

Literaturnachweis

- S. Łojasiewicz, Sur la fixation des variables dans une distribution, Studia Mathematica 17 (1958), S. 1-64.
- [2] J. Mikusiński, Irregular operations on distributions, Studia Mathematica 20 (1961), S. 163-169.
- [3] J. Mikusiński and R. Sikorski, The elementary theory of distributions (I), Rozprawy Matematyczne 12 (1957).
 - [4] L. Schwartz, Théorie des distributions II, Paris 1951.
- [5] R. Sikorski, Integrals of distributions, Studia Mathematica 20 (1960), S. 119-139.

Reçu par la Rédaction le 6. 2. 1961

Fourier analysis in Marcinkiewicz spaces

K. URBANIK (Wrocław)

The Marcinkiewicz space \mathcal{M}^p $(p\geqslant 1)$ consists of all complex-valued Lebesgue measurable and locally integrable functions f on the real line such that

$$\|f\|_p = \overline{\lim}_{T o \infty} \left(rac{1}{2T} \int_{-T}^T |f(t)|^p dt
ight)^{1/p} < \infty.$$

J. Marcinkiewicz [10] proved that the quotient space \mathcal{M}^p/Q^p , where Q^p denotes the set of all elements f belonging to \mathcal{M}^p , with $||f||_p = 0$, is a Banach space having $||\cdot|_p$ as its norm. It is easy to verify that for any $p \ge 1$ the inclusion $\mathcal{M}^p \subset \mathcal{M}^1$ holds. The closure in the norm $||\cdot|_p$ of the set of all trigonometric polynomials $\sum_{k=1}^n a_k e^{i k_k t}$ with arbitrary real exponents $\lambda_1, \lambda_2, \ldots, \lambda_n$ and complex coefficients a_1, a_2, \ldots, a_n is the well known Besicovitch space \mathcal{B}^p , whose elements are so-called \mathcal{B}^p -almost periodic functions ([4], Chapter II, § 7).

Every Besicovitch almost periodic function g has the mean value m(g), which is defined by the limit

$$m(g) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} g(t) dt.$$

The Fourier coefficients $\{a_g(\lambda)\}$ are defined by the formula

$$a_g(\lambda) = m(ge^{-i\lambda t}) \quad (-\infty < \lambda < \infty).$$

The Fundamental Uniqueness Theorem says that two almost periodic functions from \mathscr{B}^p having the same Fourier coefficients are identical in the sense of the norm $\| \ \|_p$. Moreover, there exists at most an enumerably infinite set of values λ for which $a_g(\lambda)$ differs from nought.

The mean value m on \mathscr{B}^1 is a continuous linear functional and $|m(g)| \leq ||g||_1$ for $g \in \mathscr{B}^1$. Every extension m of the functional m from \mathscr{B}^1 to \mathscr{M}^1 satisfying the inequality $|m(f)| < ||f||_1$ $(f \in \mathscr{M}^1)$ will be called a generalized mean value on \mathscr{M}^1 . The well-known Hahn-Banach extension

theorem (for complex spaces proved in [6] and [13]) implies the existence of many generalized mean values on \mathcal{M}^1 .

Now let f be a function from the Marcinkiewicz space \mathcal{M}^1 . For any real λ the product $f(t)e^{-i\lambda t}$ also belongs to \mathcal{M}^1 . We introduce the notation $a_f^{\mathrm{m}}(\lambda) = \mathfrak{m}(fe^{-i\lambda t})$. The family $\{a_f^{\mathrm{m}}(\lambda)\}$ can be regarded as a family of generalized Fourier coefficients with respect to the generalized mean value \mathfrak{m} . The \mathfrak{m} -spectrum of a function f from \mathcal{M}^1 consists of all exponents λ for which $a_f^{\mathrm{m}}(\lambda) \neq 0$. The aim of this paper is to study some properties of generalized Fourier coefficients.

In the sequel we shall use the well-known method of the Bohr compact. Let us consider the Cartesian product $\mathscr{P}I_{\lambda}$ ($-\infty < \lambda < \infty$) with Tychonoff topology, where I_{λ} denotes the multiplicative group of complex numbers z, with |z|=1. Let R_0 be the closure of the subset $\{\langle e^{i\lambda u}\rangle : -\infty < u < \infty\}$ of $\mathscr{P}I_{\lambda}$. Of course, R_0 is a compact subgroup of $\mathscr{P}I_{\lambda}$. The theory of Besicovitch almost periodic functions from \mathscr{P} and the theory of L^p -spaces over the Bohr compact R_0 with respect to the Haar measure on R_0 are equivalent. The natural mapping of the function $g_0(t)=e^{i\lambda_0 t}$ onto the coordinate $\hat{g}_0(x)=x_{\lambda_0}$ ($x=\langle x_{\lambda}\rangle$) can be extended to an isomorphism of the whole space \mathscr{P} onto the L^p -space over R_0 . Moreover, this mapping can be extended to an isomorphism between the space of all uniformly almost periodic functions (cf. [4], Chapter I) and the space $C(R_0)$ of all continuous functions on R_0 .

THEOREM 1. There exists a generalized mean value \mathfrak{m}_1 such that every function from \mathcal{M}^1 has at most denumerable \mathfrak{m}_1 -spectrum. Moreover, for any $f \in \mathcal{M}^1$, $\{a_i^{\mathfrak{m}_1}(\lambda)\}$ is the set of Fourier coefficients of a Besicovitch almost periodic function from \mathscr{B}^1 .

Proof. Let $\mathfrak m$ be an arbitrary generalized mean value on $\mathscr M^1$ and let f be a function from $\mathscr M^1$. Putting $l(\hat g)=\mathfrak m(fg)$ for any uniformly almost periodic function g, we define the linear functional l on $C(R_0)$. From the inequality

$$|l(\hat{g})| \le ||fg||_1 \le \sup_{-\infty < t < \infty} |g(t)| \, ||f||_1 = ||f||_1 \max_{x \in R_0} |\hat{g}(x)|$$

it follows that l is a continuous functional on $C(R_0)$. Consequently, there exists a finite complex measure μ_I on R_0 such that

$$l(\hat{g}) = \int_{R_0} \hat{g}(x) \, \mu_f(dx).$$

The correspondence between f and μ_I is linear, the absolute variation of μ_I is not greater than $||f||_1$; and for any uniformly almost periodic function g_0 , and for any Borel subset E of R_0 ,

$$\mu_{fg_{0}}(E) = \int_{E} \hat{g}_{0}(x) \, \mu_{f}(dx)$$
.

Let \tilde{h}_f denote the density function with respect to the Haar measure on R_0 of the absolutely continuous component of the measure μ_f . Since \tilde{h}_f is integrable with respect to the Haar measure on R_0 , there exists a Besicovitch almost periodic function $h_f \in \mathbb{R}^1$ such that $\tilde{h}_f = \tilde{h}_f$. We define the generalized mean value \mathfrak{m}_1 by the formula $\mathfrak{m}_1(f) = m(h_f)$ $(f \in \mathbb{R}^1)$. Since $m(h_{fg}) = m(h_fg)$ for every uniformly almost periodic function g, we have the equality

$$a_f^{\mathfrak{m}_1}(\lambda) = \mathfrak{m}_1(fe^{-i\lambda t}) = m(h_f e^{-i\lambda t}) = a_{h_f}(\lambda) \quad (f \in \mathcal{M}^1).$$

Thus $\{a_f^{\mathfrak{m}_1}(\lambda)\}$ is the set of Fourier coefficients of the Besicovitch almost periodic function h_f . The first assertion of our Theorem is a direct consequence of the second one.

THEOREM 2. There exists a generalized mean value \mathfrak{m}_2 on \mathscr{M}^1 such that the \mathfrak{m}_2 -spectrum of a function belonging to \mathscr{M}^1 is non-denumerable.

Proof. For any function f belonging to \mathcal{M}^1 the sequence of complex numbers

$$\left\{\frac{1}{2n!}\int_{-n!}^{n!}f(t)\,dt\right\}$$

is bounded. Moreover, we have the inequality

$$\overline{\lim}_{n\to\infty}\frac{1}{2n!}\int_{n!}^{n!}|f(t)|\,dt\leqslant \|f\|_1.$$

We define the generalized mean value m2 by the formula

$$\mathfrak{m}_2(f) = \lim_{n \to \infty} \frac{1}{2n!} \int_{-n!}^{n!} f(t) dt \quad (f \in \mathcal{M}^1),$$

where $\lim_{n\to\infty} z_n$ denotes the generalized Banach-Mazur limit of bounded sequences of complex numbers ([3], p. 34; [11]). We may assume that the generalized limit $\lim_{n\to\infty} z_n$ is equal to the usual limit of a subsequence

of the sequence $\{z_n\}$. Of course, \mathfrak{m}_2 is an extension of the mean value m. We define the function f_0 by assuming $f_0(t)=2n!(n-1)!(n-1)$ if $n!-(n!)^{-1}\leqslant t\leqslant n!$ $(n=2,3,\ldots)$ and $f_0(t)=0$ in other cases. We

$$||f_0||_1 = \lim_{n \to \infty} \frac{1}{2n!} \int_{-n!}^{n!} f_0(t) dt = \lim_{n \to \infty} \frac{1}{n!} \sum_{k=2}^{n} (k-1)! (k-1) = 1.$$

Thus $f_0 \in \mathcal{M}^1$. Further, for any real number λ we have the equality

(1)
$$\frac{1}{2n!} \int_{-\pi/2}^{\pi/2} f_0(t) e^{-i\lambda t} dt = \frac{1}{n!} \sum_{k=2}^{\infty} (k-1)! (k-1) e^{-ik!\lambda} + o(1).$$

Fourier analysis

Let Λ be the set of all numbers λ of the form

$$\lambda = 2\pi \sum_{r=0}^{\infty} \frac{a_r}{r!},$$

where $a_r = 0$ or 1 (r = 0, 1, ...). Obviously, the set Λ is non-denumerable. For any positive integer k, $k! \sum_{r=0}^{k} a_r/r!$ is also an integer and

$$0 \leqslant k! \sum_{r=k+1}^{\infty} \frac{a_r}{r!} \leqslant k! \sum_{r=k+1}^{\infty} \frac{1}{r!} \leqslant \frac{e}{k+1}.$$

Consequently, for any $\lambda \in \Lambda$ we have the inequality

$$|e^{-ik!\lambda}-1| \leqslant \frac{c}{k+1}$$
 $(k=1,2,...),$

where c is a constant. We conclude further, on account of (1), that

$$\frac{1}{2n!}\int_{-n!}^{n!}f_0(t)\cdot e^{-i\lambda t}dt=1+o(1) \quad (\lambda \in A).$$

Thus $a_{I_0}^{m_2}(\lambda) = 1$ for every $\lambda \in \Lambda$, which completes the proof.

A real function Φ is said to be an N-function if it is of the form

$$\Phi(u) = \int_{0}^{|u|} \varphi(t) dt,$$

where $\varphi(0)=0, \ \varphi(t)>0$ for $t>0, \ \varphi(t)$ is non-decreasing, right continuous and $\lim_{t\to\infty}\varphi(t)=\infty$. Setting $\psi(t)=\sup_{\varphi(u)\leqslant t}u$, we define

$$\Psi(u) = \int_{t}^{|u|} \psi(t) dt.$$

Then Ψ is also an N-function and Φ , Ψ are called complementary functions ([5]). They satisfy Young's inequality

$$uv \leqslant \Phi(u) + \Psi(v)$$

for arbitrary u and v. We say that the function Φ satisfies the Δ_{2} -condition if

$$\lim_{u\to\infty}\frac{\varPhi(2u)}{\varPhi(u)}<\infty.$$

Putting $\Phi(u) = |u|^p/p$, $\Psi(u) = |u|^q/q$, where p > 1, q > 1 and 1/p + 1/q = 1, we obtain an important example of complementary N-functions satisfying the Δ_0 -condition.

We assume that (X, μ) is a measure space and $\mu(X) = 1$. If Φ is an X-function and f is an arbitrary complex-valued μ -measurable function on X, the number $\varrho_{\Phi}(f)$ is now defined by

$$\varrho_{\Phi}(f) = \int\limits_{X} \Phi(|f(x)|) \mu(dx).$$

By $L_{\sigma}(X, \mu)$ we shall denote the class of all functions f for which $\varrho_{\sigma}(f)$ is finite. The class $L_{\sigma}(X, \mu)$ is called the *Orlicz class*. The Orlicz class is a convex set, but not in general a linear set. A necessary and sufficient condition for the Orlicz class to be linear is that the function Φ fulfills the Δ_2 -condition. Furthermore, if Φ and Ψ are complementary functions, then, by Young's inequality,

(2)
$$\int\limits_{X} |f(x)g(x)| \, \mu(dx) \leqslant \varrho_{\Phi}(f) + \varrho_{\Psi}(g)$$

for every pair $f \in L_{\Phi}(X, \mu)$ and $g \in L_{\Psi}(X, \mu)$. Now we denote by $L_{\Phi}^{*}(X, \mu)$ the class of all μ -measurable functions f satisfying the condition

$$\int\limits_X |f(x)g(x)|\,\mu(dx)<\infty \quad ext{ for every } \quad g\,\epsilon L_{\varPsi}(X,\,\mu).$$

In the class $L_{\varphi}^*(X,\,\mu)$ we define the norm $\|\ \|_{\varphi}$ by the formula

(3)
$$||f||_{\sigma} = \sup_{x} \int_{x} |f(x)g(x)| \mu(dx),$$

where the supremum is taken for all $g \in L_{\Psi}(X, \mu)$ satisfying the inequality $\varrho_{\Psi}(g) \leqslant 1$. The class $L_{\sigma}^*(X, \mu)$ under the norm $\| \ \|_{\sigma}$ is a Banach space [12] and will be called the *Orlicz space*. The inclusion $L_{\sigma}(X, \mu) \subset L_{\sigma}^*(X, \mu)$ si evident and the equality $L_{\sigma}(X, \mu) = L_{\sigma}^*(X, \mu)$ is equivalent to the Δ_2 -condition. It is still possible to define in the Orlicz space $L_{\sigma}^*(X, \mu)$ a second norm $\| \ \|_{(\sigma)}$. We define it by the formula

$$||f||_{(\phi)} = \inf \left\{ \alpha \colon \varrho_{\phi} \left(\frac{f}{a} \right) \leqslant 1, \ \alpha > 0 \right\}.$$

The norms $\| \|_{\sigma}$ and $\| \|_{(\sigma)}$ are equivalent: $\| \|_{(\sigma)} \leq \| \|_{\sigma} \leq 2 \| \|_{(\sigma)}$ (see [9], p. 97). It may be proved ([9], p. 98) that for any pair $f \in L_{\sigma}^*(X, \mu)$ and $g \in L_{\sigma}^*(X, \mu)$, where Φ and Ψ are complementary functions, the generalized Hölder inequality holds

(5)
$$\int_{X} |f(x)g(x)| \mu(dx) \leq ||f||_{\sigma} ||g||_{(\Psi)}.$$

By \mathcal{M}_{Φ} we shall denote the *Marcinkiewicz-Orlicz class* induced by the *N*-function Φ , i. e. the class of all functions f from \mathcal{M}^1 for which $\|\Phi(|f|)\|_1 < \infty$. This class was introduced by J. Albrycht [1]. Further, Studia Mathematica XXI

the class \mathscr{B}_{φ} is defined to be the closure in \mathscr{M}_{φ} of the set of all trigonometric polynomials (see [2]). Its elements are called \mathscr{B}_{φ} -almost periodic functions.

THEOREM 3. Let Φ be an N-function satisfying the Δ_2 -condition and let \mathfrak{m} be a generalized mean value on \mathscr{M}^1 . Then the \mathfrak{m} -spectrum of every function from the Marcinkiewicz-Orlicz class \mathscr{M}_{Φ} is at most denumerable. Moreover, $\{a_f^{\mathfrak{m}}(\lambda)\}$ $(f \in \mathscr{M}_{\Phi})$ is the set of Fourier coefficients of a Besicovitch almost periodic function belonging to \mathscr{B}_{Φ} .

Proof. Let us consider the Orlicz class $L_{\mathscr{V}}(R_0, \mu_0)$, where μ_0 is the Haar measure on the Bohr compact R_0 normalized by assuming $\mu_0(R_0)=1$ and \mathscr{V} is the complementary function of \mathscr{D} . It may be proved that the natural mapping $g \to \hat{g}$ transforms $\mathscr{B}_{\mathscr{V}}$ onto $L_{\mathscr{V}}(R_0, \mu_0)$. Furthermore, for any positive α we have the equality

$$migg(\psiigg(rac{|g|}{lpha}igg)igg)=\int\limits_{\mathcal{R}_0} \psiigg(rac{|\hat{g}\left(x
ight)|}{lpha}igg)\,\mu_0(dx) \qquad (g\,\epsilon\mathscr{B}_{\Psi})\,.$$

Denoting by $\| \ \|_{({\mathcal V})}$ the norm on $L_{\mathcal V}(R_0,\,\mu_0)$ defined by formula (4), we get the inequality

$$m\left(\mathcal{V}\left(\frac{|g|}{\|\hat{g}\|_{(\mathcal{V})}} \right) \right) \leqslant 1 \quad (0 \neq g \, \epsilon \mathscr{B}_{\mathcal{V}}).$$

Consequently, for any $g \in \mathcal{B}_{\Psi}$, $g \neq 0$, and every number ε satisfying the inequality $0 < \varepsilon \leqslant 1$ there exists a number T_0 such that for $T \geqslant T_0$ the inequality

(6)
$$\frac{1}{2T} \int_{T}^{T} \Psi\left(\frac{|g(t)|}{\|\hat{g}\|_{(\Psi)}}\right) dt \leqslant 1 + \varepsilon$$

holds. Let

$$\Psi_{\varepsilon}(u) = \frac{1}{1+\varepsilon} \Psi(u).$$

Then the complementary function Φ_s of Ψ_s is given by the formula

$$\Phi_{\varepsilon}(u) = \frac{1}{1+\varepsilon} \Phi((1+\varepsilon)u).$$

Consider the Orlicz classes $L_{\sigma_e}(I_T, \mu_T)$, $L_{\Psi_e}(I_T, \mu_T)$, where I_T is the interval $-T \leqslant t \leqslant T$ and μ_T is Lebesgue measure on I_T , with $\mu_T(I_T) = 1$. We denote by $\| \ \|_{\sigma_e}^T$ and $\| \ \|_{(\sigma_e)}^T$ the norms on $L_{\sigma_e}(I_T, \mu_T)$ and $L_{\Psi_e}(I_T, \mu_T)$ defined by (3) and (4) respectively. Let $g \in \mathscr{B}_{\Psi}$ and $f \in \mathscr{M}_{\sigma}$. Then the restrictions g_T and f_T of g and f to I_T belong to $L_{\Psi_e}(I_T, \mu_T)$

and $L_{\varphi_g}(I_T, \mu_T)$ respectively. In fact, the first relation is evident and the second one follows from the Δ_z -condition

$$\int\limits_{T_T} \varPhi_{\varepsilon}\big(|f_T(t)|\big) \, \mu_T(dt) \, \leqslant \frac{1}{2T} \int\limits_{-T}^T \varPhi\big((1+\varepsilon) \, |f(t)|\big) \, dt \, \leqslant \frac{1}{2T} \int\limits_{-T}^T \varPhi\big(2|f(t)|\big) \, dt < \infty \, .$$

Furthermore, inequality (6) implies the following one:

(7)
$$||g_T||_{(\Psi_{\hat{e}})}^T \leqslant ||\hat{g}||_{(\Psi)}.$$

Taking into account Young's inequality and definition (3) we have

$$\|f_T\|_{m{\sigma}_{m{\epsilon}}}^T\leqslant 1+\int\limits_{I_T}m{arPhi}_{m{\epsilon}}ig(|f_T(t)|ig)\mu_T(dt)\leqslant 1+rac{1}{2T}\int\limits_{-T}^Tm{arPhi}ig(2\,|f(t)|ig)dt.$$

Hence and from (7), using the generalized Hölder inequality (5), we get the inequality

$$\frac{1}{2T}\int\limits_{-T}^{T}|f(t)g(t)|\,dt = \int\limits_{I_T}|f_T(t)g_T(t)|\,\mu_T(dt) \leqslant \|f_T\|_{\pmb{\sigma}_{\pmb{\theta}}}^T\|g_T\|_{(\pmb{\Psi}_{\pmb{\theta}})}^T$$

$$\leqslant \left(1+rac{1}{2T}\int_{T}^{T}arPhi\left(2|f(t)|
ight)dt
ight)||\hat{g}||_{(arPhi)}.$$

Thus

(8)
$$||fg||_{1} \leqslant C||\hat{g}||_{\Psi} \quad (f \in \mathcal{M}_{\Phi}, g \in \mathcal{B}_{\Psi}),$$

where C is a constant depending on f.

Consider now a generalized mean value \mathfrak{m} on \mathcal{M}^1 . Given a function $f \in \mathcal{M}_{\sigma}$, we denote by $l(\hat{g})$ the mean $\mathfrak{m}(fg)$ $(g \in \mathcal{B}_{\Psi})$. From (8) it follows that l is a continuous functional on $L_{\sigma}(R_0, \mu_0)$. Let E_{Ψ} denote the closure of the set of all bounded functions in $L_{\Psi}(R_0, \mu_0)$. The class E_{Ψ} is a Banach space under the norm $\| \ \|_{\Psi}$. The conjugate space of E_{Ψ} is the Orlicz space $L_{\sigma}^*(R_0, \mu_0)$ [8], which, according to the Δ_2 -condition coincides with $L_{\sigma}(R_0, \mu_0)$. Since l is a continuous linear functional on E_{Ψ} , there exists a function $h_f \in \mathcal{B}_{\sigma}$ such that

$$\mathfrak{m}(fg) = l(\hat{g}) = \int\limits_{R_0} \hat{g}(x) \hat{h}_f(x) \mu_0(dx) \quad (\hat{g} \, \epsilon \, E_\Psi).$$

Hence, it follows that

$$a_f^{\mathfrak{m}}(\lambda) = \mathfrak{m}(fe^{-i\lambda t}) = m(h_f e^{-i\lambda t}) = a_{h_f}(\lambda).$$

which completes the proof of the Theorem.

Setting $\Phi(u) = |u|^p$ (p > 1), we get the following

COROLLARY 1. Let \mathfrak{m} be a generalized mean value on \mathcal{M}^1 . Then, for every function f belonging to \mathcal{M}^p (p>1) $\{a_j^{\mathfrak{m}}(\lambda)\}$ is the set of Fourier coefficients of a Besicovitch almost periodic function belonging to \mathscr{B}^p .

COROLLARY 2. Let Φ be an N-function satisfying the Δ_2 -condition. If f is a function from \mathcal{M}_{Φ} and for every λ the limit

$$a_f(\lambda) = \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} f(t) e^{-i\lambda t} dt$$

exists, then $\{a_f(\lambda)\}$ is the set of Fourier coefficients of a Besicovitch almost periodic function belonging to \mathscr{B}_{ϕ} .

In order to prove this assertion it is sufficient to take an extension \mathfrak{m}_0 of the linear functional m from the subspace of those functions f for which $m(fe^{-i\lambda t})$ exists for all λ , and apply Theorem 3. This assertion is connected with the following problem raised by S. Hartman and affirmatively solved by J. P. Kahane [7]: Let $f \in \mathcal{M}^1$ and for any λ the limit

$$a_f(\lambda) = \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} f(t)e^{-i\lambda t}dt$$

exists.

Is the set of those λ 's for which $a_f(\lambda) \neq 0$ at most denumerable? A function $f \in \mathcal{M}^1$ is said to be m-periodic of period ω ($\omega > 0$) if the m-spectrum of f consists only of multiples of $2\pi/\omega$. A complex-valued Borel measure v on the real line, finite on compact sets, is said to be periodic of period ω if, for every Borel set E, $v(E) = v(E + \omega)$, where $E + \omega = \{t + \omega : t \in E\}$. The family of coefficients

$$b_{r}(\lambda) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} e^{-i\lambda t} r(dt) \quad (-\infty < \lambda < \infty)$$

will be called the family of Fourier-Stieltjes coefficients of v.

For any periodic measure ν of period ω there exists a function $f_0 \in \mathcal{M}^1$ such that

$$\lim_{T\to\infty}\frac{1}{2T}\int_{x}^{T}f_{0}(t)e^{-i\lambda t}dt=b_{r}(\lambda)$$

for every real λ .

In fact, we can choose a sequence $\{h_n\}$ of integrable functions defined on the interval $0 \le t \le \omega$ such that for every continuous function g

$$\lim_{n\to\infty}\int\limits_0^\omega g(t)\,h_n(t)\,dt=\int\limits_0^\omega g(t)\nu(dt)\,.$$

We define the function $f_0 \in \mathcal{M}^1$ by means of the formula

$$f_0(t) = h_n(t-n\omega)$$
 if $n\omega \leq |t| < (n+1)\omega$ $(n=0,1,\ldots)$.

It is very easy to verify that

$$\lim_{T\to\infty}\frac{1}{2T}\int_{-T}^{T}f_0(t)e^{-i\lambda t}dt=b_{\nu}(\lambda).$$

If, for instance, $\nu(E)$ is the number of integers contained in E, then $a_{L}(\lambda) = 1$ or 0 according as λ is or not a multiple of 2π .

We shall now prove the following

THEOREM 4. Let m be an arbitrary mean value on \mathcal{M}^1 . For any mperiodic function $f \in \mathcal{M}^1$ of period ω , $\{a_i^{\text{m}}(\lambda)\}$ is the set of Fourier-Stieltjes coefficients of a complex periodic measure of the same period.

Proof. Let f be an \mathfrak{m} -periodic function of period ω . Then $\mathfrak{m}(fg)$ is a linear functional on the space of all continuous periodic functions g of period ω . Moreover, from the inequality

$$|\mathfrak{m}(fg)| \leqslant ||fg||_1 \leqslant \max_{0 \leqslant t \leqslant \omega} |g(t)| \, ||f||_1$$

we get the continuity of the functional $\mathfrak{m}(fg)$. There exists then a complex measure ν_0 on the interval $0 \le t \le \omega$ such that

$$\mathfrak{m}(fg) = \frac{1}{\omega} \int_{0}^{\omega} g(t) \nu_{0}(dt).$$

Let ν be the periodic extension of ν_0 of period ω to the whole line. Then

$$b_{\nu}(\lambda) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} e^{-i\lambda t} \nu(dt) = \lim_{T \to \infty} \frac{1}{2n\omega} \sum_{k=-n}^{n} \int_{k\omega}^{(k+1)\omega} e^{-i\lambda t} \nu(dt)$$
$$= \frac{1}{\omega} \int_{0}^{\omega} e^{-i\lambda t} \nu_{0}(dt) \left(\lim_{n \to \infty} \frac{1}{2n} \sum_{k=-n}^{n} e^{-ik\lambda\omega} \right).$$

Hence we get the equality

$$b_r\left(\frac{2\pi n}{\omega}\right) = \frac{1}{\omega}\int\limits_0^\omega \exp\left(-2\pi int/\omega\right)v_0(dt) = \mathfrak{m}\left(f\exp\left(-2\pi int/\omega\right)\right)$$

and $b_r(\lambda) = 0$ if $\lambda \neq 2\pi n/\omega$ $(n = 0, \pm 1, ...)$. Consequently, $a_f^{\mathfrak{m}}(\lambda) = b_r(\lambda)$ for all λ . The Theorem is thus proved.

References

[1] J. Albrycht, Some remarks on the Marcinkiewicz-Orlicz space, Bull. Acad. Pol. Sci. Cl. III, Vol. IV, No 1 (1956), p. 1-3.

[2] — Some remarks on the Marcinkiewicz-Orlicz space, Bull. Acad. Pol. Sci. Série des sci. math., astr. et phys., Vol. VII, No 1 (1959), p. 11-12.

- [3] S. Banach, Théorie des opérations linéaires, Warszawa-Lwów 1932.
- [4] A. S. Besicovitch, Almost periodic functions, Cambridge 1932.
- [5] Z. W. Birnbaum und W. Orlicz, Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Studia Math. 3 (1931), p. 1-67.
- [6] H. Bohnenblust and A. Sobczyk, Extensions of functionals on complex linear spaces, Bull. Amer. Math. Soc. 44 (1938), p. 91-93.
 - [7] J. P. Kahane, Sur les coefficients de Fourier-Bohr, Studia Math. 21 (1961),
- р. 103-106.
 [8] М. А. Красносельский и Я. Б. Рутицкий, О минейных функционалах в пространствах Ормича, ДАН СССР 97, 4, (1954), р. 581-584.
 - [9] Выпуклые функции и пространства Орлича, Москва 1958.
- [10] J. Marcinkiewicz, Une remarque sur les espaces de M. Besicovitch, C. R. Acad. Sci., Paris, 208 (1939), p. 157.
- [11] S. Mazur, On the generalized limit of bounded sequences, Coll. Math. 2 (1951), p. 173-175.
- [12] W. Orlicz, Über eine gewisse Klasse von Räumen vom Typus B, Bull. Acad. Polon. Sci. et Lettres, Série A, (1932), p. 207-220.
- [13] Г. А. Сухомлинов, О продологсении линейных функционалов в комплексном и кватериионном линейном пространстве, Матем. Сборник, 3 (45) (1938), р. 353-358.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK

Recu par la Rédaction le 10. 2. 1961

Sur les coefficients de Fourier-Bohr

par

J.-P. KAHANE (Montpellier)

Cette note répond à la question suivante, posée par S. Hartman. Soit f une function localement sommable sur la droite, telle que

(1)
$$\int_{T}^{T} |f(t)| dt = O(T) \quad (T \to \infty).$$

On suppose que

(2)
$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(t) e^{-i\lambda t} dt = a(\lambda)$$

existe pour tout λ réel. Peut-on affirmer que $a(\lambda)=0$ sauf sur un ensemble au plus dénombrable?

Si l'on remplace (1) par

(3)
$$\int_{-T}^{T} |f(t)|^p dt = O(T) \quad (T \to \infty)$$

avec p > 1, la réponse positive résulte d'une récente étude d'Urbanik (1). Nous allons montrer que la réponse est positive sans même astreindre f à la condition (1).

Théorème 1. Soit f une fonction localement sommable sur $[0, \infty)$. On suppose que

(4)
$$\lim_{T\to\infty} \frac{1}{T} \int_{0}^{T} f(t) e^{-i\lambda t} dt = c(\lambda)$$

existe pour un ensemble fermé F de valeurs de λ . Alors, sur F, $c(\lambda) = 0$ sauf sur un ensemble au plus dénombrable, et l'ensemble E_{ϵ} des $\lambda \in F$ tel que $|c(\lambda)| > \varepsilon$ ($\varepsilon > 0$ donné) est clairsemé (2).

⁽¹⁾ K. Urbanik, Fourier analysis in Marcinkiewicz spaces, Studia Math. 21 (1961), p. 93-102.

^(*) Rappelons qu'un ensemble est dit *clairsemé* s'il ne contient aucun ensemble $\neq \emptyset$ dense en lui-même, c'est-à-dire sans point isolé.