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Fourier analysis in Marcinkiewicz spaces

by
K. URBANIK (Wroctaw)

The Mareinkiewioz space #° (p > 1) consists of all complex-valued
TLebesgue measurable and locally integrable functions f on the real line
such that

»

Iy = E(Elf f\ f(t)l“dt)l < oo,
-T

J. Marcinkiewicz [10] proved that the quotient space #A?|Q°, where
(® denotes the set of all elements f belonging to 4%, with IIflle = 0, is
a Banach space having || [l as its norm. Tt is easy to verify that for any
p >1 the inclusion 4P C 4" holds. The closure in the norm Il lp of the

gt of all trigonometric polynomials S a6 with arbitrary real expo-
k=1

nents Ay, Ag, ..., A, and complex coefficients @y, @y, ..., @, is the well
known Besicovitch space %7, whose elements are go-called #7-almost
periodic funetions ([4], Chapter I, § 7).

Every Besicovitch almost periodic funection g has the mean value-
m(g), which is defined by the limit

— 00

T
1
m(g) = Im oo [owa.
P

The Fourier coefficients {a,(4)} are defined by the formula
ay(2) = mige™™) (=00 <A < o0).

The Fundamental Uniqueness Theorem says that two almost periodic
functions from %* having the same Fourier coefficients are identical
in the sense of the norm || |, Moreover, there exists at most an enumerably
infinite sot of values A for whieh ag(4) differs from nought.

The mesn value m on £ is a continuous linear functional and |m(g)]
< |gll, for ge#'. Every extension m of the functional m from £
to 4" satistying the inequality |m ()l < Ilflk (fetr™) will be called a ge-
neralized mean value on ' The well-known Hahn-Banach extension
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theorem (for complex spaces proved in [6] and [13]) implies the existence
of many generalized mean values on ..

Now let f be a function from the Marcinkiewicz space .#'. For any
real 1 the product f(t)e~* also belongs to ', We introduce the notation
a (1) = m(fe~™). The family {a]'(1)} can be regarded as a family of
generalized Fourier coefficients with respect to the generalized mean
value m. The m-spectrum of a function f from .#" consists of all expo-
nents 2 for which af (1) ¢ 0. The aim of this paper is to study some pro-
perties of generalized Fourier coefficients.

In the sequel we shall use the well-known method of the Bohr compact.
Let us congider the Cartesian product I, (—oo << 1 < oo) with Tychonoff

)

topology, where I, denotes the multiplicative group of complex numbers ¢,

with || = 1. Let R, be the closure of the subset {{6"*): —o0 < u < oo}

of #I,. Of course, R, is & compact subgroup of #I,. The theory of Besi-
1 A

coviteh almost periodic functions from #? and the theory of Z”-gpaces
over the Bohr compact R, with respeet to the Haar measure on R, are
equivalent. The natural mapping of the funection g,(¢) = ¢’ onto the
coordinate g, (@) =, (@ = <{wy) can be extended to an isomorphism
of the whole space %” onto the I”-space over E,. Moreover, this mapping
can be extended to an isomorphism between the space of all uniformly
almost periodic functions (c¢f. [4], Chapter I) and the space O(R,) of all
continuous functions on R,.

TeeoREM 1. There ewists a generalized meun value Wy swch that every
function from A has at most denumerable m,-spectrum. Moreover, for
any fed, {aFV(A)} is the set of Fourier cocfficients of o Besicovitch almost
periodic function from %'

Proof. Let m be an arbitrary generalized mean value on .#" and
let f be a funetion from .«4*. Putting I(g) = m(fg) for any uniformly almost
periodic function g, we define the linear functional I on O(R,). From the
inequality

o) <Ifgl: < sup lg@)|Ifil = il max |g(a)]
—oo<i<eo TeRy

it follows that [ is a continuous functional on C'(R,). Consequently, there
exists a finite complex measure u; on R, such that

Up) = [ §(@)py(da).
Ry

The correspondence between f and u is linear, the absolute variation
of u; i8 not greater than ||f];; and for any uniformly almost periodie fune-
tion gy, and for any Borel subset F of Ry,

tyg,(B) = Lf?]a () py (dery .
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Let h; denote the density funetion with respect to the Haar measure
on R, of the absolutely continuous component of the measure 4. Since
fi, is integrable with respect to the Haar measure on R, there exists
s Besicoviteh almost periodic function hyeB* such that hy = h;. We
define the generalized mean value uy by the formula wy(f) = m(hy)
(fett"). Since m(fiyy) = m (hyg) for every uniformly almost periodic funec-
tion g, we have the equality i

api(a) = (o) = m(hye™™) = ary(2)
Thus {af" (1)} is the set of Fourier coefficients of the Bes.ieovitfzh almost
periodie function hy. The firgt assertion of our Theorem is a direct con-
gequence of the second one.

TaEOREM 2. There emists a generalized mean velue w, on M such
that the my-spectrum of o function belonging to A is non-denumerable.

Proof. For any function f belonging to A" the sequence of complex
numbers

(fet).

1 nl
{%—! ) i} f(t)dt}

is bounded. Moreover, we have the inequality

i f FO1@ < Il

N—00 2n! B
We define the generalized mean value m, by the formula

n
17
my(f) = Elﬁ%?_i fya  (fed),

where Limz, denotes the generalized Banach-Mazur limit of bounded

N> 00

sequences of complex numbers ([8], ».34; [11D). We may assume that
the generalized limit Limg, is equal to the usual limit of & subsequence

Ty 0O

of the sequence {z,}. Of course, nl, is an extension of the mean va;lue .
We define the function f, by assuming Fol®) .-——2n!(n—1).(‘n—vér1)
if nl—@hHr <t <n! (n=2,3, ...) and fo(t) =0 in other cases. We

have N

1 nl ) 1 ' 1
o = im o [ ot = Jim - D (b= D)1= = 1.

> 00 S * =2

Thug foe % Further, for any real number 1 we have the equality

7l sl .
W 2 [ Aweta=—r Y GDiE-De o).

1
2n! - i
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Let A be the set of all numbers A of the form

(==}
@,
= 27 E -,
71
r=0

where @, = 0 or 1 (» = 0, 1, ...). Obviously, the set A is non-denumerable.
k

For any positive integer %, k! Y a,/r! iy also an integer and

r=0
(=] (2] 1
a e
0<7a!2~—:~<k!2—'< .
il i r=k+1 r k41

Consequently, for any A</ we have the inequality

[
| < -

+1

where ¢ i3 & constant. We conclude further, on account of (1), that

e (h=1,2,..),

1

- ff,,(t)-e--“‘dt=1+o(1) (Aed).

—nd
Thus a72(1) = 1 for every A</, which completes the proof.
A real function @ is said to be an N-function if it is of the form

4

o) = [ g,

0

where ¢(0) = 0, @(t) >0 for { >0, ¢(f) is non-decreasing, right conti-
nuous and lim p(?) = co. Setting (1) = sup #, we define
t>co U<t

]
Y = [ p)dr.

Then ¥ is also an N-function and @, ¥ are called complementary functions
([6]). They satisty Young’s inequality '
w < D(u)+¥(v),
for arbitrary « and ». We say that the function @ satisfies the A,-condi-

tion if
— B (2u)
u-rco D(U)
Putting @ (u) = |ul’[p, ¥ (u) = |u|?/q, where p >1, ¢ >1 and 1/p-+1/g

=1, we obfain an important example of complementary N-functions
satisfying the A,-condition.

< oo
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‘We assume that (X, u) is a measure space and u(X) =1. If @ is an
N-function and f is an arbitrary complex-valued u-meagurable function
on X, the number on(f) is now defined by

0o(f) = [ ®(If(@)]) u(da).
X

By Lo(X, p) we shall denote the class of all functions f for which g4(f)
is finite. The class Ly (X, u) is called the Orlicz class. The Orlicz class is
a convex set, but not in general a linear set. A necessary and sufficient
condition for the Orliez class to be linear is that the function & fulfills
the A,-condition. Furthermore, if @ and ¥ are complementary functions,
then, by Young’s inequality,

2) [ 1f (@) g(0)] p(d) < 0o(f)+ 0w (0)
X

for every pair feLy(X, u) and geLy(X, u). Now we denote b.y‘L;(X, u)
the class of all u-measurable functions f satisfying the condition

[ 1f(@)g(@)|u(de) < oo
X

for every geLg(X, u).

In the clags L% (X, u) we define the norm | ||, by the formula
(3) : Iflle = sup [ |f(2)g (@) (da),
X

where the supremum is taken for all geLw(X, x) satisfying the inequality
ow(g) < 1. The class Li(X, u) under the norm | [, is 2 Banach spa;ce [12]
and will be called the Orlicz space. The inelusiom Ly (X, u)C Ls(X, u)
si evident and the equality Ls(X, u) = Lp(X, p) is equiva.lent*to the
Ay-condition. It is still possible to define in the Orlicz space Lg(X, p)
a second norm || lq). We define it by the formula

|

(4) Iy = inf{a: 00 (i) <1,0>0

The norms || [l and | e are equivalent: | |l < “ lo %2“ {l@
(see [9], p. 97). It may be proved ({91, p- 98) that for any pair feLlo(X, p)
and geL3(X, u), where @ and ¥ are complementary functions, the gene-
ralized Holder inequality holds

(5) [ 1f(@)g(@)\p(da) < fllslglicn-
X

By #, we shall denote the Marcinkiewicz-Orlice class 1i.nduced })y
the N-function @, i. e. the class of all functions f from .#' for which
12 (If)ly < oo. This class was introduced by J. Albryeht [1]. Further,

7
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the class &, is defined to be the closure in 4 of the set of all trigono-
metric polynomials (see [2]). Its elements are called By-almost periodic
Sfunctions.

THEOREM 3. Let @ be an N-function satisfying the Ay-condition an
let m be o generalized mean value on 4. Then the m-spectrum of every
function from the Marcinkiewice-Orlicz class My is at most denumerable.
Moreover, {af (A} (fett,) is the set of Fourier coefficients of a Besicovitch
almost periodic function belonging to Hy.

Proof. Let us consider the Orlicz class Ly (Ry, uo), where u, is the
Haar measure on the Bohr compact Ry normalized by assuming uy(R,) = 1
and ¥ is the complementary function of ¢. It may be proved that the na-
tural mapping ¢ — ¢ transforms #Zy onto Lu(Ry, m). Furthermore, for
any positive a we have the equality

-m(w (—“‘ﬂ)) - fvf(ﬁ%)i) wldo)  (gedy).
Ry

Denoting by || [z the norm on Ly(Ry, p) defined by formula (4),
we get the inequality

9l
T —a ) €. .
m( (ugnm)) St (0Fgedy)

.Conseqlllently, for any ged#y, g # 0, and every number ¢ satisfying the
inequality 0 < e <1 there exists & number 7, such that for 7 > T,

the inequality
r
S 1 lg (8l
(6) — l_rl(——n— & <1
2T f ke, te
holds, Let
1

) = 17

Y (uy.

Then the complementary function @, of ¥, is given by the formula

Qonmder the Orlicz classes Ly (I7, ur), Ly (Ir, pr), where Ip is
the interval —T <t < T and ug i3 the Lebesgue measure on I, with
#r(Iz) =1. We denote by | |3, and || |, the norms on Ly, (Ir, ur) and
Ly (Ip, ur) defined by (3) and (4) respectively. Let gs&?:, and fedy.
Then the restrictions gr and fr of g and f to Ip belong to Ly, (Iz, ur)

icm
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and Lg,(Iz, pr) respectively. In fact, the first relation is evident and
the second one follows from the A,-condition
P

{ D(2Af (1))t < oo-

_

,

1 8 1
If (e urtd) < 57 | Ola-+alO)# <5
, :

Furthermore, inequality (6) implies the following one:

(1) lgzltey < 11l

Taking into account Young’s inequality and definition (3) we have

T
7 i 1
I, <14 [ @) pelan<1+5 [ oRiw)a
Ip -7

Hence and from (7), using the generalized Holder inequality (5), we get
the inequality

T
% . l gl = i ) g2 ()] ur (@) < 1F2l5, l9zl%e,

T
1 .
< (1+ T l ¢(2|f(t)l)dt) er-
Thus
(8) Ifgl < Ol  (fetla, geBw),

where ¢ is a constant depending on f.

Consider now a generalized mean value m on . Given a function
fedy, we denote by 1(§) the mean w(fg) (geBy). From (8) it follows
‘that 1 is a continous functional on Tp(Ro, sto). Let By denote the closure
of the set of all bounded functions in Lo(Ry, o) The class By is 2 Banach
space under the norm || [l. The conjugate space of By is the Orlicz space
Ly (R, o) [8], which, aceording to the A,-condition coincides W}th
Ly(Ry, o). Since I is a continuous linear functional on Hy, there exists
a function %se#, such that

m(fg) = Ug) = [§@ k@) pldn)  (GeB).
R

0
Hence, it follows that

ara) = m(fe™) = m(hye~™) = ar, (2).

which completes the proof of the Theorem. .
Setting ®(u) = |ulf (p >1), we geb the following
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COROLLARY 1. Let m be a generalized mean value on #*. Then, for
every function f belonging to A (p > 1) {aj' (1)} is the set of Fourier coeffi-
cients of & Besicovitch almost periodic function belonging to H°.

COROLLARY 2. Let @ be an N -function satisfying the Ag-condition.
If f is o function from M4 and fm’ wevy A the limit

f f@)ye~*at

exists, then {ay(A)} is the set of Fourier coefficients of a Besicovitch almost
periodic function belonging to By,

In order to prove this assertion it is sufficient to take an extension
m, of the linear functional m from the subspace of those functions f for
which m(fe~™) exists for all A, and apply Theorem 3. This assertion is
connected with the following problem raised by S. Hartman and affirma-
tively solved by J. P. Kahane [7]: Let fes* and for a.ny A the limit

A =
) T-—'oo 2T

() = MT f Fitye-Har

exists.
Is the set of those A’s for which a,(A) # 0. at most denumerable?
A function fes' is said to be m-periodic of period o (w > 0) if the
m-sgpectrum of f consists only of multiples of 2n/w. A complex-valued
Borel measure » on the real line, finite on compact sets, iy said to be pe-
riodic of period o if, for every Borel set B, v(E) = »(E+ w), where B+ o =
= {t+ w: teE}. The family of coefficients

T
b, () = hm% fe"”v(dt) (—o0 < 4 < oo)

T—>00

will be called the family of Fourier-Stieltjes coefficients of ».
For any periodic measure v of period w there ewmists a function foed’
such that

lim jfo(t Jo~Hdt = b,(1)

for every real A.

In fact, we can choose a sequence {h,} of integrable funetions defined
on the interval 0 <¢ < w such that for every continuous function ¢

hmfg (D)t = [ g(t)v(dt).

We define the function f,e.#1 by means of the formula
Jo®) = bp(t—nw) i no il <(®+lo (r=0,1,...).

icm
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It is very easy to verify that

T
" it gy
lim _lfu(t)e a = b,(3).

If, for instance, »(E) is the number of integers contained in P, then
ay,(4) =1 or 0 according as 4 is or not a multiple of 2x.

‘We shall now prove the following

THEOREM 4. Let m be on arbitrary mean value on 4'. For any m-
periodic function fed* of period w, {af'(A)} is the set of Fourier-Siiclijes
coefficients of o complex periodic measure of the same period.

Proof, Let f be an m-periodic function of period . Then m(fg)
is a linear functional on the space of all continuous periodic functions g
of period w. Moreover, from the inequality

[m(fg)l <llfgll. < nax lg @)1 I1flls

we get the continuity of the functional m(fg). There exists then a complex
meagure », on. the interval 0 <t < o such that

m(ig) == [ gtldn.

Let » be the periodic extension of », of period w to the whole line.

Then n (i1

1 W
= i PR lim —— e (At
h() 1]'1_{2 2T f vid) = Toooe 2100 24 kl v (d)

[} n
1 , 1 .
= Eaf‘e“fivo(dt)(inélo% Ze"“”).

k=—n

Hence we get the equality

B, (?ﬂ) -1 f oxp (—2mint|o)w (@) = m(foxp (—2mint|w))
w w Y

and b,(4) = 0 if 1 % 2mnjw (n = 0, +1,...). Consequently, af () = b,(A)
for all A. The Theorem is thus proved.
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Sur les coefficients de Fourier-Bohr
par

J.-P. KAHANE (Montpellier)

Cette note répond & la question suivante, posée par 8. Hartman.
Soit f une function localement sommable sur la droite, telle que

iy
(1) [1fna =0T (T - o).
-
On suppose que
T
. 1 TR
(2) ggﬁ;;,lf(t)a it = a(2)

exigte pour tout A réel. Peut-on affirmer que a(4) =0 sauf sur un en-
gemble an plus dénombrable?
Si ’on remplace (1) par

T
(3) [ IfePae = 0(T) (T - oo)
-T

avec p > 1, la réponse positive résulte d’une récente étude d’Urbanik (1).
Nous allons montrer que la réponse est positive sans méme astreindre f
& la condition (1). i

TutioriME 1. Soit f une fonction localement sommable sur [0, o). On
suppose que -

7

(4) lim —%— ftye™#as = o(2)
[]

T—oo

ewiste pour un ensemble fermé F de valeurs de 2. Alors, sur F,"¢(d) =0
sauf sur un ensemble aw plus dénombradle, el Vensemble B, des AeF tol que
le(A) > & (¢ > 0 donné) est clairsemé (). : .

( K. Urbanik, Fourier analysis in Marcinkiewice spaces, Studia Math. 21

(1961), p. 93-102.
(* Rappelons qu'un ensemble est dit clairsemé 'l ne contient aucun ensemble

# @ dense en lui-méme, ¢’est-d-dire sans point isolé.
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