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Convolution of functions of several variables

by

J. MIKUSINSKI (Warszawa)

Introduction. In this paper we give & new proof of a theorem on
convolution which is an extension to several variables of the well known
Titchmarsh theorem [5]. The first proof, due to Lions [1], has been based
on the Fourier Transform. Another proof, due to Mikusitiski and Ryl-
Nardzewski [4], has been based upon a geometrical method. The proof
of this paper is based on the concept of Banach algebra.

‘We give several equivalent formulations of the theorem (Theorems
VIII-VIII d).

1. Let # be a commutative Banach algebra over the field of complex
numbers, and let of; be its least extension with unity.

Let E(f) (t > 0) be an exponential operator, i.e. an operator such
that B(t)wesl for med, x # 0, and moreover

10 B(0) = 1;

20 B(t)(wy) = (B@)a)y;

30 For every wed, the function H(t)x is eontinuous;

4° There exists an element lesf,, non divisor of zero, such that

d
ZEOL=E@) ).

Letting ¥ = 0 in 2° we obtain
BE(#)0 =0.
It is also easy to verify that, by 29,
E(t)e - E(t)y = B(t)y-Et)e = E(t,) B (t,)zy.
‘We shall prove that
1) B(t,)E(t) = B(t,+1,).

(*) This means that C%E’(t)lw = E(t)x for every wed.
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Tn fact, for an arbitrarily fixed positive number u, put

F() = B@)2-Bu—1)~
Then
—%F(t) =BWN)-Blu—)—B@)E - Bu—1)1 = 0.
Thus F(f) does not depend on ¢ and we have F(t) = F(0), i.e.
EME(u—1t) = Bu),

sinee 1 is not a divisor of zero. If #,,?, >0, we can substitute ¢ =1¢,,
% = t,+1,, which reduces the last equality to (1).

We can also congider exponential operators, defined for all real ¢
or for all complex ¢. Then equality (1) holds for all real or complex t,, ?,.

2. Let f(i), g(t), ... denote {-valued functions, integrable in [0, T'];
equalities between these functions will mean equalities almost every-

where.
Write generally

11
fyxg(t) = [ft—7)g(x)dr,
0

K .
f= [ B@i@ad.
TeeoreEM I. If

h(t) = J@)*g(®),

fi = i+ B(T)k.

B(T—1) = f(T—1)*g(T—1),
then

Proof. We have
i = [[ Blutv)f(w)g(v)dudp,
[m]

where the domain of integration is the square
O=0<u<T, 0<v<T).
That square can be decomposed into two triangles
A=(0<u, 0<0, utov<T),
V=(T<utv, ul, v<1T).

[=J7+4

On substituting in the first integral on the right side u+-v =1, v =7,
we obtain

Thus

T t

ff = [ Bwa [fi—v)g(x)dv = k.
A 0 0
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Similarly, on substituting in the second integral on the right side
u+v =T+t v =T—1, we obtain

T r—t
ff =E(T)f E(t)dtf fe+7)g(T—1)dr = B(D)E.
A 0 [

This proves Theorem I.
In this Section we needed very few properties of Banach spaces;

we need only some properties of integrals. Therefore the result holds in
any space where those properties hold.

3. In this Section we admit the following hypothesis on the norm |
of zedl:

(2) laf* = Ja7)
for every zeo.
Using that hypothesis we shall prove

TumoreM IL. If f(£)*f(t) =0 in [0, T, then f(t) =0 in [0, $T'].
Proof. Let h(t) = f(t)*f(t). Then by Theorem I

where
E(T—t) = fIT—t)=f(T—1).

Put in particular E(2) = ¢~ (s any fixed complex number). Then

T
(8) k] < f k@)|dt =M (Res>0)
and ’
(4) oBe 8T/ m < l/ﬁ
Hence
T2 . T o T
gRe sT/zU“ e_“f(t)dt\ <V + fe——Res(t—T/ﬂ o< = I/M—{— f If(8)] .
0 2 T2

Replacing ¢ by 37—+, we obtain

|F(s)] <L for Res=0,
where F(s) is an of-valued entire function, defined by the integral
T2 :
(3) F(s)= [ (3T —t)at.

0
We proved that F(s) is bounded for Res > 0. Evidently it is also

bounded for Res < 0. Thus it is bounded in the whole complex plane
and, consequently, it is a constant function. But, F(s) tends to 0, as
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§ — —oo, which is easily seen from (5). Thus F(s) = 0 identically. Hence
F(3T—1) =0 and f(¢) =0 in [0, 37

The only step, where we needed the hypothesis (2), was in the inclu-
sion from (3) to (4).

4. In this section we do not need hypothesis (2). Let

-
fs) = [ Bstfat,
0

where F(f) denotes an arbitrary exponential operator, defined for
positive 2.
TraroreM IIL. If F(s) =0 in an interoal 0 < 8; < s <8y, then
(6)
for 0 <t <T, 85 €8 < 8o
Proof. Since

B(st)f(t) =0

r

1f(s) = [E(syif(h)dt = 0,

we find, on differentiating in s,

7
[ B (s)f(t)dt = 0.
0

After n similar steps

ks

[ eBst)ftydt =0

0

n=1,2,..).

This implies (6), by the moment theorem.

Suppose, now, that the exponential operator satisties the following
conditions:

50 B(T) =0,

60 22 = 0 (vesf) implies E(f) ¢ = 0.

TugoreM IV. If B@)(f(t) xf () = 0 in [0, T], then B(Lh+1)f(t) =0
in [0, T].

Proof. From the hypothesis it follows that H(st)(f(t)*f(t) =0
in [0,T], as s > 1. Thus h(s) = 0 and by Theorem I we find

F(8)2=0+0=0
This implies B(t)f(s) = 0, i. e.

(s =1).

T
[ B(st) Bt)fw)dat = 0

icm
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and, by theorem 11T, E(st)E(t,)f(t) =0 in [0,T]. For s =1, the last
equality is equivalent to the assertion.

5. Let O3 be the space of all ¢{-valued functions, integrable in [0, T'].
We consider 93 2s an algebra with ordinary addition and with convolu-
tion as multiplication. We shall denote, in this section, the convolution
of two functions f and g from 93 by fg, as an ordinary produet. Taking

T

(") Ifl = [ Iflat

0
as norm of f we make 9 a Banach algebra. We define E(u) as the trans-
lation operator

T %
flt——u for —=—,
E(u)f = U Tr— U
0 elsewhere,

U being a given positive number. It is easy to verify that this operator
is in 99 an exponentizl operator defined for u >0 such that I is the
function assuming everywhere the value 1. Moreover, Z(U) = 0. If
we suppose that condition (2) is satisfied in «f, then Theorem IT can
be written in the form

2 =0 (xeB) implies B(4U)z = 0.

We can therefore apply Theorem IV to -valued functions p(u),
integrable in the interval [0, U]. In this way wWe obtain

TrmorEM IV'. If H(u)(p(uw)*p(w) =0 in [0, U], then B(3U+u)
=0 in [0, UL

1t instead of (7) we take the norm
T
|fl = max [f f(t)dtl,
o<<EiST

then the space %3 is not complete. On completing it in the usual way we obtain a space
of distributions (measures). In that case the translation E(u) is simply the Dirac
distribution 6 (t—u). This interpretation can also be used to obtain all the results
presented below, even in a slightly stronger form. An advantage of this interpreta-
tion is that one does not need to introduce at the beginning (Section 1) special expo-
nential operators, but it suffices to restrict considerations to #{-valued functions. On
the other hand, the theory of distributions seems to be a tool which is to strong. In .
fact, it introduces, besides the translation operator, many elements which are not
concerned with our purposes. Moreover, in the theory of distributions would re-
quire some supplements because of the exceptional role of end points of the interval
[0, T].

B-valued functions p(u) of one variable w can also be interpreted
a8 of-valued functions

pt, %)

Studia Mathematica XX 2
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of two arguments ¢ and u. Then the convolution p(u)%g(u) is the convo-

Tution
t o

plt,upg(t,w) = [ [ pli—7,u—0)q(r, 0)drdo,
0 0
and the equality B(u)p(u) = 0 in [0,U] means that

plt,u) =0
in the triangle

4 u
Ad): 0<<t, uw<0, ?+7<1;

more generally, the equality E(u,+u)p(u) = 0 in [0, U], where 0 < u,
< U, means that p(¢, ) = 0 in the triangle .

Uy

Ug [ U
Al——): 0<t,0<1¢,—T—+7<1—7.

U
Thus Theorem IV’ can be written in the fofm of
THEOREM IV”. If p(t,u)*p(t,u) =0 in A1), then p@E,u) =0
tn A(3).

6. The last result can be generalised to an arbitrary number of
variables. Let F(i,...,1%,), G(t,...,1,),... denote s{-valued functions
defined in' the simplex
) tﬂ/

4
) T_11+---+—j;7: <1.

Denote more generally by S(8) (0 <6 <1) the simplex

S(1): 0<t,...,0<¢

13 2
80): 0<ty,...,0<1,, -5: +...+T'; < 6.
We suppose further on that the Banach algebra <f satisfies the condi-
tvionv(2). By a convolution we understand
‘ ! b

., . 2
@) " P = [ ... [ Flti—71,., ti— 1) G (11, ooey 7)1y 0y
R

TeEoREM V. If F*+F =0 in S(1), then F =0 in S(}).

In the case n =1 Theorem V is reduced to Theorem II. In case
n =2 Theorem V is reduced to Theorem IV''. Generally, we can prove
Theorem . V- by induction.

Proof. We suppose that Theorem V is true for some number n—1
=21 of variables. Then we conclude that it is also true for n variables.
The argument is the same as in the foregoing section.
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Let 93,_; be the space of all of-valned functions of n—1 variables

44 ..y ty_1, integrable in the simplex

1 t
11 0Kty 0oy 0 <K tyyy — vk —— < 1.
Tl Tn-l

The convolution of two functions F,_;, G,_; from 93, ; will be
denoted by F,_,G,_;. The space 93,_; is an algebra with ordinary
addition and with convolution as multiplication. As norm in 93,_; we
take

[Fus] = fu-f ’Fn—l(tla "-’tn—l)‘dtl-“dtn—l-

Sp_y

With this norm 93,_, is a Banach algebra. We define E(7,) as the trans-
lation operator

ho
T, T

T T, t
F(t — ey o — =2 zn) for — +...+
E(tn)Fn,vl = ' Tn ’ ' ! Tﬂv Tl

0 elsewhere.

Then E(T,) = 0. By induction hypothesis the following implication
holds:

X =0 (XeW,_,) implies B(3T,)X = 0.

Thus we can apply Theorem IV to 93,_,-valued functions F,(t,), integrable
in [0,T,]. So we obtain the implication:

If B(t)(Full)sFa(ty)) =0 dn [0,T,], then B(3Tn-+t)F(t,) =0
m [0,T,].

The 9B,_;,-valued functions F,(f,) of one variable can be interpreted
as of-valued functions F(iy,...,%,) of n arguments ¢,,...,%,. Then the
convolution F,(t,)* G,(4,) is the convolution (8) and the equality -
B(ug+1,)Fo(ty) =0 in [0,T,] (0 <u,<T,) means that F(t,...,%,) =0
in the simplex

Uq
T n

2 % U,
): 0<ty, .., 0 < 1y, Tﬁ1+...+TL <1—E9.
1 n

o

This proves that the last implication is equivalent to Theorem V.

7. Let <f be a Banach algebra satistying condition (2) and let <3,
be the set of all «/-valued functions F(¢), t = (;,...,1,), defined in the
whole n-dimensions]l Euclidean space R™, locally integrable in it, and
vanishing outside the region 0 <<ty,..., 0 < %,. Let 93 be the set of all
functions F(t) = G(t—u), where ueR" and G(t)D,.
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It is easy to show that if F () and G(t) belong to 93, then their con-
volution )
F)*GQ(t) = f...fF(tl—rl, vy b )Gy, o, 7)) Ay d,
RYL
exists and belongs also to ). In particular, it F (1) and @ (2) belong to DBos
then also F(¢)*@(f) belongs to 93,.

The convolution has the following properties:

10 F(t)*G (1) = F(t—u)* G (14 u) for every ueR";

20 If H(t) = F(t)*G(t), then H(at) = o"F(at)* G(at) for every
positive number a.

Let ¢ be a fixed vector in which all the coordinates ¢, ... ) G BTE
positive. We shall denote by C; the set of all functions ¥ <93 which vanish
in the half-space :

t 1,
(9) Ll 2 LB
01 cn

It F(t)eCp G(1)eC,, then F({)xG(1)eCy,. If F()cC,, then
F(ija)eC,p for every positive a. If F(t)cC, and G (1) eCy, then uF ()4
+4G(t)eCp, u and v being arbitrary complex numbers.

TrrorEM VI. If Fe and FxFeCy, then FeC,.

Proof. Let y > —f be a number such that ¥ (t— ye)c9,. Then we
have

(10) F{t—ye)x F(t—yc) = 0
for
1y by
(11) E+--.+E<l (T; = 2(B+v)e).

. Of course, equality (10) holds also in simplex S(1) defined by (11)
an

(12) 0<t, ...
By Theorem V we have

(13) F(t—ye) =0

in simplex §(}) defined by (12) and by

, 0<t,.

ty <
_ T, ~2°

S-ince F(t—yc)eB,, equality (13) holds also outside the region (12),
thus it holds in the whole half-space (14), i.e. in

¢
14 i
(14) 7Tt

S NBRE Y
5 T o < fB+y.

icm®
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Consequently F(t) = 0 in (9), and this means that FeCg.

8. All functions F(t), G(f), ... in this section are supposed to belong
to 93.

THEOREM VIL. If FxGeCy, then F#1,GeCy (1 =1,...,70).

Let f be a number such that F(f) = F(t—3pc)eC, and G(t) =
= G(t—3Pc) Cy. Then the supposition Fx@G ¢, is equivalent to FxGeCp.
It is also easy to verify that if FxGeC,, then the assertions Fx#t;GeC,
and F*ti@eeﬁ are equivalent. Thus Theorem VII can be stated in the
following equivalent form:

THEOREM VII'. If FeCy, GGy, F5G eCy, then Fxt;GeCy (i =1, ..., n).

Proof. We shall prove the theorem in the form VII’. The index 4
will be arbitrarily fixed through out the proof. Let a(g) (§ > 0) be the
greatest number such that, for every pair of functions F, G satisfying

FeC,, GeCy, FxGecCy,

we have
Fxt;Ge ea(ﬂ) .

Of course #;GeC, and consequently F#i;(feC). This implies that
0 < a(f). On the other hand, if F and G are positive in the region %f
< tyy-..5 38 <1, and vanish outside it, then the convolution Fx@G is
positive in the region f<t,...,f8 <t,. This implies that a(f) < §.
Thus 0 < a(f) < 8-

Let ¢ be a positive number and let F, (1) = F(t/z), G(t) = G(i/z).
Then F,eC,, GreCq and Fo* G, eCr. Thus Fo*1,G,eCupp. Hence we
obtain F#t;G eC, gz From the definition of «(f) it follows that

= a(op) < a(p).

1 .
Letting f = 1 we obtain —:Ea(m) < a(1), and replacing & by B

a(f) < Ba(1).
On the other hand, letting » = 1/8 we obtain

fa(l) < a(B).
Both inequalities imply
a(p) = py,
where y = a(1), 0 <y <1.
In the remaining part of the proof, it will be convenient to denote
the convolution of F and G by FG@ and the product #F by F’. Then
(FG) = FG+FG'.
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Suppose that F' and ¢ are given and that

FeCy, GeCy, FGeCy.

Then
(15) FG' Cy,.

Since @' ¢Cy, we have similarly
(16) F'GeC,pn,
for .the convolution is commutative. On the other hand, the relation
(17) PG <Cy
implies
(18) F'Q-+FG eCy.

From (15) and (18) we get
PG-F'G + (PG ec/ﬂ«m:'
Since y% < y, we have a fortiori
PG TG + (FG) C
From (16) and (17) we get

G- ra’ e(_f/

3oyt

-yt

From the last two relations we obtain

1 2
(FGY€Cy e

and by Theorem VI
FG' Cy1i,

But y is the largest number such that FGeC, implies FG' «Cy,. Thus

14yt
— Y.
2 )

The only value of y satistying thiy inequality is 1. Thus PG'<C, and
Theorem VII' ag well ag Theorem VII iy proved.

9. We assume, further on, that F,,... are ol-valued functions
from 93 and, moreover, that « has no divisors of zero and satisfies(2),

TuworEM VIIL. If FxGcCy, then there eaists a roal number w such
that FeC_,, and GeC,. :

Proof. By Theorem VII it follows from Fx(/ () that

f---frip(tl"*fu s b= T) G (T, oy ) Ay ATy e Oy,
R®

icm
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which means that the integral vanishes for ¢,#,+...4¢,2, < 0. Since i
is arbitrary, we obtain by induction

[oref Plras ooy ) Flli=0y oy =) G (1, ooy 2 A7y iy = 0
R

for ¢yty4...+ 0ty < 0, where P(7y,...,1,) is an arbitrary polynomial.
Since F B and G <3, the integral is, as a matter of fact, an integral on
a bounded part of R™. Thus, by the moment Theorem,

(19) F(ty—7yy ooy by—T0) G (T, ...

for ¢t -F...+ ¢ty < 0. Let u be the greatest number such that GeC,,
i. e. such that

)y Ta) =0

G=0 for cft...F+el, <nu.

Then there is, for every positive number ¢, a point 7y, ..., 7, ¢;7+...
- eyTy < MU+¢, at which @ is essentially different from 0. Since o has
no divisors of zero, we obtain from (19)

F(ty—Tyy eviyty—7Ta) =0
in the region oyt ...ty < 0. Letting v, = t;—7;, we have
Fgy ) =0 in 6o+ 400 < —0T1—. . —CaTny
and all the more
F(vyy ..

Since ¢ is ‘arbitrary, Theorem VIII follows.
Theorem VIIT can also be stated in the following form:

TyeorEM VIIIa. If

L) =0 i e 0h.. o < —nU—e.

(20) fI!’(tl-—-rl, ey o= T) G Ty ey T ATyl = 0

R"
i eyty .. eyt <0 (¢ > 0), then there exists a real number u such that
F =0 in eiygt...+cut, < —u and G =0 in Cytyte e Oty S U

By a simple change of variables we obtain a more general form Qf
the theorem:

TaroreM VIITb. If (20) holds in Colie ety LT (6> 0, T real),
then there exists @ real number w such that I = 0 in Gty Ol S T—w
and eyty.o .~ opt, < T,

10. We are going to give another form to Theorem VIIT.

Tunowem VIIIe. If

f’IL

2
f]...f.lf“(tl——rl,...,tn—
0

0

(21) 7,) G (71, veey Ta)dTen AT, =0
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2

in the simples 0 <¥y, ..., 0 <ty Olit. el < T (>0, T> 0),
then there exist positive numbers 0’ and 0" such that 0'+0" =21 and F = 0
0Kty ey 0 Ky Gl T 00 < Tyand G =0in0<1t,...,0<¢
ety oty < 07T

We can suppose that F =0 and G = 0 outside the region of integra-
tion and take then (20) instead of (21). By Theorem VIIIb there exists
o real number % such that F =0 in ¢, fy+...+¢ b, <T—u =0 and
@ =0 et;+...+et, <THu=0"T. Bvidently 00" = 1. If one of
numbers ' or 0’ is > 1, we can replace the second one by 0. Otherwise
both numbers 6 and 6'' are non-negative.

As a particular case of Theorem VIIIc we obtain the well known
Titchmarsh theorem on convolution [h], on admitting that F and @
are complex valued functions and that n = 1.

ny

11. Denote generally by Cp the smallest convex set outside of
which F vanishes, and such that (%, ..., 1,)eCp implies (uy, ..., u,)eCp
as u; =1 Thus, if + i3 a real number sufficiently large, Cp contains the
Tegion t1 =1, ..., 0 =t I FeB, then Oy is also contained in such a region
with properly chosen f.

The set Cp can be equivalently defined as follows. Let Hf, where
¢ = (6,...,06,) (¢; > 0), denote the greatest half-space in which F = 0.
Then Oy is the complement of (JH%.

¢

By vector sum Cp-Cq of two sets Cp and €y we understand the
set of points (uy-+vy, ..., u,~-0,) such that the points (u,,...,u,) and
(©1y ..y v,) belong to Cp and Cy respectively.

THEEOREM VIIId. Cpq = Cp-+Og.

In fact, Hpwg = Hy+HE (vector sum), by Theorem VIITb. This
implies UH g = UH Pt UHa, and on taking corresponding comple-

ments CF*G = Op+ C'G
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i.,Tbor Niveaulinien iuétperiodischer Funktionen

von

5. HARTMAN (Wroctaw)

1. Die hier vorkommenden Begriffe und Hauptsitze aus der Theorie
der fastperiodischen (fp.) Funktionen konnen z. B. in [1] gefunden werden.

Es sei f(¢) eine reelle B-fp. Funktion, d.h. eine fp. Funktion im
Sinne von. Besicoviteh. Wird ¢,(y) = 1 oder 0 gesetzt, je nachdem y<a
oder y = a ist, so ist bekanntlich [7] die (monotone) Funktion

T

1 g
Py =1im——j (F(0) dt
o) =i 5 [ culfo)

fiir jedes reelle a mit Ausnahme einer hochstens abzihlbaren Menge A
wohlbestimmt und stetig. Der Integrand ¢, (f(#)) fiir a¢4 heiBe a-Niveau-
linte von f. Man weif, da@ die Niveaulinien der B-fp. Funktionen wieder
B-fp. Funktionen sind ([7], 8.399). Setzt man iiber f mehr voraus, so
kann man auch iiber ¢, mehr behaupten; ist z. B. f ein trigonometrisches
Polynom, so ist ¢, eine S-fp. Funktion (d.h. fastperiodisch im Sinne
von Stepanoff), und zwar fir jedes a ([6], S. 210-211). Will man systema-
tisch untersuchen, wie die Eigenschaften von f diejenigen von ¢, beein-
flussen, so fithre man zweckmifig den folgenden, von C. Ryll-Nardzew-
ki stammenden Begriff ein:

Definition. Bine fir alle ¢ erklirte nach Lebesgue meBbare Funk-
tion f(f) heildt R-fastperiodisch wenn es fiir jedes ¢ > 0 zwei Bohrsche
fp. Funktionen ¢ und y gibt, so daB

(1) p(t) < (1) < p() iiberall,
"

’] n
lim j [p(t)—p()]dt < e.

o

2. Bevor wir das Problem der Niveaulinien wieder aufnahmén,
wollen wir die Bigenschaften der R-fp. Funktionen niher betrachten.
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