words
(9.5) if Z> X, then there are X, a, f such that T(XaZBY); ” (11.2) if X,YeS, then X.YeS,
. a
(9-6) if a+B < ¢, then there are X, ¥, Z such that T(XaZpY). that
When reducing (9.6) to (7.4) we use also (5.3) and (6.4). (11.8) X.¥ =X.¥, implies Y =T, X
the fTulllle stattements (7.2), _(7.3),.(7.4), (9.4), (9.5), and (9.6) form together and that
o, ol e, of e el et o i o g g B T A Ay S——
e T ( oestablished for the free Lambert : : c -
quadrangle, however to do this iy superfluous for our discussion. g:rgzz er, with the help of (11.1) and (9.5) Tig. 7
10. The s
auxiliary operation O. Given three frec segmentsy (11.5) if X>Z, then XY =Z for some Y eS.

X’t hY &nfi Z, we put XOY = Z if and only if there is a right triangle abe
with 2 right angle at the vertex ¢ (Fig. 5) such that X = [ac], X = [bc]
Z =[ab] (4). In other words, T ’

By (9.2) we have T(AfXnZ) if and only if T(B'a’Y{Z) and con-
sequently from (11.1) we deduce

(103) XOT¥ =2 iff T(XaZBY) for some o and § (11-6) Xor= X
’ Thus the operation . is commutative. We shall prove now the agsociativity
law

{*) This operation was used in [4].

(11.7) (XoX)eZ = X+(X+Z).


Artur


142 W. Szmielew

Let
X ¥Y=4, AZ=B, YZ=0, X.0=0D.

We have to show that B = D. To this aim we pick five half-lines H,, H;,
H,, H,, H;, with a common origin p (Fig. 8), satisfying the conditions

(1) B(H;_H;H;.,) for ¢=2,38,4

and

(2) [HH,) = [HH]={( and [HH)]=[HH]=¢,
p

Xe(Y+Z)

Hy

Hs Haq
Tig. 8 ’

zndt zlve take the point gs,el'i’ﬂ such that [pg,] =Y. Let the points Qas Qs Qay @
ed e perpendicular I)I"OJthiOIlS of ¢; wpon H,, ¢, upon Hy, s 111)0;1 1,145
and ¢, upon Hy, respectively. Then, partly with the help of (11.6), we get;

[Pal=4, [pal=B, [pgl=0, [pg]=D.
Let r be the perpendicular projecti
Drojection of p upon the line i
Theorem 2.1 to the quadrangle pgg.g, we get f4de: By applying

_and hence by (2) L QP 22 X gy

X OPL =X gapr  and X rpg, e < 4upgs )
which implies pg; a2 pr o pg;.

proved Consequently, B =D which was to be

In conclusion let us notice that by (9 3), (10.1) and (11.1) we have
(11.8) XO0Y=2Z iff XY=z ‘
which by (6.2) implies at once the dual formula ,
(11.9) XY=2 iff XoY =27,
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Therefore the systems ¢S, > and (S, ©) are isomorphic. In particular,
by (10.2),
(11.10) if X eS8, then X = Y.X for a unique YeS.

12. The auxiliary operation @. Given three free pegments
X,Y,Z weput XOY = Z if and only if there is a Lambert quadrangle

abed with right angles at vertices a,b, ¢ (Fig. 9) d
such that X = [bal, ¥ = [bc], Z = [bd]. In other
words, a

(12.1) X@Y =2 iff X=A-Z

and ¥ = A" Z for some A eS. X xey

Clearly, not for every X and Y there is a Z i
guch that X @Y = Z. However, if Z exists it is o,
uniquely determined by X and Y. To express b o ¢
that X@Y does or does not exist, we shall write Fig. 9
X®DY S, XPY ¢S, respectively. It follows immediately from the de-
finition that

(12.2) if X®YeS and Z <X, then X®Z € S;
(12.3) X®X ¢S, and XDY e S for every ¥ < X

Thus X’ is the smallest segment which cannot be added to X.
The formula (12.1) implies at once

(12.4) AZ@A"Z=17Z.
This may be treated as a particular case of the distributivity law
(12.5) if XY eS, then X Z®YZ=(X®Y)+Z,

which, with the help of (12.1), reduces to the associativity law for «. In
fact, it X@Y = B, then

X =A.B and Y = A’-B for some A ¢S,
and
(X@Y)eZ=B+Z=A«(BZ)DA"+(B+Z)
=(4-B)+Z@Q(A"+B)+ Z =X ZDY-Z.
If follows at once from the definition that
(12.6) if XY eS8, then XOY =Y RX,
and that
(12.7) XY =2 implies X<Z.
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From (12.1) and (11.5) we deduce the converse formula
(12.8) if X < Z, then XPY = Z for some Y €8 .

Finally, we pass to the associativity law. We start with the preliminary
formula
(12.9) X . YQY =X0XY'.
By (11.4) and (11.6) we have X.¥Y < ¥, from which it follows by (12.3),
(12.6), and (6.2) that X.Y @Y ¢ S; consequently there is a Lambert
quadrangle abed with right angles at ver-
tices a, b, ¢ (Fig. 10) such that
[ba} = X.¥, [be]l= X',
(bd] = X.Y DX .
Hence
1) QX .Y)Y[ed][ < d)[da))
and
(2) T([cd]a(X-Y(—BY’)ﬂY’)
for some a and g .

Moreover, we have T(4,8.X7(X-Y)) for some 4, and p,, which impli
by (7.1) and (9.1), ) 1 Bas mplieg,

3) Q((X+Y)Y'Xa,B,) .

With the help of (8.2) it follows from (1) and (8) that [ed] = X, and con-
sequently (2) implies at once (12.9).
The associativity law

Pig. 10

(12.10) if XQY, (XQY)DZ ¢S, then YDZ ¢ S
: wnd (XOY)DZ = XD(Y ®Z)

is proved as follows. By (12.6) and (12.7) we have Y '
prov. . <XPY, from
which it follows, by (12.2) and (12.6), that Y@Z ¢ S. Let ’

X@Y=4, A@®Z=B, Y®Z=0.
Then X < 4 and A < B by (12.7), and therefore by (3.5)
X <B.
By (12.1) and (11.5), for some P,Q,R, 8 we now have

X=P:.4, Y=P.4, A=Q.B, Z=¢.B,
Y=R.0, Z=FR.0, X=4g.B.
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Then
P.A=8.B, P.A=R.0, @Q.B=FR.C, A=Q:B,
from which with the help of the associativity law for « we derive
(P+Q)+B=8+B, (P+Q)+-B=R.0, @B=FR-.0.

From the second and the third equalities we get by means of (12.4), (12.5),
(12.9), and (11.8)

0= (P+Q)-B@Y-B=(P-Q®Q)B=(POQ)-B=(P-)B;
then by (11.3) and (11.6) from the first identity we get P.Q = 8, and

thus O = &+ B. Since, moreover, X = §+B, by (12.4) we get XP0 = B,
which concludes the proof.

13. The field ©= ¢S, +,+, <>. Formulas (3.1), (3.3)-(3.5), (12.6),
(12.10), (12.7), (12.8), (11.2), (11.6), (11.7), (11.4), (11.5), (12.B), and
(11.10) clearly imply the following theorem.

TaEoREM 13.1. The system G° = (S, @, +, <> is a Buclidean unit
interval algebra.

We modify now the operation of addition by putting

(13.2) X+Y=2 iff VX®VY=VZ,

the square root being defined as in Section 4 of Chapter I, Then the system
G =S, +, «, <) is the square root derivative of &°, and using Theo-
rem 4.6 of Chapter I we derive from Theorem 13.1

TrrorEM 13.3. The system & = (S, +,+, <) 8 a Buclidean unit
interval algebra.

‘In consequence, by Theorem 5.1 of Chapter I, we have

TEEOREM 13.4. The system & =<8, +,+, <> can be imbedded in

a commutative Budidean field S = (S, 4+, +, <>, with the zero element 0
and the unit element 1, in such & way that

(1) for every X in S we have XS iff 0 < X < 1.

The field G is uniquely determined up to isomorphism by & in the sense
of Theorem 5.1.

From now on we assume that this field has been fixed and we apply
to it the familiar field-theoretical notation. In particular, the operations 4
and » and the relation < are now understood to be defined for arbitrary
elements of the field and not only for free segments. Also the variables
A,B,0,X,Y,Z are now understood to range over all elements of S
and not only over free segments (this stipulation being already applied
in the formula (1)).
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On the elements of the Cartesian product §x § we introduce in the
usual way the operations of addition, subtlja,etig__n, and scalar product.
- Let ¥ = (X, X;> and P = (X, ¥o> be in Sx.S, then

X+9 =X+ Y, L+ X,

%—?) =X - Yu Xz""yz> y

X Y=X, Y, + X,- ¥,.
The properties of these operations are assumed to be known. We put
F=X.Xx

14. The characterization of preliminary operations in
terms of the field operations. In this section we ghall deal with
free segments. From (13.2) we get at once

(14.1) XeY=2 iff X+ Y =27,

It seems natural to refer to (14.1) ag the Pythagorian formula. When
applying it in particular to (12.4) we get (A«Z) 4 (A”7+Z) = Z2 for any
arbitrary 4 and Z; consequently A%+ (4”) =1, ie.

(14.2) 47 =V1-4%.

From (11.8), (14.2), and (6.2) we obtain by a simple calculation

(14.3) XQY = VX {r - X7
From (14.1) and (14.3) we derive
(14.4) if Q(XAZBY), then X =V1-4*.7,

since Q(XAZBY) implies X DA = A O Z (see Fig. 4).

It remains to express the operations + and —, i.e. usual addition
%md subtruction of free segments, in terms of + and ». This problem
is a little more involved. Let us assume that X+¥ = Z. Then X < Z

by (3.9), therefore X <)'Z, and hence X =A.}/Z for some AeS
by (11.5). Then

VXZ=A4.Z and X=A.YVX 2

and consequently there is a right triangle a,be, (Fig. 11) with the right
angle at vertex ¢, (< a, representing the free angle a) guch that

labl=2, [wel=VX.Z y and  [ed] =X,

provided d, is the perpendicular projection of ¢, wpon a.b,. Then bd]1=X
by (3.12). By the same argument there is a right triangle ayb,c, with the
right angle at the vertex ¢, such that

[asbal = Z,  [bye)] = I/Y *Z, and [bdy=7Y,
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provided d, is the perpendicular projection of ¢, upon ayb,. Then [aydy] = X.
Tt is easily seen that ¢,d; == cyd, and consequently b,6; o by, 1.6. [b101]
=1Y+Z. In conclusion we get

VX ZOVY Z =12

by
Fig. 11

which with the help of (14.3) proves to be equivalent to
X-I—Y—X-Y-Z:Z

From the last formula we get at once

X+Y
and
Z—-X
(14.6) Z——X:l_Z‘X for X <Z.
Tt follows immediately from (14.5) that
(14.7) X+Y<X+Y

for every two free segments X and Y.

15. The distance function. Given two arbitrary points p and g,
we put
0 it p=gq,
pg] & p#g,

and refer to the element (p,q) as the distance between the points p
and g¢; clearly 8(p,q) is always an element of S. _This terminology is
justified by the fact that the function ¢ satisfies (in &) the three distance
axioms. For, by the formula (1) in Theorem 13.4,

59, 0) ={

(15.1) 6(p,q) >0 and d(p,q) =0 iff p=g;
furthermore

(16.2) d(p, q) = d(g, P);

finally

(18.8) 8(p, @)+0(g,7) > d(p,7),

Fundamenta Mathematicae, T, L (1961) 11
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the triangle inequality for + resulting by (14.7) at once from the triangle
inequality for 4. '

Let us notice that by the formula (1) in Theorem 13.4 we have
d(p, @) <1 for any two points p and ¢.

16. The rectangular coordinate system. We take two ar-
bitrary perpendicular axes (oriented lines) I, and L, intersecting in
& point o (Wig. 12). Given a point P,
let py and p, be the perpendicular projec-
tions of p upon I, and I, regpectively,
We put for ¢=1,2

Ly

P2
0 if pi=a,
XP = ! [apq] it a-3pon Ly,
—[ep] ¥ p;<aon Ly,
prgvided -3 is the order of points on the
axis I;. Thus X¥ and X} are elements
of §. We shall refer to the function @
Fig. 12 defined for every point p by the formula

D(p) = <XT, XT)

ag thepreatmgult_zr coordinate system with the awes L, and Ly, and to X7
and X3 as the first and second coordinates of the point p in the system @.
We ghall refer to the point ¢ as the origin of @.

With the help of the formmula (1) i
aaelly ' (1) in Theorem 13.4 and (14.1) we

TeEOREM 16.1. Every rectangular coordinate system @ establishes
a one-to-one correspondence between the points p of the hyperbolic plane

and the elements <X,, X,> of th ; Sx S satisfyi
oo T 31 ij 2> of the Cartesian product Sx 8 satisfying the

In particular, for every point p

(16.2) P(p) <1,

where ®*(p) stands for (@)

From now on we assume the
. axes I, and L,, and hence also th
coordinate system & and its origin a, to ll)e fixed.“ i ’

By (16.2), given two points )

‘ p and ¢, we have ¥%(p) < 1, ¢* 1
and (6(p)& () < ¥(p) D) < 1. Cons’equently the ﬁrmufa <t
(1=#(p)) - (1= #*(g)

(1~o(p) . o (g)?

(16.3) F(p,q) =
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defines a function F, which correlates with every two points p and ¢
an element F(p, q) of S. It is easy to check that

(16.4) 0<F(p,9)<1

for every two points p and ¢. Since P(a) = <0, 0}, it follows from (16.3)
that

(16.5) F(a,p) = F(p, a) = 1—&*(p)
for every point p.

17. Analytic formulas for distance and perpendicularity.
We take two arbitrary points p and g; let .

(1) O(p) = (X, XE> and (g = <X{, XD
For simplicity let us assume that in addition
(2) 0<X?<X? and O0<XP<X}.

We denote by p; and ¢; the perpendicular projections of the points p
and ¢ upon the axis I; (=1, 2), and by 7 the perpendicular projection

Ly

Fig. 13

of p upon the line g¢, (Fig. 13). Then by means of (14.4), (14.8), (14.3)
and (1) we get in turn

X2 X3

3 1] T —— d T e

3) [ppi] iy and  [g¢4:] o
Xi—-Xx7

(4) [p1n]l = 1—x0. 3%’

(8) [¢r] = 1/1 = [p.¢:1 » [ppd]

11*


Artur


150 W. Szmielew
__I[pl
(6) [pr] = ’Vm—’
_ [eg] =[]
M ] = 1~ Togd L]’
8) [pg] = V[prP + 0P =[P [orP.

A simple calculation leads from (3)-(8) to an analytic formula for distance
(17.1) o(p, @) =V1~F(p, q),
the function F being defined by (16.3). The formula (17.1) remains valid
in the general case, independent of the assumption (2).

With the help of (17.1) we easily derive from (14.3) the analytic
formula for perpendicularity
(17.2) ($perl=¢e iff Flp,qQ)-F(q,r)=F(p,r).

. Taking in (17.2) the point @ (the origin of the coordinate system &)
first for p and then for ¢, we get with the help of (16.3), (16.5), and (16.2),

(17.8) [Fagrl=0o iff @(g)((P(r)=D(g) =0
and
(17.4) [ par]l=p iff O(p)D(r)=0.

. 18. An 'anal.ytic formula for collinearity. We congider an
arbitrary straight line II. In case the origin a of the coordinate system @

is not on K we denote by b the perpendicular projection of a upon K;
S

P S
T

Fig. 14

K

~, K

gl(;:)ase (zlis 011; K we take ag b an arbitrary point not on K (Fig. 14). Let

= {By, By). Then, for an arbitrary point p with @(p) = (X, X,

we have by (17.8) and (17.4) 4 (p) = Xy, Xo,
pek it B(b). (B(p)—D(D) =0

in the first case; and

peK it B(b).D(p) =0
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in the second case. In both cases the straight line K has the linear

equation
B, « X, + Bys Xp+ B, =0

where B, coincides either with —®2b) or 0. In the first case, by applying
(16.2), we get B} + B = —B, > B}; and hence

2+ B2> B

Since b # a, this inequality remains valid in case By = 0.
On the other hand, every linear equation

(1) B+ X+ By« X, +B; =0 with B} +B;>B;
describes a line K. If B # 0, then K passes through the point b, provided
B,+B By« B,
(b)) — <_ 1 3 22 3>
®) Bl + B Bi+By/’

and is perpendicular to the line ab. If B, =0, then K passes through
the point & and is perpendicular to the line ab, provided @(b) = (B, By
in case B2+B;2 <1 and

Bl B2
20 = <2 - (B +BY)’ 2.(B%+B%>>
in case B2+ B2 > 1.
Thus the linear equation (1) is the analytic representation of the
line; consequently the analytic formula for the relation L of collinearity
hag the form

1 X} X%
1 X2 xi=0
1 X X3

PrOVided D (p) = <Xf; Xil)>~ D(g) = <X¥y Xg)y @(1‘) = (-X;s -X;>'

Since in the axiomatic system ¢’ all the geometrical notions can be
defined in terms of the relation L (see p. 135), the formula (18.1)
is a bage for the analytic geometry on the hyperbolic plane. Since the
condition (18.1) of collinearty is the Cartesian one, then by Theorem 16.1
this analytic geometry coincides with that of two-dimensional Kleine
space (based on the unit circle) over the field S.

(18.1) L(pgr) iff

II1. Final remarks

1. The relation between the end-calculus and the hy-
perbolic calculus of segments. In this section we like to clear up
the relation between the fields & = ¢S, +, ., <> and = (&, +, -, <>
(see Introduction) and between the coordinate systems based upon these
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two fields. Actually we shall consider two coordinate systems over G,
one originated with Hilbert in [3] and another one introduced recently
by Szész in [9]. When comparing the fields S and € we shall make full
use of the results in [9]. We change only the notation. In particular, the
ends, i.e. the elements of #, will be now denoted by German letters
%,1,3. On the other hand, the symbols 0 and 1 will be used as in [9] to
denote the zero element and the unit element of the field €. The arguments
of Hilbert and Szész are carried through in the theory %, and hence
they can he’repeated in %’.

In [9] Szdsz introduces a one-to-onme function ¢, which assigns to
every free segment X an end

(1.1) e(X)>1
in such a way that
(1.2) e(X;+ Xp) = e(X) 6(X,),

the symbol 4 denoting here the usual addition of free segments. By
means of e Szasz defines three function s, ¢, and t,

_ @) —e(X)™
= SSmiA

_eX@—e(X)?
e(X)+e(X)™

where ¢(X)™'=1/e(X) and 2 =1+1. The function t maps in one-to-one
way the clags S of free segments onto the class B of all ends ¥ which
satisty the condition 0 < x< 1. Moreover, with the help of the analytic
formulas in [9] it can be shown that t establishes an isomorphism between
the systems & = <S, +,+, <> and €= (&, +, -, <>. By formula (1)
of Theorem 13.4 in Chapter IT this isomorphism can be easily extended

_ (X +e(x)?

s(X) ¢(X) = 5 ,

(1.3)
t(X)

to the isomorphism of © and & Thus
THEOREM 1.4. The fields & and € are isomorphio.

Let us now turn to the coordinate systems. The class & consists of
all' ends with the exception of one, which Hilbert denotes by oo. In
Hilbert’s coordinate system two elements of B are agsigned as coordinates
to every line the both ends of which differ from co. The remaining lines
]Isav;[ no coordinates. I_n result, the linear equation of the point derived
aly;alyilizegz O(Lci::r;ot give the sufficient basis for the foundations of the

-The Szész coordinate system ¥ assigns three elements of B as co-
ordinates to every point. Szész derives the linear equation of a line (as
well several other analytic formulas), and thereby founds an analytic
geometry on the hyperbolic plane. The original description of the system ¥
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is rather involved (see [9], Section 2); we will give an equivalent one
resulting at once from the concluding remarks in [9]. Let I, and L, be
two perpendicular axes intersecting in a point & (Fig. 15) and such that
the positive half-lines H, of I, and H, of L, represent the ends co and 1,
respectively. For simplicity we restrict curselve to points p lying in the
inner domain of the angle H,H, (for

more ditails concerning ¥ see [9], p. 112).

Let p;, and p, be the perpendicular -2
projections of p upon the axes L, and P2y
L, and let

X, =[ap,] 7‘ X, =[ap,],
A =[pp, B=I[pp], O0=I[ap].

1

X2

Then ¥(p) = {31, %, %, provided —ar X; 'p’ PR oo
n=5(4), #n=s5(B), xz=c0).
Let us notice that the third coordinate Fig. 15

is actually superfluoes gince it is wuni-

quely determined by the first two by means of the identity @ = 2%+
+ 2 +1 (see [9], Theorem on p. 104). On the other hand, with the help
of analytic formulas given in [9] we derive

(1.5) X)) =8 md t(X) =2

X3 X3

These identities establish a simple relation between the coordinates X,
and X, of the point p in the rectangular coordinate system @ with the
axes L, and I,, and the coordinates of the same point p in the system .

2. The field G in the full hyperbolic geometry. If we
enrich the axiom system ¢’ by adding to it the non-elementary continuity
axiom Co (e.g. as formulated in [12], p. 18) we get the axiom system
of the full hyperbolic geomelry Qf. In conclugion we wish to make some
remarks concerning the field G in the theory 9¢'. With the help of Co we
can prove in G that the field & is continuously ordered and that every
polynomial of an odd degree with coefficients in S hag a zero in S. More-
over, we showed in 9¢' that the field & is Euclidean. In consequence S
is a continuously ordered real closed field and therefore is isomorphic
with the field & = (R, +, -, <) of the real numbers.

It is easy to determine this isomorphism effectively. In fact, as is
well known, in 9 we can correlate with every free segment X a real
pumber |X|> 0, called the natural measure of X, in such a way that for
every X and Y

| X +¥| = | X|+| 7|
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()

This correlation establishes a one-to-one correspondence between free
segments and positive real numbers. Also, we can correlate with every
free angle & a real number |&| > 0, called the natural measure of &, in such
a way, that for every ¢ and 7

|€4+ 7| =&+ |9, whenever

and moreover |o| = =/2 .
Using the notion of the measure we can prove in ¥’ the cosine formula,

X.Y=2 iff

and moreover
=In(y2+1).

E4+n exists,

(2.1) o8 |II(X)| «cos [II(Y)| = cos |I1(Z)|,

and also the formula
X@Y =2 iff

(2.2) cos? | II(X)| @ cos? | IT( Y)| = cos? |11 (Z)|

(see e.g. [1], p. 338). From (2.1) it follows at once that
(2.3) cos? |II(X)| = cos |IT(X?)| .

With the help of (2.3) from (2.2) and the gtatement (18.2) of Chapter IT
we derive

(24) X+Y=2Z iff cos|II(X)|+ cos |I(Y)| = cos |II(Z)] .

Sincg II in its whole domain and cos in the interval (0, 7/2) are two de-
creaging functions, we have also

(20.5) X<Y iff cos|I(X)| < cos |II(T)].

In addition we recall that in 3¢ we can prove the formula

olX| — g—IX|

X oI

which is fundamental for the full hyperbolic geometry (5).

Let us denote by R the open interval (0,1) of the
of the real numbers. Then
by (2.4), (2.1), (2.5), and (2.6) we arrive aJ;;

. STEEOR:EfM 2.17. 1’.he function ¢, such that t(X) = tanh | X| for every X
wm S, establishes an isomorphism between the algebraic systems ‘

6=<S)+7',<>

(2.6) 08 |IT(X)| = tanh | X| =

and R=<Rr+:';<>-

(*) For arbitrary measure of free se,
gments we would have cos|IT(X)| = .
but for the natural one the positive constant » coincides with [1.( ) = tomh XD

icm
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By formula (1) of Theorem 13.4 of Chapter II the isomorphism ¢
between G and & can be uniquely extended to an isomorphism t between
the fields © and K. '

Theorem 2.7 clarifies the ideas underlying the construetion of the
hyperbolic calculus of segments.

APPENDIX

The proof of the Liebmann Theorem By the Liebmann
Theorem we understand the statement (9.1) of Chapter II. The original
proof of (9.1) in the system < due to Liebmann .
is to be found in [6]. We adopt the notation of the
Chapter II. Moreover, we shall denote, if con-
venient, the half-line pg from the point p through
the point ¢ by H(pg), and the half-line comple-
mentary to H(pq) by H*(pq).

We start with

Tee LEBMANN LemMA. If T(XeZBY) or
Q(XA’ZnB), then

(1) I(Z+A)=n—§,
(I1) I(Z—-A)=n+8,

(IIT) H(B+Y)+U(A—X)=§- Fig. 16

Proof. First let us assume that Q(XA’Z7nB) and let the Lambert
quadrangle a,abc be a representative of the free Lambert quadrangle

Tig. 17

XA’ZyB (Fig. 16). We produce from the point b the half-line F parallel
to the half-line ca;, we take the point d on H*(agb) such that {a,d] = 4,
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and from d we produce the half-line D parallel to the half-line ca,. Then
D||E and DH(db) is a right angle; hence (I) holds. The proof of (IT) (1iﬂ’ei-a
from the proof of (I) only in that H(ca,) and H*a.b) are rospectively
a D N

4

D E
Fig. 18 Pig. 10

replaced by H(a;c) and H(ad) (Fig. 17). To rove (I
points d and ¢ such that ’ ) prove (ITD) wo take the

B(awed), B(cbe), [ad]=A, [be]=Y

(Fig. 18), and from ¢, d,¢ we produce the half-lines ¢ , D, B parallel

to the half-line a,b. Then 0||D, 0||B, and moreo
‘ ver DH(dc)
are two right angles. Thus (IIf) hold’s. () wnd (e

Fig. 20

L ot
. repr::e ];fat?ext fassume tha.t T(XaZBY) and let the triangle abe be
i x(r;I;) 11'}1]:&:‘:2?} f13.1‘1'a.nflei XaZBY. Then to obtain the formulas
] ) iclent to put a; = a,=a in t ' :
concerning the quadrangle (Fig. 19, gig. 210, F;g. gl;n(:)he whove proot
(%) Liebmann did not prove the .
Was known as a theorem of 9¢. The re
that for the quadrangle simply by id

part of Lemma which concerns the triangle since it
ma'rk that we ob.tain the proot for the triangle from
entifying the points a, and a, is due to the author.
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MTae TIEBMANN THEOREM. For any frec segments X, Y, Z and any

free angles o, 8

T(XaZBY) iff Q(XA"ZnB).

Proof. Assume that T(XaZpY). Obviously Q(X,A"Zn,B,) for some
X,, 71, B;. Hence by Lemma

OZ+A)y=n—pf and I(Z+A)=m—Pp,
II(Z—A4)=n+p and IN(Z—A)=mn+p.

d D\

Fig. 21

Therefore g, = f and 7, = 7, which implies B, = B and ¥, = Y. Hence,
again by Lemma, :

OB+Y)+I(4-X)=% and HI(B+Y)+I4-X;) = 2.

Therefore X, = X. Hence Q(XA’ZnB). In conclusion,
it T(XaZBY), then Q(XA’ZnB).

The proof of the converse implication is quite similar. We assume
that Q(XA’ZyB), obviously T(X,aZf,Y,) for some X, By, X1, and by
means of Lemma we get X, =X, 8, =p, and ¥, =Y.
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Characterization of the fixed point property for a class
of set-valued mappings *

by
L. E. Ward, Jr. (Eugene, Oregon)

1. Introduction. Let X be a space and C a class of set-valued,
mappings of X into itself. We say that X has the fiwed point property
for @ if, for each f € @, there exists @ ¢ X such that » ¢ f(z). In this paper
our primary interest is to prove that if X is an arcwise connected compact
metric space, then X has the fixed point property for the clags of upper
semi-continuous, continuum-valued mappings if and only if X is heredi-
tarily unicoherent. Incidental to this result we note that such spaces
also have the fixed point property for continuous mappings whose values
are arbitrary closed sets, but we have not been able to characterize this
tixed point property. It seems likely that, for arcwise connected compacta,
this fixed point property is also characterized by hereditary unicoherence.

These results are all generalizations of what is usually called the
Scherrer fixed point theorem, and they have a lengthy history. Four
earlier papers are of especial interest in what follows, and we mention
them here. In [4] A. D. Wallace proved that a dendrite has the fixed
point property for upper semi-continuous, continuum-valued mappings,
and his result was later generalized by the Eilenberg-Montgomery fixed
point theorem ([1]). Our results include the Wallace theorem but they
neither include nor are included by the Eilenberg-Montgomery theorem.
R. L. Plunkett ([3]) proved that a dendrite has the fixed point property
for continuous, closed set-valued mappings and, conversely, that if a Peano
continuum has this fixed point property then it iy o dendrite. As we shall
observe, his proof of the converse proposition is equally valid for the
mappings considered by Wallace. Finally, in [5] the author proved that
a hereditarily unicoherent, arcwise connected continuum has the fized

* Presented to the American Mathematical Society, November 19, 1960. This
research was supported by the United States Air Force through the Air Force Office
of Scientitic Research of the Air Research and Development Command, under Contract
No. AF 49(638)-889. Reproduction in whole or in part is permitted for any purpose
of the United States Government.
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