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are continuous funetions, we have, according to (15), the following equa-
lities
n
Zf,.’l"’sgf =0 (s=1,2,...,m).

F=1

In other words the function
n
p(@,9) = D@5
j=1

is extinguished by the set M. Since not all function fy, fa, ..., f, vanish
and gy, gz -++y §n ave linearly independent, (®,y) is not identically
equal to 0 in the first quadrant. Thus H¢€, and, consequently, P, > n.
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A proof of Schwartz’s theorem on kernels

by

W. BOGDANOWICZ (Warszawa)

L. Schwartz has shown that every bilinear continuous functional
B(p,, ¢;) on the space D(2,)xD(2,) (see the definition below) may be
represented by & linear continuous functional 7' on the space .D(£2;X£2,),
i.e.

(1) B(py, @) = T(p1xgy) for geD(y), ¢+=1,2,

where (¢, X @e) (B, Bs) = @1(01) @2(@s) fOT 682y @ =1, 2.
Since every such functional corresponds to a linear continuous map I
of D(2,) into D'(2,) defined by

(Lp1) (2) = Blo1s 9a),
equality (1) may be written symbolically in the form
(2) L(gpy)(@e) = fT(wn o)y (1) dw,  for any @ e D(2y)

and therefore Schwartz’s theorem may be interpreted as a theorem
concerning representation of linear continuous™ operations by kernels.
The theorem. is a special case of a general theorem of A. Grothendieck on
topological tensor products.

The purpose of thig paper is to give a simple proof of Grothendieck’s
theorem for & special case which often oecurs in applications. The proof
is based only on elementary properties of (F')-spaces ((B,)-spaces in the
Polish terminology) and (LF)-spaces.

For the convenience of the reader we ghall make a short review of
the properties to be used in the paper.

1. Let X be a linear space over.the complex field. Given a family
of seminorms ||, (ae4) on X, we can define a topology on X taking the
family of sets {z: |o—a,lly, < ¢, ¢ =1,2,..., 7} as a fundamental system
of neighbourhoods of the point x,.

This topology is a Hausdorff topology if and only if the family of
semi-norms is separating, i. e. if, for every w 5= 0, there is an ae.d guch
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that fjzfl, 5 0. The space X with such a Hausdortf topology will be called
& locally convex space. It is metrizable if and only if there exists a denu-
merable family of semi-norms |fwfl; (8<B) equivalent to the family [z,
(aed) (i. e. such that the topology corresponding to it is identical with
the topology corresponding to the family |z, (aed)).

The locally convex space X is said to be semi-complete if every
Cauchy sequence is convergent, i. . if for every sequence (@,) satistying
the condition Hm ||z, —,,)l, = 0 for all ced there exists an element Vye X

n,m
such that lim|m, — 2|, = 0 for all aecd.
£

For functions defined on a Jordan measurable set £ and with values
i a locally convex space we may define in the musual way a Riemann
integral over the set Q.

If the space X is semi-complete and 7T'(x) is a continuous lLinear func-
tional on it, and if a funetion #(¢) is continuous on the closure of the set
£, then the integraly given below exist in Riemann’s sense and we have
the following relation between them:

| [@@a
Q2

< " 4 ed , "m gt = T ) 1t).
; h{uw(t)u b (aed),  [T(o@)a =1 [wo@a)

Q2 2

The family |l (acd) of semi-norms is a bage if the sebs
{#: lo—@ll. < ¢} form a fundamental system of neighbourhoods of the
point #,. If we suppose the family |of, (zed) to be a base, then a linear
functional T'(2) is eontinuous on X if and only if, for an aed and for
3 number M, the condition

[T(@)| < M ]l
iy satisfied on X.

Now let X and ¥ be (F)-spaces, i. e. locally convex, metrizable, semi-
complete spaces, and let |z], (aed), llells (BeB) be their denumerable
bases of semi-norms. These spaces have the following properties to be
used in the paper. If (7)) is a sequence of continuous linear functionals
on X guch that 7', (%) tends to a limit 7 (@) for every zeX, then T (v) is
a continuous linear functional on X. If T'(x,y) is a bilinear funetional
on the product space X X Y and if it is continuouns with regpect to each
v.ariable separately, then it is continuous with respect to both variables
simultanuously. The funetional T(», y) is continuous on X x Y if and only if

1T (@, )| < MLyl

for all #2¢X, ye¥,

and for a number M, an aed, and a feB.

Definition 1. Let Q be a compact set in the Buclilean space Hy
and let D(2) denote the set of all complex valued functions such that

icm®
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they possess continuous derivatives of all orders on the space Hy and
their supports are contained in the set 2. Let us put

lplls = sup{|D°p(2)]: w2},
., ay) I8 @& multi-index and
gl

= a3 an !
Oxt... 0z}

where a = (a4, ..

a

la] = ayF+as+...4+ay.

It is easy to verify that the set D(R) with the family (|lpll,) of semi-
norms is an (F)-space and the family (|jg|l,) is a base.
For the sake of convenience we shall use the following symbols:

a a a.
)= ), 2t ol e,
v) vy N N

By % we shall denote the multi-index (1,1,...,1). We shall write
v<eif <o for ¢ =1,2,...,N. We assume the following rules:

al = ol . an!,

a+v = (a;+ vy ...y ay+ry)  and

a—v = (0= 1, ..., Ay —9x)
if v <a.
A set Z contained in a locally convex space X is said to be bounded
if all semi-norms defining the topology in the space X are bounded on
the set Z. Bach compact set is bounded.

Now suppose we are given a sequence {X,,} of (¥)-spaces such that
Xy, is contained and closed in the space X,,;;. In the space X = | J X,,
m

we may introduce a locally convex topology which is the finest of all
locally convex topologies on X such that all identical mappings X, into
X are continuous. Such spaces are called (LF)-spaces.

Bach (LF)-space is semi-complete. The space X, is closed in the
space X for every m = 1,2,3,... A set Z contained in X is bounded if
and only if it is contained in a space X, and is bounded there.

A linear functional T'(x) is continuous on. the space X if and only if
its restriction to each space X,, is continuous on X,,.

Definition 2. Let 2 be an open set in the Euclidean space Ey and
let D(£2) be the set of all complex-valued functions such that they possess
continuous derivatives of all orders on the space Iy and their supports
are compact and are contained in the set 2. Let (£2,,) be a sequence of
closed Jordan measurable sets such that ()2, = 2 and £, Cint2,,,,

m

for m =1,2,... Then it is easily seen that D(Q) = UD(Qn). D(Ly)

(m=1,2,...) are (F)-spaces and .D(2,) is closed in the space D{(n ).
Therefore D(R) is an (LF)-space.
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2. Let Y be an (LF)-space defined by a sequence {¥,,} of (F)-spaces
and let |y|; (BeBa) be a denumerable base of se?m.i-.norms defining the
topology in the space ¥,. Let 2, ), be as in definition 2. Let H denote
the set of all funections such that they are defined on the set 2 and have
their values in the space Y, they possess continuous derivatives of all
orders, and their supports are compact and are contained in the set Q.
Let us denote by H,, the set of all functions » belonging to H such that
h(Q2)C Y,, and the support of h is contained in @2,.

Let us take any function heH. Sinee ity support is contained in
a set O, and since its set of values h(R) = h( !.?ml) a8 o continuous image
of a compact set is compact, the set A(£2) is bounded in ¥. Therefore
h(Q) is thoroughly contained in a space Y,. Pub m = max(m,, m,).
We see that heH, and hence H = ) H,,. :

m
Now consider the space H,,. It follows from the closedness of Y,,
in the space Y that all functions D*h(w), for heH,, as mappings of Q
into Y,, are continuous. Therefore the semi-norms

4y = sup{|D°h(a)lp: 2L}, ¥ = (a,B), BeBm,

are well-defined on the space H, . Denote by I, the sot of all suck indices y.
The family |[]l, (yel},) of seminorms is & base and the space I, is an
(F)-space. We see that H,, is closed in the space H,,,. Therefore one
can congider the space H as an (LF)-space.

We shall prove the following

THEOREM. For every bilinear functional B (@, y) on the space D(2)x ¥
which is continuous with respect to each variable separately there ewvists one
and only one linear continuous functional T on the space H such that

(A) B(p,y) =T(p-y) for all ¢eD(RQ) and ye¥.

Proof. Let us take any non-negative function () possessing con-
tinuous derivatives of all orders on the space Hy and satistying the con-
ditions

[n@)de =1, n(») =0 when |o| >1.
Ex

Let & be any number less than the distance between the sets
By\Qpiy and 2, Tt may be supposed that the sequence (s,) is decre-
asing and ténds to zero. S

Put

om(@) = —Sgn (i)

Em
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Then the functions (g*¢)(x) = [ oxlz—y)p(v)dy belong to D(24,.,)
E

N
for all peD(2,,) and k >m. It is evident that the sequence g*@ con-
verges t0 ¢ in the space D(R2,,,).

It follows from the definition of the topology in the spaces D(£2)
and Y that B(p, y) is bilinear and continuous with respect to both
variables simultanuously on the product space D(82,,1)X Xy, for every k
and m. Hence there exist some M y ay and feB such that

1Ble, )l < Mliglalyls  for @eD(2mis), ye e
Define an abstract function fm(£) by the formula

fm(f) = om(-—§) for Eely,.

Its values lie in the space D(£n1) and it represents a continuous
mapping of the set 2,, into the space D(2,,,). Let us take any heH.
It belongs to a H; and represents a continuous mapping (&) of the set 2
into Y. Therefore the function B (om(-—8), h{£)) is continuous on the

set £,. Since the set £, has been supposed to be Jordan measurable,
the integral

Tm(h) = [ Blow(-—¢), h(£))d&
2,

exists in Riema.nn’s sense. Moreover, the following inequality holds:
[T (R)] <MI“QMLSI})I)Hem('—'f)”a“h”:' for all  heH, (y = (0,5)).
€m

Hence the functionals 7,, are linear and continuous on the space H.

Let us take any function h(&) = ®(£)'y, where peD(Q,,), ye¥,,.
It is then evident that

Tuwy) = [ Blon(—&), p(&)y)at = B( [ ol —&)p(&)dt, 9)
2

Eyx
= B(owxg,y) for &k =m.

Since g*p converges to ¢ in the space D(2y.,) and since B(p, y)
is continuous with respect to peD(Q,,,),

1?mwm=3mw.

ﬁl‘herefore Ti(p-y) tends to B(p, y) for all peD(Q) and ye¥.

LEMMA 1. For every heH, i, yely,, and 5 >0 there exists an element
hoeHy, such that [h—hfl, < 5, hy = P Y1+ @Yot @p YL, where
(]JiSD(.Qm) and ?/iEYm.

Studia Mathematica XX
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LEMMA 2. The functionals (Ty) are equicontinuous on every space H,,
that is for each m there ewists @ yely, and an M such that

(B < M, for all ey and b= 1,2, ...

TLet us take any heH. We shall prove that the soquence (Ty(R)} is
convergent. Take any & > 0. The element heH,, , for an m. Let M, y be
as in Lemma 2 and f, be the element from Lemmsa 1 corresponding to
n = /3] (it may be gupposed that M > 0). Since the sequence (T,,(ho))
is convergent, there exists an %, guch that

T (h)— TR << |Toe(h— ho)l -+ 1 Lx(Tro) = L'a (ho) | 1- |L'g (B h)|
< g + »% 4 ;, =& for Ik,833n.

Therefore the functionals T; are convergent to a functional 7' on
the whole space H. The functional 7' is lineax and continuous on each space
H,,, hence it is linear and continuous on H. It is evident that this fune-
tional satisties the condition. (A). To prove the uniqueness of the functional
it suffices to show that every linear continuous functional vanishing on
the functions of the form -y vanishes on the whole space H. Let us take
any such functional U and any hell. Lot heH,. , and lot hy, n be as
in Lemma 1. Then [T (k)| < |U(h—h)| < My for any n > 0 and there-
fore U(R) = 0.

Now we proceed to prove the lemmas.

Proof of Lemma 1. Let us take any y = (a, f) and » funetion
peD(2,) such that p(w) =1 on Q. Pub g(@) = D p () and

Qa,1) = 2 (a) (o=t

U y!
=rga

Dyp(@), 0= sup{|Q(@,t)]:weln, tcln}.

Suppose we are given any & > 0. Since the function g is uniformuly
continnous on the space Hy, there exists a ¢ >0 such that

B0 =9 Ny < g B el <.

Let us take any open covering (K, ..., K,) of the seb Qu, satis-
fying the conditions: Ky C Qn, the dismeters of all sets K, are less than 4.
Let (@1, ..., pa) e a partition of unity corregponding to the covering,
i.e. leb the functions have continuous derivatives of all oxders, and let
the support of the function g; be contained in Ky, ¢;(w) = 0 on By, and

Z gi(@) =1 for welyn ;.
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Choose @;¢K; (i =1, ..., N). Put

€n
(@) = > gs() g ().
i=1
It is evident that

B)  l9@)—go(@ls =| 3 wula)(g(@)—go(2)], < Y 9:(0) lg(@)— go (@)l
1=1 =1

<—2 4
< Ol or every weHy.

Let us put

hio) = v@ o) = v [ g,
Ez) *

where B(w) = {t:4; <w; for i =1,2,..., N}. It is easy to verify that
D7 (b (@) — ho(@)) = D[ (@) (I***(9— g0)) ()] = | @@, 0gt)—go(t))at,
(@)
where Q,(x) = E(x) ~ Q. Hence we get
&

lh—hylly < |2m]C- =
ol < 12016 15"

€.

To prove Lemma 2 we shall need
LevvmaA 3. Let R, = I°t iy ;
or ond let; v be a funeti
peD(Qnys) and p(@) =1 on Q. fL"hemH ' d on sk fhat
(0) Tw(h) =D} B(p()Bi(-—&), D**1(£) A& for oll heH,,_, and k> m.
m—1

Proof. It is evident that
(ekwxw):Ef o (@—E)p(§) df = (@) [ Bufo— &) D o(f)as
N By

for peD(2,) and % >m. The abstract function
F(&) = p() B — ) D g(&)

ha.vmg its Varhles in the space DL, is continuous on hhe et £, .
( 1n+2) 8 m4-2

Tulp-y) = Blowrg, 9) = B( [ »()Bul—8) D""g(8)at, )
Omt2

= fB(qp(-)Rk(-——é),D”“cp(E)y)df for all  @eD(Q,), ye¥,k >m.

Q+2
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Congider the functionals

O T = [ Bp()Ri(—8), D*T'h(&))as  for
Omt2

They are linear and continuous on the space H,, and T (h) = Ty(h)
for functions of the form h = @y yi--...~ @k ¥k. Honce, by Lemma 1,
they are identical on the space Hy .y

Tt i seen that the set 2, in the integral (D) may be replaced by
Oy for heHy . .

Now we can prove Lemma 2. The bilinear functional B(p,y), being
geparately continuous on the space D (£2..1) X Y1, i8 continuous with
respect to both variables simultanecously. Hence

|Bl@, y)| < Mlpllalyly for
Therefore

[T (R éME sup () Be(-—E)lla| ml [Rll,  for

€Omety

where ¥ = (a--1, f). On the other hand,
D(p@)Rilo— &) = [ Qlo, & D) eV,
U(@-8)

@~

heHy, & =>m.

@eD(Rn1)y Ve Xy, and an M,

heHy., and & >m,

where

o 0= 3 (1= vt
Igraga
and U(w) = {teB(w): [t| < 1}. Since

sup [ly(*) Bi(-— &) < S“P{Q(wv Ey ) : welmpry ey, B == 1} < o0,

«Qmt
the functionals 7 for k& >m are equicontinuous on the space Hp_i;
therefore the functionals 7T, for s =1, 2,3, ... are equicontinuous on
the space H,,_,. Since m is arbitrary, Lemma 2 is proved.

Remark. If we put @ = 2,, ¥ = D(Q,), we got H == D(QxX2y),
because it follows from the definition of the topology on H that it is
identical with the topology in the space D{(R2, X Q2,).

The author is indepted to Dr. 8. Fojasiewicz, who was Jind to show
him an unpublished proof of Sehwartz’s theorem. The proof gave the
anthor the main conception of the proof presented here. he author
wishes to thank Dr K. Maurin who made him be interested in the
problem.
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