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Characterization of the fixed point property for a class
of set-valued mappings *

by
L. E. Ward, Jr. (Eugene, Oregon)

1. Introduction. Let X be a space and C a class of set-valued,
mappings of X into itself. We say that X has the fiwed point property
for @ if, for each f € @, there exists @ ¢ X such that » ¢ f(z). In this paper
our primary interest is to prove that if X is an arcwise connected compact
metric space, then X has the fixed point property for the clags of upper
semi-continuous, continuum-valued mappings if and only if X is heredi-
tarily unicoherent. Incidental to this result we note that such spaces
also have the fixed point property for continuous mappings whose values
are arbitrary closed sets, but we have not been able to characterize this
tixed point property. It seems likely that, for arcwise connected compacta,
this fixed point property is also characterized by hereditary unicoherence.

These results are all generalizations of what is usually called the
Scherrer fixed point theorem, and they have a lengthy history. Four
earlier papers are of especial interest in what follows, and we mention
them here. In [4] A. D. Wallace proved that a dendrite has the fixed
point property for upper semi-continuous, continuum-valued mappings,
and his result was later generalized by the Eilenberg-Montgomery fixed
point theorem ([1]). Our results include the Wallace theorem but they
neither include nor are included by the Eilenberg-Montgomery theorem.
R. L. Plunkett ([3]) proved that a dendrite has the fixed point property
for continuous, closed set-valued mappings and, conversely, that if a Peano
continuum has this fixed point property then it iy o dendrite. As we shall
observe, his proof of the converse proposition is equally valid for the
mappings considered by Wallace. Finally, in [5] the author proved that
a hereditarily unicoherent, arcwise connected continuum has the fized

* Presented to the American Mathematical Society, November 19, 1960. This
research was supported by the United States Air Force through the Air Force Office
of Scientitic Research of the Air Research and Development Command, under Contract
No. AF 49(638)-889. Reproduction in whole or in part is permitted for any purpose
of the United States Government.
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point property for continuous, closed set-valued mappings, thus gener-
alizing one half of the Plunkett theorem.

There appears to be a remarkable overlap betwoeen the class of gpaces
which have the continuous, closed set-valued fixed point property on the
one hand, and the class possessing the upper semi-continuous, continuum-
valued fixed point property on the other. As indicated above, we have
not been able to determine whether these classes are identical among
arcwise connected compacta. But the final theorem of this paper, which
is a corollary of our results and Plunkett’s, shows that the two clagses
are identical when restricted to Peano continua.

2. Preliminaries. A compactum is a compact metric space. A coniti-
nuum is a connected compactum. A continuum X is unicoherent if, for each
representation X = 4 v B where 4 and B are subcontinua, it follows
that 4 ~ B is connected. A continuum is hereditarily unicoherent if each
of its subcontinua is unicoherent.

The study of hereditarily unicoherent, arcwise connected compacta
is facilitated by the inherent order structure of these spaces. This order
structure has been developed in our earlier paper on the subject ([5]),
and we ghall briefly review and extend that study here.

It X is a space and < i3 a partial order on X, we write L ()
={a: a <o} and M(z) = {a: ® < a} for each weX. Tt is natural and
convenient to define [, y] = M(2) ~ L(y) and, if 4C X, we write M(4)
for the union of all M (x) for which wed. A subset € of X is a chain
(relative to <) if, for each # and y in 0, <y or y <@. An antichain of X
Is & subset in which no two distinet elements are comparable under the
partial order. The partial order is dense if, for each two elements x and 2
of X such that x <z, there exists y ¢ X such that z < y <2. A zero of the
set A C X is an element aye¢ A such that 4 C M(ay).

The fundamental theorem on partial order in hereditarily unicoherent,
arcwise connected compacta, which was proved in a slightly more general
form in [5], is stated below without proof as Theorem A. Theorem B
was also proved in [5]. We take this occasion to note that the hypothesis
of hereditary decomposability employed in [5] is superfluous, for any
arcwise connected compactum is decomposable, and, moreover, if the
compactum is hereditarily unicoherent then each of itg gubcontinua is
arcwise connected (Lemma 1), hence decomposable,

N TEEOREM A. Let X be a compact metrio space. A necessary and suf-
ficient condition that X be hereditarily unicoherent and arcwise commected
i8 that X admit a partial order < satisfying the following five conditions.

(X) There ewists ¢ ¢ X such that M (e) =X
(II) < s dense,

(IT) 4f ve X,y ¢ X such that o < y then [@,y] is a closed chain,

H
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AV)if xeY,yeXY where Y is a subcontinuum of X and <y,
then [#,y]C Y, )

(V) if A is an antichain of X and P is a continuum contained in
M(A) then P C M(x) for some we A. '

If X is a hereditarily unicoherent, arcwise connected compactum,
then the partial order of Theorem A can be constructed in the following
manner. For each # and y in X with 2 sy, let A(»,y) denote the
unique arc whose endpoints are # and y. Select e¢e X and let vy
mean that either # =¢ or xeA(e,y). Note that if # <y then [@,y]

THEOREM B. Hach subcontinuum of a hereditarily unicoherent, arcwise
connected compactum has a zero and each chain has a Supremum.

LevmA 1. Bach subcontinuum of a hereditarily unicoheremt, arcwise
conmected, compactum s arcwise connected.

Proof. If Y is such a subcontinuum, then by Theorem B, ¥ has
a zero, ¥,. If ¥ € ¥ —y, then by (IV) of Theorem A the are [¥,, ¥] is con-
tained in ¥ so that Y is arcwise connected. ‘

LemmA 2. Let X be a hereditarily unicoherent, arcwise conmnected
compactum, © € X, and A a continuum contained in X —x. If A meets M(x)
then A C M (v)—».

Proof. By Theorem B, A4 hags a zero a,. If a, <@ < ¢ where ae 4
~ M(x) then by (IV) of Theorem A, xe[ay,a] CA, a contradiction.
Hence A C M (a,) C M (2)—a.

If Y is a space, we denote by 2¥ the set of non-empty closed subgets
of ¥ and by K (Y) the family of connected members of 2. Lot f: X —»2%
be a mapping. Following the traditional usage we say that f is upper
semi-continuous if, for each x ¢ X and open set V of ¥ such that f(x) CV,
there exists a neighborhood U of @ such that f(¢) CV for each ¢t e U. The
mapping f is lower semi-continous if, for each # ¢ X and open set V of ¥
such that f(#) ~V # 0, there exists a meighborhood U of 2 such that
f(t) AV =0 for each t ¢ U. If f is both upper and lower semi-continuous
then f is said to be continuous. Mappings into 2¥ may be termed closed
set-valued; if Y is compact and the range of f is contained in K (X¥) then f
is continuum-valued. It is known (see, for example, [2], 9.2) that f: X —2%
is upper (lower) semi-continuous if and only if {#: f(x) ~ 4 # 0} is closed
(open) whenever 4 is closed (open) in ¥. Further ([2], 9.6), if f iy upper
gemi-continuous and each f(x) is a compact set, then F(K) = J {f(=):
@ ¢ K} is compact whenever K is compact in X.

Levma 3. If X and Y are compact and f: XK (Y) is upper semi-
continuous, then f(K) is a continuum whenever K e K (X).
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Proof. It suffices to prove that f(XK) is connected when K e 9 (X).
Suppose K €2% and f(K) = Py v Py, where P, and P, are disjoint, non-
empty closed sets. If

Q= {we K: f(a) C Py},

then ¢; and @, are disjoint and, since f is continuum-valued, @, v Q, = K,
so that K is not connected. Therefore K ¢ N (X) implies that f(K) is
connected.

The following lemma is due to Plunkett, who stated it in [3] only
for Peano continua and closed set-valued mappings. Ilis proof, however,
goes through without changes for compacta and continuum-valued
mappings. We conclude this section by stating it without proof,

Levmma 4. If Y is a compactum and S is a simple closed curve con-
tained in Y, then there ewists a continuous mapping r: Y —K(8) such that
7(t) =1 for each t e 8.

i=1,2,

8. The characterization theorem. In this section we egtablish
the characterization theorem described in the introduction. The first
half of this result (Theorem 1 below) can actually be obtained in slightly
greater generality with practically mo change in the proof. Specifically,
X need only be Hausdorff rather than metrizable, with arcwise connec-
tivity replaced by the condition that each pair of points lies in some
topological chain ([5]). We shall require metrizability in the converse,
however, and the added gemerality is hardly justified in the present
setiting.

TEEOREM 1. If X is a hereditarily unicoherent, arcwise conmected

compactum, and if f: X —K (X) is upper semi-continuous, then there ewisis
Do € X such that p, e f(p,).

Proof. Fix ¢ ¢ X and give X the partial order of Theorem A with
minimal element e. Let P denote the set of all #¢X with the property
that M(2) A f(2) # 0. Since M (e) = X, it i clear that P is non-empty.
It O is a non-empty chain of P then, by Theorem B, O has a supremum,
%y, and we claim that @, e P. To prove this, note that [e,m,] is an are
and hence there exists a non-decreasing sequence @, in [¢, @] ~ ¢ such
that lim 2 = 2,. We may assume that no @ € f{@n) and hence, by Lomma 2,
f(@4) C M (#4)— 5. In particular, the zero, 2, of f(a) lies in M (%n) — on,
and some limit point 2, of the gequence 2, i§ in the intersection of all
:M (#n). That is to say, each @, Les in the are [, 2] and thus «, € [e, 2],
Le. 2y € M(w,). By upper semi continuity, 2, is also a member of f(@y) s0
that ;€ P.

By Zorn’s lemma, P has a maximal element Po, and we ghall prove
that p, € f(p,). For if not, it follows by Lemma 2 that F(po) C M (po) — po-
Let g, be the zero of f(po); then we may choose a decreasing sequence py
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in [pg, go]— Po such that lim pn = p,. Let V be an open set containing f(p,),
g0 chosen that for some natural number N, V ~ L(ps) = 0 whenever
n > N. By upper semi-continuity it follows that f([p,,ps]) CV for suf-
ficiently large n, and by Lemma 3, f([p,, pn]) has a zero which is necessarily
between p, and g,. Hence, for large #, f(ps) C M (ps), contradicting the
maximality of p, in P. Therefore p, e f(p,).

THEOREM 2. Let X be an arcwise connected compactum. If X is not
hereditarily unicoherent then there ewists an upper semi-continuous mapping
f: XK (X) which s fized point free.

Pioof. If X is not hereditarily unicoherent them X contains sub-
continua 4 and B whose intersection is the union of disjoint closed sets P
and @. If p, e P and ¢, € @ then there is an are A(p,,q,), with p, and ¢,
for endpoints, which cannot be contained in both 4 and B; let us assume
that A(p,, q,) fails to be contained in B. Let p and ¢ be the endpoints
of some component of A(p,, ¢;)—B, let A(p,q) be the arc consisting of
that component and its endpoints, and let B’ be a subcontinuum of B
which is irreducible between p and ¢. For each x ¢ X, we define [2] = #
if # € X—B' and [#] = B’ otherwise. Let [X] be the space of all [#], en-
dowed with the quotient topology, that is, if o: X —[X] is the natural
mapping o(x) = [«], then V is an open subset of [X] if and only if o=%(V)
is open in X. We note that o is continuous and monotone and that
G(A(p, q)) =8 is a simple closed curve. The space [X] satisfies the
hypothesis of Lemma 4 and hence there exists a continuous mapping
r: [X]—=K(S) such that r([#]) =[#] for each [#] e S. Let h: §—8 be
a fixed point free homeomorphism and define f: X —2% by f(#) = o~ hre ().
By Lemma 3, each ro(w) is & continuum and, since % is a homeomorphism,
50 is hro(z). Since ¢ is monotone, each f(») = o~1hro(x) is a continuum,
and therefore f: X —((X). To see that f is upper semi-continuous we
need only show that {#: f(#) ~F 5 0} is closed whenever F is closed.
Since X is compact and ¢ and 7 are continuous, it follows that

77t (F) = {[a]: r([#]) ~ F # 0}

is closed, and hence o 'A™ o (F) = {m: f(#) ~F 0} is closed. Finally,
suppose there exisls » e f(x); then o(x) e hro(#) and, since o(x) ¢ 8, we
have o(®) € ho(x), whereas h was assumed to be fixed point free. Hence f
is without fixed points.

Combining Theorems 1 and 2 we have

CoROLLARY. Let X be an arcwise comnected compactum. A necessary
and sufficient condition that X have the fized point property for the class
of wpper semi-continuous, continuum-valued mappings is that X be heredi-
tarily umicoherent.

Fundamenta Mathematicae, T. L (1961) 12
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4. The special case of dendrites. A dendrite may be defined
a8 a Peano continuum which contains no simple clogsed curve. Ag has
been noted elsewhere, a Peano continuum is arcwise connected and among
the Peano continua the property of being a deundrite is equivalent to
being hereditarily unicoherent. It follows at once from Theorem, 1 that
a dendrite has the fixed point property for upper semi-continuous, con-
tinuum-valued mappings and, as remarked in the introduction, Wallace
has previously obtained this result by other methods. In view of Plun-
ketit’s theorem we may assert the following at omnce.

TuEOREM 3. If X is a Peano continuum then the following statements
are equivalent.

(1) X s a dendrite,

(2) X has the fized point property for the class of upper semi-continwous,
continuum-valued mappings,

(8) X has the fimed point property for the class of continuous, closed
set-valued mappings.
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Axiomatizability of some many valued predicate calculi
by

A. Mostowski (Warszawa)

In a paper published in Volume 45 of the Fundamenta Mathe-
maticae I proposed a generalization of the logical qunatifiers. Another
generalization applicable in the two valued as well ag in the many valued
cases has been proposed and discussed by Rosser and Turquette [7].
According to their conception a quantifier is a function which correlates
a truth value with a non-empty set of truth values (I disregard here
a more general notion considered in [7] in which sets are replaced by
relations). Rosser and Turquette ([7], Chapter V) discussed the problem
of axiomatizability of the functional calculi with arbitrary quantifiers
under the assumption that the set of truth values is finite and Rosser
(in an address read at the 1959 meeting of the Association for Symbolic
Logic and published in [6]) discussed a similar problem under the assump-
tion that this set coincides with the interval [0,1]. In the present paper I
take up the problem of axiomatizability under a more general assumption
that the set of truth values is an ordered set which is bicompaet in its
order topology. The method of proof is illustrated in Section 3 where I
discuss the case of a finite set of truth values and obtain a part of results
of Rosser and Turquette. The chief feature of results set forth in the
present paper is their non-effective character: I prove the existence of
complete sets of axioms and rules of proof for the calculi in gquestion
without exhibiting them explicitly; the existence proofs are based on
Tichonov’s theorem.

1. Syntax. We consider a “language’” 8, whose expressions are
built from the following symbols: @y, @y, ... (individual variables), F, 7, ...
(predicate variables with § arguments, §=0,1,2,..), Fos F1s ) Fa
(propositional connectives), Qy, Ly, ..., Qp (quantifiers). We denote by p,
the number of arguments of &, (s =0, 1, ..., a). Formulas are expressions
which belong to the smallest class K such that: (i) atomic expressions
Flzg, ... @y belong to K (n,§ =0,1,.., 4,=0,1,.. for e=1,2,..,4);
(ii) if 0<s<<a and Py, ..., Py, belong to K, then so does Fub ... Dy;
(ii) if 0 <8< b and & belongs to K, then so does Quu,P, ¢ =0,1,...
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