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Remarks on the homotopic join of maps

by
K. Borsuk (Warszawa)

1. Introduction.. Let ¥YX denote the set of all continuous maps
of a space X into another space ¥. A map f e ¥¥ is said to be a hometopic
join of maps fy, f, e ¥ (see [1] and [2]) provided there exist two disjoint
open subsets @, G, of X, a point ¥, ¢ ¥ and three maps f',fi, fie ¥
homotopic to f, f, f, respectively, such that

(X —@), fo{X—Gy) C (%o) »
Yo for 2eX—-G—G,,

fl@)=1fi@) for weby,
fa(x)y for xe@,.

and

In the case when X is the n-sphere (n > 0), the operation of the
homotopic joining is always performable and it leads (for a fixed point y,)
to the notion of the n-dimensional homotopy group =s(Y) of the space ¥
([6]). In the case when Y is the n-sphere, the operation of the homotopie
join is performable under the hypothesis dim X < 2n. Then the homology
types {f} of maps fe¥YX (i.e. the subsets of ¥* consisting of all maps
homologous one to another) constitute by the operation of the homotopic
join, an abelian group. If ¥ is the m-sphere and dimX < 2n—1 then
the operation of the homotopic join leads to the n-dimensional coho-
motopy group a(X) of the space X (see [1] and [7]). However in the
case of arbitrary spaces X and Y the operation of the homotopic join
is in general not performable (see [3]), and consequently it does not allow
to introduce in ¥* the structure of a group.

In the present note I prove that in the case when X is an n-dimen-

sional (finite) polytope, Y is an ANR-set and % is an integer >g—1,

the operation of the homotopic join is performable in the set ¥*(%/y,)
consisting of all such maps fe YX which are homotopic to a constant
Yo€ ¥ on every, at most k-dimengional, closed subset of X. It follows,
in particular, that in this case the homology types {f} of the maps
f € YX(k/y,) constitute, by the operation of the homotopic join, an abelian
group.
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2. Condensators. A set 4 is said to be a condensator for a map
fe XY= rel. 9, ¢ ¥ provided:

1. A is a closed subset of X,

2. For every neighbourhood U of 4 in X there exists a map fy e ¥¥
homotopic to f and such that fy(w) =y, every for point # e X— TU.

Evidently if 4 is a condensator for fe ¥~ rel. g, « Y, and if B is
a cloged subset of X containing 4, then B is also a condensator for
f rel. #,.

If M is a subset of Y%, that is a class of maps of X into ¥, and if 4
is a condensator rel. ¥, ¢ ¥ for every map f ¢ M, then 4. is said to be a con-
densator xel. y, for the olass M.

Exsmeres. 1. If a map fe XY™ ig homotopie to the constant. y, then
every closed subset of X is a condensator for f rel. g,.

2. If X ig the n-sphere S, and Y is a connected ANR-set then every
closed and not empty subset of X is a condensator for ¥¥ relatively
to every point y, of ¥. '

3. If ¥ is the m-sphere then for every map fe ¥~ and every point
Yoe Y the set f(y,) is a condensator for f rel. y,.

4. If Y is a connected ANR-set, y, a point of Y, and 4 a closed
subset of X such that X — 4 is contractible over X to a point, then A is
a condensator rel. y, for ¥=.

5. Let ’A be a condensator rel. y, for the class ¥* of all continuous
maps (')f X into an ANR-set ¥ and let h be a homeomorphism mapping X
onto itgelf. Then the get 4’ = h(4) is also a condensator rel. y,
for Y%,

In_?rdelj to prove it, consider a neighbourhood V of 4’ in X. Then
U = 17Y(V) is a neighbourhood of 4 in X. Now, if f is an arbitrary map

of X into Y then there exists a map g ¢ TX homotopic to fh and satisfying
the condition

gw)=y, for weX~-U.

It is clear that the map gh™* e ¥ is homotopic to A" =f and we have
IHE=T) = gh™ (X —1(T)) = g(X—T) C (y,) .

Consequently A’ is a condensator for f rel. y,.

fi. Let A be a closed subset of X and B be a subset of X which we
obtain from X — 4 by a continuous deformation over X, Let y, be a point
of an ANR-set Y. If a map f « ¥* is homotopic to g, on B, i.e. the partial

map f/B e ¥® is homotopic to the constant %o, then A ig a condensator
for f rel. y,. ‘
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In order to prove it, let us consider a continuous deformation ¢
of X— A into B over X. Hence ¢(x,t) is defined and continuous for
(w,1) e (X—A)x 0, 1> and

pla,t) e X
lp(m 1 0) =2

for every (w,%) e (X—A4)x<0,1),

¢(®,1)eB veX—A4.

and for every

By our hypothesis, the partial map fg= f/B is homotopic to y,. We
infer (since ¥ is an ANR-get) that there exists a map 7' € Y= homotopic
to f and such that

@) =19 )
Now let us consider an arbitrary open neighbourhood U of 4 in X. The
map f'p, considered only on the closed subset (X — U) x <0, 1> ¢f X x <0, 1),
is a homotopy, joining the partial map f/X— U with the constant v,.
Tt follows that the map 7, hence also the map f, is homotopic in ¥~ to
a map f’ e ¥ satisfying the condition
f'(X—TU)=f(X~-T)CT(y) .

Thus we have shown that A4 is a condensator for f rel. ¥,. .

for every weB. 2

3. Maps homotopic to y, in dimension % A map fe ¥*
is said to be homotopic to y, € ¥ in dimension %, provided for every closed
set X, C X satisfying the condition

dimX, <%k

the partial map f/X, C ¥*° is homotopic to y,. The set of all maps fe ¥~
homotopic to y, in dimension % will be denoted by ¥X(k/y,).

In [4] I have introduced the notion of the homotopic %k-skeleton
of space X, defined as a closed subset 4 of X such that dim4 <% and
that every, at most k-dimensional closed subset X, of X can be trans-
formed into 4 by a continuous deformation over the space X. In particular,
if X is a polytope and T is one of its triangulations, then the union of
all at most k-dimensional simplexes of 7' is a homotopic k-skeleton of X.
Let us prove the following

TaeoREM. If A is a homotopic k-skeleton of space X and y, is a point
of an ANR-set Y then the set Y= (kjy,) coincides with the set Z of all maps
je¥X homotopic to y, on A: =

Proof. Since dim4 <%, we have
YX(kly) C Z .

On the other hand, if B is a subset of X and dimB < %, then there exists
a family of maps {p;} C XZ dependent continuously on the parameter

14¥
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0 <t <1 and joining the inclusion ¢, = ip of B into X with the map ¢
of B into 4.

Now let us consider a map f ¢ Z and let f4 and fz denote the partial
maps f/4 and f/B respectively. Then the maps = fp ¢ ¥ constitute
a family dependent continuously on the parameter 0 <t < 1 and satisfying
the conditions:

Yo="Tpo=1n V1= for=Ffap:.

But f e Z, hence f4 is homotopic in ¥4 to y, and we infer that 1, and
consequently also fz = v, is homotopic in ¥ to %s. Thus we see that
f e YX(k/y,), ie. ZC Y*(kjy,) and the proof is concluded.

4. Homotopic k-coskeletons. A clogsed subset O of space X
will be said to be a homotopic k-coskeleton of X provided:

1. dimC < Max(—1,dimX—%—1),

2. Bvery closed subset of X, disjoint to C, can be transformed
by a continuous deformation over X into a set of dimension < k.

Evidently the condition 2. is a consequence of the following one:

2’. The et X— C ig deformable over itself to a closed subset of X
with dimengion < %.

Manifestly, for % > dim X, the empty subset of X is the unic homo-
topic k-coskeleton of X. For k¥ < dim X, the problem of the existence of
homotopic k-coskeletons remains open, even for ANR-sets satisftying the
condition (4), for which the existence of homotopic k-gkeletons is proved
(see [4]). Only for polytopes we can solve it. This will be done in the next
two Nr's.

Now let us prove the following

TEEOREM. Let X be a space and y, a point of an ANR-set ¥. Then
every homotopic k-coskeleton C of X is a condensator for YX(Ify,) rel. g

Proof. Let U be an open neighbourhood of ¢ in X. Then B = X— U
Is a closed subset of X disjoint to C. Consequently, there exists a family
of maps {p} C X5, dependent continuously on the parameter 0 <t <1
and such that ¢, coincides with the inclusion ip of B into X and that
the dimension of the set D = ¢,(B) is <k,

Consider now a map f ¢ Y*(k/y,) and let f5 and fp denote the partial
_map% f/B and f/D respectively. Then {fe} is a family of maps joining
in ¥* the map fp, = fz with the map fp, = fpp,. But f ¢ ¥¥(k/y,) implies
that fp 18 homotopic in ¥” to y,. Hence fpe;, and consequently also fz,
Is homotopic in ¥* to y,. Regarding that B is a closed subset of X and ¥
Is an ANR-set, we infer that the homotopy of fz to Yo in Y? implies the
homotopy of f in ¥* to a map 7 satisfying the condition f'(B) = f(X — U)
C (%) Thus it is shown that C is a condensator for f, and the proof is
concluded.
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5. Homotopie k-coskeletons for polytopes. The question
of the existence of homotopic %-coskeletons of polytopes is answered by
the following

THEOREM. Let T be a triangulation of a polytope X and k a non-negative
integer. Let X* denote the union of all at most k-dimensional simplewes of T.
Then there emists in X — X* o polytope being a homotopic k-coskeleton of X.
Moreover, if k> 3dim X —1, then for every natural N there emists a system
consisting of N disjoint k-coskeletons of X which are polytopes of dimension
<n—k—1.

First let us reduce the proof of this theorem to the proof of a lemma
with a little more complicated formulation. '

Let T be a triangulation of an n-dimensional polytope X and let

a1, 43, ..., Azj, where §=0,1,..,n,

be all distinet closed j-dimensional simplexes of 7. Let us set

for every m=0,1,..,n.
By a set marking the triangulation 7, we understand a set P consisting
of points pi, where p! is a point chosen arbitrarily in the interior of the
simplex 4}, i =0,1,..,9;3 §=0,1,..,n.
Using these notations, we formulate our lemma as follows:
LeMMA, To every set P marking a triangulation T of an n-dimensional
polytope X corresponds a system of polytopes

QO(P)y Ql(P)’ seey Qn—k—I(P)

satisfying the following conditions:

In. Qum(P) is an m-dimensional subpolytope of the polytope X*T™+1
for every m =0,1,...,n—k—1.

2m. X* is a deformation retract of X*T™' _ Qu(P), for every
m=0,1,..,n—k—1.

3m. If m<k41 and if N is a natural number then there exists a system
of N sets Py, Py, ..., Py marking the triangulation T, such that

Qnl(P,) A Qu(P) =0 for

The proof of this lemma is given in Nr. 6. Here let us observe that
our theorem is included in this lemma. Since for % > n the empty set
is a homotopic k-coskeleton of X, we can restrict ourselves to the case
k < n. Then setting m = n—k—1, we infer by condition 2y, that the set
Xm0 (P) = X — Qu(P) is deformable over itzelf to the k-dimensional
polytope X*. Hence the (n—%—1)-dimensional polytope Qn(P) satisfies

pop =12, N; u#p.
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the condition 2’ of Nr. 4 and consequently it is a homotopic k-coskeleton
of X.

Moreover, if %> {dimX—~1=4n—1 then k+l>n—k—1l=m
and we infer, by condition 3., that for every natural I there exists a system
of sets Py, Py, ..., Py marking the triangulation 7, such that the homo-
topie k-coskeletons @m(P,), where u =1, 2, ..., N, are polytopes disjoint
one to other.

Thus vg«a see that our theorem will be proved while we prove the
lemma. ‘;

6. Proof of the lemma. We define the polytopes Qu(P), @,(P),
iy @n—r-2(P) by the recurrence:

Qu(P) is defined as the set consisting of all points p¥*',..., pkt?,
It is clear that it fulfills the conditions 14-3,. Now let us assume that for
an integer m such that 0 < m < n—%k—1 the polytope Qm(P), satisfying
the conditions 1m-3m, is defined. We define the polytope @u.i(P) as the
ufi?,ﬁ 2of the po_lytope @m(P) and of all segments joining one of the points
- s , where i =1,2, ..., "%4m+2, With a point belonging to the common
part of @u(P) and of the boundary of the simplex A% ™+2

It is clear that the set @u..(P) defined in this way is a polytope of
dimension m+41 included in the set X**™% je, the condition lm4; is
satistied. Moreover we have

Qmir(P) A X = Q(P) .

In order to show that the condition 2., holds, let us denote by (),
ffg every point @ e 45— (pFT™+%) the projection of @ from the centre
b onto the boundary of the simplex 4¥*™*% Let r(,t) denote, for
every 0 <t <1, the point dividing the segment #7(#) at the ratio #:1—t.
If we set '

r(@,t) =a for every weX*™_Q,(P) and 0<t<1,.
then we get a retraction by deformation of the set X*™™2_Q, . .(P) to
the &St X*™_0,(P). But, by the hypothesis of the recu:?re;lc(e, )1;he
set X" is a deformation retract of the set X*+™*1_q,.(P) and consequently
the set X* is also a deformation retract of the set XFtmtt_ g w(P). Thus
the condition 2,., is satistied.

Now let us pass to the condition 3m+1. Let m+1< k-1, Then
m< k and we infer, by the hypothesis of recurrence, that for the triangu-
lation 1; there exists a system of N marking gets Py, Py, ..., Py, where
P, = {p},} with p,f,, belonging to the interior of Af, such that

Qu(Py) N Qu(Py) =0 for usu .
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*

Now let us replace the sets Py, Py, ..., PN by some other sets f’l,.l"z, vy Py

where P, = {p}} with pJ, belonging to the interior of 4.
Let us show that, setting

5o g .
Py =70y for jFk+m+2,

we can choose the points pki™*? so that

. *
Quni1(Py) A Qmia(Py) =0  for

Consider a simplex 4 = A¥t™+

p=1,2,.., N let us set

pFE Y
of the triangulation T. For every

A, =Qu(P)n d,
and let B, denote the union of all segments joining the point p, = pLrm
with all points of the polytope 4,. Recalling the construction of the
et Qm.1(P), one sees at once that the condition 3,4, Will be proved, while
we shall prove that

(1) points py, Pa, ..., Px can be chosen so thai the sets By, B, ..., By are
disjoint.

As point p, we take an arbitrary point in the interior of 4. Let us assume

that, for an index I < N, the points py, P, ..., p1 are already chosen so

that

B,~ABy,=0 for pu,u<lhpu#y.

Now let us obgerve that
dimB, = dim4,+1<m+1<k+1.

It follows that the dimension of the set O, consisting of all points of 4
colinear with a point # e A4y, and a point y e B, is <2m+2. Since
k-+1>m+1, the dimension of the simplex 4, equal to k-+m-2, is
> 2m -+ 2. We infer that there exists in the interior of 4 a point pi4, which
does not belong to any of the sets O, Cy, ..., C;. It follows that

By~ By=0 for o ST+H1; p#u,

and we infer that (1) holds. But this concludes the proof of the condi-
tion 3,41, and also the proof of the lemma.

every

7. Some algebraic notions. Let Z be'an abstract set and J
an operation asgigning to each ordered pair @, y of elements of Z, a subset
J(z,y) of Z. If A and B are two subsets of Z then we set

J4,B)=U UJ@9).

wed yveB
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The operation J is said to be performable in Z if J(z, y) # 0 for every
2,y €Z. It is said to be associative, provided

JWJ(@,9),2) nd (0, T (y,2) %0 for every w@,yeZ.
It is said to be commutative, provided
J(@,y) nd(y,2) 0 for every wx,yeZ.

Tt is said to be wnivalent provided, for every w,y e Z, the set J(a, 4)
containg only one element 2z of Z. In this case we write simply

J(@,y)=2.
An element z, of Z is said to be meuiral (for the operation J) if
ved(w,2)nJ(2,x) for every weZ.

An element # of Z is said to be a megative of an element y of Z,
provided each of the sets J(», y) and J (y, #) contains at least one neutral
element. Let us observe that if y is a negative of # then » is a negative
of y.

It is clear that if the operation J is performable, associative, commu-
tative and univalent, and if there exists for J a neutral element and algo
a negative of every « then the set Z with the operation J is an abelian
group.

8. Operations of the join in Y*[k/y,] and in ¥¥ {k/yo}.
Gonsider now a polytope X, an ANR-set ¥, an integer % > 0 and a point
%< Y. Evidently the set ¥*(k/y,) of all maps belonging to ¥* and homo-
topic to the constant ¥, on every at most %-dimensional closed subset
of X is the union of some components of Y. The set of all these com-
ponents will be denoted by ¥*[k/y,]. Hence ¥*[k/y,] is a subset of the
set [T*] of all components of ¥,

. For every map f e Y= let us denote by [f] the component of ¥* con-
taining f and by {f} the class of all maps f' € ¥* which are homologous
to f, ie. which satisfy the condition

F(7)~f(y) in ¥ for every true cycle y lying in X .

Mam‘fest}y {f} is the union of some components of Y%, in particular [f]
is a mg)set of {f}. The set of all classes {f} with f € ¥* will be denoted
by {J; }, and the set of all classes {f} with f € Y¥(k/y,) will be denoted
by ¥*{k/y}. Hence Y¥{klyo} is a subset of {¥X).

' .Oonslder nOW two maps fy, f, € ¥X(k/y,). Manifestly the set @ con-
sisting of all maps f ¢ Yx(k/fy,,) being the joins of f, and f, depends only
on the classes [f,] and [f,]. Moreover, if f & then [f1C ®. Hence @ is the
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union of some classes belonging to Yx[k/yo]. Let us denote the set con-
sisting of these classes by J([f,],[fz]). Thus we get an operation J called
the operation of the homotopic join, assigning to every ordered pair of
elements [f,], [f.] € YX[k/y,] a subset of YX[k/,].

Similarly, if we denote by J({f,}, {f,}) the subset of Y*{k/y,} con-
sisting of all classes {f} ¢ ¥*{k/y,} where 7 is a join of 7, and f,, then we
get an operation J, called the operation of the homological join, assigning
to every ordered pair of elements {f,}, {f,} € Y= {k/yo} a subset of ¥={k/y,}.

Using these notations, we can formulate the following

TuportM. Let X be an m-dimensional polytope, y, be a point of an
ANR-set X and k be an integer > jn—1. Then the operation J of the homo-
topic join is performable, associative and commutative in YE(k/y,]. Moreover,
there exists for J a neutral element and also a negative of every element of
Y Thfy. 5

The operation J of the homological join is performable, associative,
commutative and univalent in ¥ {kfy.}. Moreover, there ewists for J a neutral
element and also a negative of every element of Yx{k/yo}. Consequently the
set YX{kfy,) with the operation of the homological join is an abelian group.

9. Proof of the theorem. Let 7 be a triangulation of X and
let X* denote the union of all at most k-dimensional simplexes of T.
By theorem of Nr. 5, there exigt in X— X* two disjoint k-coskeletons Oy
and C, of X. Consider two disjoint open neighbourhoods @, and @, of C,
and €, regpectively. By theorem of Nr. 4, for every two maps f1,fz € YE(k/y,)
there exist two maps fi, fz € Y* homotopic to f, and f, respectively and
such that

flX—G) C(Wo);  foX—G) C (%) -
It follows that setting

Yo for every 2eX—Gi—@Gy,
fl@) =1 filw) for every weG,
fo(w) for every w@eG,,

we get a join f of f, and f,. Moreover, X*C X—¢,— G, and consequently
F(X*) C (y,). But X* is a homotopic k-skeleton of X (see [4], p. 611, (10))
and we infer, by theorem of Nr. 3, that fe Yx(k/yo).\ Thus we have shown
that the homotopy class [f] of the join f of two maps f, and f,‘belongs
to ¥YZ[k/y,] and consequently the operation of the homotopic join J is
performable in Yx[k/y,,]. The commutativity of J is evident, because [f]
belongs to both sets J([f,], [fz]) and J([fa], [a])- ‘

In order to show that the operation J is associative, consider three
maps fi, fa, fs € YX(k/y,). By theorem of Nr. D5, there exist in X--xF
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three disjoint homotopic %-coskeletons O), 0, and €, of X. Consider three
disjoint open neighbourhoods &, @, and G of C, C, and ¢, respectively,
By theorem of Nr. 4, there exist three maps fi, /s, fi ¢ ¥ homotopic
to fi, fa, fs respectively and such that

ﬂ(x"'GN)C(yo) for 'l'==1,2,3.
Setting
Y% for 2¢X-6,-@,,
f@)={file) for we@,
ff®) for we@y,
‘ Y% for 2eX-—@G,—G,
g(®) = filw) for we@,,
fs@) for weGy,
and
Yo for 2eX—G1—G,—G,,
ha) = hiw) for we@,,
flm)  for we@y,
fo®) for wmeGy,

we see at once that ;f.is & homotopic join of 7, and 2y 9 18 a homotopic
izm .of fz and f;, z,tnd b i8 both: the join of f and fs and of f, and g. Moreover
eG:’a 1m:1ges of X* by each of maps ;.9 and % are contained in (%,). Con-
3 (31(18‘]1] SE]‘ g‘, [g} ]and }L belongs to I’X(k/yo) and [h] belongs to the set
7 ass(,) c,iat; V,e' 3) ~I(Th], I ([fa], [/:))) and we infer that the operation J

Now let us observe that the homotd
) opy. clags of tl
18 a neutral element for the operation J .y 16 conant map Yo

In order to prove the existence of a megativ o y
us congi@e_r two _disjoint homotopic k-coskelgeton: gor sfrfl]deg [:1/1?{;]"03\?:
op;n disjoint neighbourhoods G, and G, of them. Wts can a.;sume that
421(1 &t—tl(:“;)C(Z?).l Now let ug Pbserve that X—@,CX—0,. It follows
e II;ZT ia, nllra;g) flX—@a, is homotopic to y, and congequently there
e, D ge homotopic to y, which coincides on X— @, with f.

ve@,,

h($) ={ g(m) for
2eX—@,,

%  for

;;(])liin Ov;ef gaetdahm%p he _I’X(Zc/yo) anfl We 8ee at once that g is a homotopic
for the ;a,ti(;n ;tlggu 1;) llllé)mosgp;c ;&éjo,[ hence [¢] is a neutral element
for C J. w8 tha » [91) containg a neutral element
Le. [R] is a negatlye for [f]. Thus the firgt part of theorem ig proved.,
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In order to prove the second part, let us recall that if fe ¥¥ is a homo-
topic. join of two maps f,, f, € ¥~, then for every true cycle y lying in X

we have
' fN~hy)+fly) In T,

It follows that the homology type {f} of f is uniquely determined by the
homology types {f;} and {f,} of f, and f,. If we recall that the operation
of the homotopic join is in our case performable, we infer that the oper-
ation of the homological join J i performable and univalent in YE{Tefyo}.
Moreover it is clear that {y,} is the neutral element for J and if [A] is
a negative of an element [f] by the operation J, then {A} is the negative
of the element {f} by the operation J. Consequently the existence of
negatives by operation J implies the existence of negatives by operation J.
Thus the proof of theorem is concluded.

10. Final remarks. If Y is the n-sphere S, and X is a polytepe
of dimension < 2n—1 then the operation of the homotopic join J is
univalent ([3] and [7]) and consequently the set SZ[%/y,] with the opera-
tion J is an abelian group. Evidently, for k < n the get Sx[k/y,] coincides
with 8%, and our group coincides with the n-th cohomotopy group *(X)
of X.

The same proposition holds for % = n, if we agsume that X is acyclie
in the dimension n. It holds also for k> n, if we assume that X is aspheric
in all dimensions I < k, i.e. if every continuous map of an I-dimensional
gphere into X is homotopic to a constant for every I <k In fact, then
every at most k-dimensional closed subset of X is contractible in X to
a point and consequently Sx[%/y,] = Sx. But without these additional
hypotheses the relation between the group 8%[k/y,] and the cohomotopy
groups of X remains obscure.

Let us observe that in the case of an arbitrary connected ANR-set ¥
the hypothesis of the asphericity of the polytope X in all dimensions
1 < k implies that

Y¥(kfyo) = T* .

Now if we assume that & > n/2—1, then we conclude that the opera-
tion of the homotopic join J is performable, associative and commutative
in the whole set [ ¥*]. Algo the existence of neutral and of negative ele-
ments is assured. But the question under what hypothesis the operation
of the homotopic join is univalent remains open.

Tt follows by theorem of Nr. 8, that for ¥ > $dim X —1 the collection
Yx{k/yo} of all homology types {f} of maps f belonging to YX(kfy,) with
the operation J of the homological join, is an abelian group. In particular,
if Y is the n-th sphere 8, and the dimension of X is <n and k= n—1,
then the set Y= (k/y,) coincides with ¥*, and the group ¥*{k/y,} coincides
with the Hopf group of X in the sense of Freudenthal [5].
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Structure maps in group theory
by
B. Eckmann (Zirich) and P. J. Hilton (Birmingham)

Introduction and notation. In [3] the authors elaborate a theory
of structure maps in general categories. If the category C admits direct
products the notion of group structure (*) and the group axioms may
be formulated entirely in terms of the maps of the category; and
this enables us to carry over to categories other than categories of sets
and element-maps certain classical notions of group theory. Moreover
the definitions and results may be dualized and applied to categories
admitting free produets. We also discuss in [3] various generalizations
of the classical notions of group theory, for example, the notions of unions
and intersections of subgroups.

Among the concrete categories to which the notions of [3] may be
applied is the category & of groups and homomorphisms; indeed the
notions and terminology of [3] were in part inspired by the category &.
The present paper consists of a fairly detailed discussion of the application
of the notions of [3] to the category @. In the course of this discussion
we naturally find ourselves introducing ideas and adopting arguments
peculiar to the category of groups. Thus, unlike [3], we claim here no
generality for our results which are all group-theoretic, and the present
paper is intended to be, more or less, readable independently of [3], owing
to [8] merely its motivation.

If @ is a category of the type considered in [3] and if Xy, ..., Xa
are n objects of @ then there is a natural (zelf-dual) map

w X% %X XX XXy

in @ from the free product of X, ..., Xs to the direct product. An im-
portant general construction described in [3] consists of the two (dual)
factorizations of the map x, namely, ‘

M1 - P ®
N Cul D AT (e e

(F) X%.%$X=X"—>
=X1X...X-X1l7

(" X% . % Xp= 1.X2; ...—>RX£‘)G+1X—') ...—)n—IX':l;nX .
) =X]X...XXn,

(1) And, of course, semigroup structure.
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