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On quasi-modular spaces
by

SHOZO KOSHI and TETSUYA SHIMOGAKI (Sapporo)

§ 1. Introduction. Let B be a universally continuous semi-ordered

linear space (i. e. a lattice ordered linear space in which there exists q @,
e

for every system of positive elements {a;; AeA} of R).

H. Nakano has considered a kind of functional on R which is called
a modular (1), and constructed the most important parts of the theory
of modular spaces (i. e. spaces on which modulars are defined).

In this paper we shall consider a funectional ¢ on R which satisfies
the following conditions, weaker than those of modulars:

(0:1) 0 < o(2) = p(— ) < Foo for all weR;

(p-2) e(a+y) = o(®)+ ely) for every v, yeR
with [#] ~ |y} = 0;

(p-3) for any system {w;;Aed} such that |oy| ~ |o,| =0 for
L #y, Ay yed and ,%;9(%) < +oq, there exists #,eR with > @, =z, and

Aea
2 eol@m) = e(m);
Y

(p.4) limp(aw) < +oo for all zeR.

a—0

R ig called a guasi-modular space if the above ¢ is defined on R and
¢ i8 called a quasi-modular. This quasi-modular is considered as a genera-
lization of a Nakano’s monotone complete modular or of a concave modular
[4 and 6].

Recently, J. Musielak and W. Orlicz considered the pseudo-modular
on a linear space in [8]. If we add the order structure to linear spaces
and additive conditions: (p.2) and (p.3) to those of a pseudo-modular,
then a quasi-modular can be considered as a pseudo-modular in the case
of semi-ordered linear spaces.

Some of the examples of a pseudo-modular established in [8] are
regarded as those of a quasi-modular.

(*) For the definition of a modular see § 2.
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The main object of this paper is to prove the following fact:

If R is a quasi-modular space which is non-atomic and semi-regular,
then R can be considered as a modular space, that is, there 18 defined a modular
on R (Theorem 3.1).

By virtue of this theorem, the theory of quasi-modular spaces which
are semi-regular and non-atomic is to a great ewtent contained in that of
modular spaces. In general, a universally continuous semi-ordered linear
space R is decomposed into a non-atomiec part and a discrete part. In
the case of discrete spaces, the above theorem does not remain true.
But if we agsume a property concerning the basis of a diserete space R,
we shall also prove that R 4s a modular space with a modular defined by
the quasi-modular (Theorem 3.3).

‘When ¢ satisfies

(p.B) o(#) < 400 for all weR

in addition to (p.1)-(p.4), ¢ is called finite. In this cage, the assumption
that B is semi-regular becomes unnecessary, gince semi-regularity is implied
by the finiteness of p (Theorem 4.1).

As a concrete example of quasi-modular spaces, we consider a func-
tion space Ly g 28 follows. Let M (s, ) (se[0, +o0), 1e[0,1]) be a real-
valued function with
(1.1)  0<< M (s,1) < +oo for all (s,1)e[0, +oo0)x [0,1];

(1.2)  M(s,t) is a non-decreasing and left-hand continuous funetion of
s for a fixed te[0,1];
M(s,1) is a measurable function of i for a fixed
with M (0,1) = 0 a. e.
And let Ly be the totality of all measurable functions % (1) (te[0, 1]) such
that .

(1.3) 8¢[0, +o0)

Mlalw(t), )@ < +oo  for some a >0(2) .

Then Ly, 4 is considered as a universally continuous semi-ordered linear
space (we define ¢ >y, #, Y eLyr gy if and only if (1) = y(2) a. e. te[0,1]).
And putting

1

] M(lw(t)

), it for

(1.4) o(@) = #(t)eLng 5,1y,

we obtain 2 quasi-modular space Lyr s,y with the quasi-moduler 0 Ly g
is mvestlgated by 8. Mazur and W. Orliez in [7] under the more restricted

(1) M(alz(t)],t) is a measurable function of { for every « » 0 and measurable
©(t), it M(s, 1) satisfies (1.1), (1.2) and (1.3).

icm
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condition: M(s,t) = M(s) for all s, t. Therefore, Theorem 3.2 can be
regarded a8 a generalization of Theorem 3 in [7] (i. e. Ly is a Banach
space if and only if Lyry = Lo, where @ is o convex function with @(0) = 0
and D(8) + +oco as § — oo.

In § 2 we shall state the definitions and results already known which
are necessary for the following sections. In § 3 we prove the main theorems
and in § 4 we consider the supplementaries of § 3, i. e. the finite cases,
and the funetion spaces Ljy., are considered as an application in §5
The conditions under which Ly, is semi-regular or is a Banach space
with respect to & certain norm are obtained there.

Here, we give thanks to Dr. J. Musielak for his kind advice.

§ 2. Preliminaries. In this section, we shall explain the definitions,
notations and results which are necessary for the following sections. The
results are mainly due to H. Nakano and their proofs are found in his
book [4].

Throughout this paper we write R to denote a universally continuous
semi-ordered linear space. For any # R, 47, »~ and |#| denote © w 0, —2 'L 0
and » v —o respectively. |#| is called the absolute of » and |w] = &+ o,
¢ 1y (¢, yeR) denotes |z| ~ Jy| = 0 and we call @ and y mutually ortho-

. gonal. For any subset AC R, AL ={2:2 |y for all ycd} is called the

orthogonal complement of A. We always have

(2.1) At =4+ and R = Al@ALL,
which means that for any #e<R there exist z, A’ and m,e AL such that
& = 8+ ®,.

Hence we can define an operator [A] with [Ad]s = @,. [4] is called
a projection operator and Al is called a normal manifold generated by .

A linear subset ¥ C R iy said to be a normal manifold if it satisties

(22)  @eN and [¢] > ly| imply yeX,
and
(23) @ =Uwm and @w;eN (led) imply «eN [4; Theorem 4.9].

Aed

For a normal manifold N, we have ¥ = N1, A linear subset M is
called semi-normal if it satisties only the above condition (2.2). When
Mt = {0}, M is called a complete semi-normal manifold of R. Tf M is a com-
plete semi-normal manifold, then every 0 <R can be written as z — U=,

Aed .
with 0 < #;,eM (ied). For a normal manifold N, it follows from the de-
finitions that 4N if and only if [Nz = a.

If 4 consists of only one element, then [A] = [{a}] = [a] is called
a projector by a. Then we have [alz = |J (nla| ~ @) for every a > 0.
- r nzl

Studia Mathernatica XXI 2
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A linear functional a on R is called bounded if

(2.4) sup |a(®)] < Hoo for any acR.

12l <lal
And the totality of all bounded linear functionals on E is denoted

by B. A linear functional @ on R is called wniversally continuous it

inf [7 ()| = 0

ied

(2.5) for any  @34,,40.

We denote by B the totality of all universally continuony linear fune-
tionals on R and call it the conjugate space of E. It ig known that R and
R are both universally continuous semi-ordered linear spaces (in these
cases & =0 (or @ =B5) means a(x) = b (w) (vesp. &(w)=b(w)) for all
0 < aeR), and BCR. R is said to be semi-regular if @(w) = 0 for all
e R implies # = 0. When R is semi-regular, putting for any aeR
(2.6)

fol®) =%(a) (Z<R),

we obtain a universally continuous linear functional on E. Therefore
there exists an isomorphism from R into B = (R) by the ‘correspondence:
Rsa - f,eR. Hence we can find that R is embedded in B. In this sense
we write in the sequel R C R when R is gemi-regular. R is a complete
semi-normal manifold of &. R is said to be reflewive if B coincides with R.
R is always reflewive [4; Theorem 24.51.

For any projection operator [A] of B we put C 7 = {w: x <R, |a(2)| = 0
for all zed} and [A1F = [0%). [A]® is a projection operator on R such
that

2.7 ([dla)(») = a([Ad]%») for all meR,
and
(2.8) [A][B]=0, A,BCE if and only it [A*[B]® = 0.

An element 0 # aeR iy called atomic if [a] > [b] implies [a] = [b]
or [b] = 0. When R has no atomic elements, R is said. to be non-atomic,
and when there exist no elements in R except 0 which is orthogonal to
every atomic element of B, R is said to be discrete. If R iy discrete, then

there exists a system of positive atomic elements of R: {e;; A €A} such that
any 0 < ae R is written uniquely as

(2.9) a=U&e,
Aed

there £, 18 a positive real number for each Le. In general, E is decomposed
into R = R,@®R;, where R, is non-atomic and R, is discrete,
Throughout this paper, let a norm Il on R satisty the condition:

icm
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(ML) o < Jyl implies Jlzf] < |yl
A norm ||-|| on R is called semi-continuous if
(N.2)  Jlll = suplol|  for 0 <ayhieaw,

and called monotone complste it 0 < z;4,,, and sup|je,)| < +oco imply
pry:d

U@ eR. It ||-]| is monotone complete, || || is complete (i. e. R is & Banach

led

space with respect to ||-||). B* denotes the totality of all zeR with
sup |@(w)] < +oo. We have B*C B and B* = B if ||| is complete.

flzi<1
A modular m on R is a functional which satisfies the following:

(M.1) 0 <m(z) < +oo for all zeR;

(M.2)  m(éw) =0 for every & implies 2 = 0;

(M.3) m(aw) < +oco for some a > 0;

(M.4)  |o| < ly| implies m(z) < m(y);

(M5)  a+p =1, a,f>0 implies m(az+fy) < am(@)+ pm(y), for

any @, yeR;
(M.6) @1y implies m(z+y) = m(x)+m(y);
(M.7) 0 < @yh;,42 implies iu})m(@) = m(®).

If & modular m is defined on R, R is called a modular space. A moduiar
m on R is said to be monotone complete if

(M.8) 0 <#3%;,4 and supm(w;) < +oo imply (Jz,<R.
Aed Aed

The condition (M.8) i equivalent to the apparently weaker one:
(M.8") for any {w;;Aied} with @, 1@, A#1, 1, Ved and
Dm (@) < +oo, there exists (Jw,eR.
Zed Aed

@eR is called modular bounded if there exist a, f > 0 such that

(2.10) zeR.

@ (@) < a-+pm(z) for all
R™ denotes the totality of all modular bounded #<R and is called
the modular conjugate space of R.
If we define on B™ a functional 7 by
(2.11) m(a) = sup{[@(@)|—m(2)} (@eB™),
xeR
m beeomes a modular on E™ and is ealled the conjugate modular of m.
If B iz semi-regular, we have

(2.12) m(a) = sup{[Z(a)| — 7 (%)} = m(a) for all

ze R

aeck,

that is, m is reflewive as a fumciional.
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Let R be a modular space, then R is a normed space with the norm

IR

(2.13) Hlo]]] = inf

xek).
m(&r) <l if ( ¢ )

This norm |||«||| is called the modular norm by m (*). It is always semi-con-
tinuous, whence it is reflexive as a norm [3].

A sequence of elements {,; (v > 1)} i8 said to be modular convergent
to @, and denoted by m-limaz, = &, if

y-200
(2.14) limom (a(@,—zo)) =0  for every « 0.
P00
(2.14) is equivalent to Lm|||m,— ||| = 0.

P00
A modular m is called complete if lim m(a(w,—®,)) =0 (a > 0)
¥y p—r 00
implies the existence of zeR with m-lims, = . It is easily seen that
P=>00
& modular m is complete (or monotone complete) if and only if the modular
norm |||-||| is complete (resp. monotone complete) and hence, monotone
completeness of m implies completeness of m. Monotone completeness
of modulars (or norms) plays an important réle in the theory of modular

(vesp. normed) spaces because in that case B is reflexive (i. e. R == R).

§ 3. Fundamental theorems. Let ¢ be a quasi-modular on R, that
is, let the functional p satisfy (p.1)-(p.4) in § 1.
From the definition of a quasi-modular, we have the following

Lemva 1. If o is @ quasi-modular on R, we have

(3.) 0(0) = 0;

(8.2) ol[ple) < olw)  for all  [p] and xek;

(3.3) o(lol) = o(@) for all  weR;

(34)  supe(lplo) = e((pla) for any  [p10:,4p] and wek.

The proofs are direct consequences of (p-1)-(
here.

When we consider a modular on R, it is convenient that #he modular
be sufficiently compatible with the structure of R as a semi-ordered linear

p-4). Thus we omit them

(*) In [4 or 5] this norm is called the second norm by y m, since another norm,
called the first one,

14-m (§=)

: (@eR),

[lell = inf
£>0
is defined- there.

i

icm®
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space. For ingtance, it is very convenient if the modular is monotone com-
plete or complete; becanse R can be considered as a Banach space with
respect to the modular norms. A semi-regular quasi-modular space,
however, cannot be a complete modular space by defining a modular
in general, as shown below. Therefore we must consider a slightly weaker
property than completeness.

We shall say in the sequel that a modular (or norm) on R is perfect
if R is semi-regular and B = R™ (resp. B = R*). Namely it means that
every universally continuous linear functional is modular (resp. norm-)
bounded.

It is clear that & modular m is perfect if and only if the modular norm
is perfect. If R is semi-regular and a modular (or @ norm) on R is complete,
then it is perfect [4; §§ 31, 38]. But the converse of this is not true in
general.

Though & slight improvement is made, the following Lemma 2 is
essentially the same as proved in [11] and plays 1n11301tant role in the
proofs of the theorems stated in this section:

LEMMA 2. Let n, (v =0,1,2,
such that

...) be a sequence of functionals on R

(35) 0<n(®) < 4+oo (#10) for all z<R;

(3.6) mlz+y) <n@+nly) (=0 ifsly;

3.7 WP%V([PA]W) =n,([ple) (v =0) for [pilscalp] and weR;

(3.8) fm any {2}, z,eR (v =1,2,...) with », | @, for v & u and
Z’i’lo ) < o0, there ewisis Z'w eR;

(3.9) vw—:R.

hmn,( ) < +oo  for all

Then there emist positive numbers e, y a natural number v, and o finite dimen-
sional normal manifold Ny such that ny(2) < ¢ and @ ¢[Ni-1R imply n,(x) <y

for all v = .

‘We must deal with the subject in slightly different manners according
to whether R is non-atomic or discrete. First we suppose that R is non-
atomic.

TueoreEM 3.1. Let R be o quasi-modular space which is semi-regular
and non-atomic. Then R is a modular space with a perfect modular m, (%)
which is constructed by o.

Proof. We define a functional

(3.10) o(®) = sup{lm )| — o (@)}

o on R by
(QEE):

() For the relation between.p and m, see (3.10) and (3.12) in the proof of this
theorem and Remark 3.3 below.
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and we shall show that ¢ iy a monotone complete modular on J. Sinee
0 <e(®) < +oo for all Z<k by definition, the modular condition (M.1)
follows. It o(£Z) = 0 for all ¢ > 0, then we have

[EZE@)—o(@) <0 for all weR and &3> 0.

For any < B, (0.4) engures the existence of « > 0 with
which implies o(amy) < oo,
168 (amo)| < o(amy) (& = 0).

Thus we obtain Z(u,) = 0, and gince m, <R is arbitrar 7

v ) 18 Y, we have & == (),
T}_:us shows that (M.2) holds. For any %, <R and real numbers o =0
with e+ 8 =1, we have e

o(aZ+ 87) =:u1¥>{[(ai—|— B7) (@) — o (w)}
<§:11ga{l5(wn—e(w)}+5:1£ﬁ{lz7(w)[~e(w)}
< ag()+ o (7).
Hence (M.4) follows.
If %17, %, 7R, then it follows from (p-2) and (2.7) that
[(®+7) (w)|— o(x)
< [&8([#1%0)| — o((51%a) -I- 771 2|~ o ([71"a)

for all weR, which implies (M.6). (M.6) 3) yi i
' ) . .6). -6) and (3.3) yield directly (M.
(1\1.721‘]15 an Immediate consequence of the form (; 1‘):)) v oLl
erefore, in order to prove that j i lar on
. T . 01 ¢ 18 a modular on R, w b
verify that ¢ satisfies (M.3). Let Tye R be fixed. We pub ) o eed fo

T(®) = o(@) (2¢R),

m(@) = [@|(l2))  for all v >1.

Since e R, and o is a i
o quasi-modular, a g ]
satisties the conditions (35 (3.0). y equence of funetionals {fn,,,}(

Henqe by virtue of Temma 2 and of the fact th
we can find the positive numbers & y such that

w0)

at B iy non-atomie,

(@) = m(x) < & implies (@) = [Ty| (|w]) < y.

For any 2¢R with s < e(m)
such that

(3.11)

<C +o0, there exists a natural number n

ne < o(w) < (n+1)e.

On quasi-modular spaces 23

Since R is non-atomic and p satisfies (p.3) and (3.4), » can be decompo-
k

sed orthogonally with @ = Y 'm;, e > o(®;) > 3e(i =1,2,..., k). It follows
T=1

from (3.11) that k¥ < 2(n+1) and
k

f on 4y
Bl(lal) = D) Bl (o) < by < 2n+1)y <= &7 < - o(a).
=1

Putting 4y/e = & = 8(F), we obtain
Bl (l2]) < So() for all weR with o(x) > ¢,
that is
1
5 [Zol (1) — o (@) < 0.

Therefore we have

{1 1 1 )
9(350) < E\élg {E |E(,|(!m|)——g(m)} éj;-}ge{_a' [Zol(|2]) — Q(m)} < %

Thus (M.3) is ascertained.
I 0 <Ztieq and supe(®;) < +oo, then for any 0<zeR with
AedA

e(w) < +oo we have
SupZ; (2) < o@)+o(@) <y +e(w) for some o >0.
ded
This implies supZ;(z) << +co for all 0 <zeR by (p.4). Hence we have
Zed

\U%, ¢ R, which shows that (M.8) holds, i. e. the modular g on B is monotone

Tled

complete.

Since R is a monotone complete modular space with the modular
g, we can define the conjugate modular ¢ of ¢ on R = R*. As_stated in
§ 2, R can be considered as a complete semi-normal manifold of R, because
R is semi-regular. Now putting
(3.12) m,(z) = o(x) for all 2<RC R,
we obtain a modular m, on R. And for any ZeR
(3.13) o(&) = sup{|a(@)|—0o(x)} = sup{|Z(&)| —m,(®)}

ER @R

holds, because R is a complete semi-normal manifold of B and the mo-
dular ¢ on R is reflexive (cf. §2). Namely ¢ is the conjugate modular
of m,. Therefore m, is a perfect modular on R, q.e.d.

Remark 3.1. From the above proof, it follows that Theorem. 3.1
remains true if we replace the condition (p.4) by a weaker one, such as

(p-4") for any weR there exists o >0 such that o(aw) < +oo.


GUEST


24 Shézé Koshi and Tetsuya Shimogaki

Remark 3.2. From the definition of m, we have
(3.14) m,(w) < o(w) for all weR.

Thus, if B is semi-regular and non-atomic we have

i 250 m(60)

e ¢ S

>0 for all #eR,

because m(£m) is a convex function of & > 0 for each welkR.
In the sequel, m, denotes the modular defined by (3.10) and (3.12).
We say that a sequence {z,;v = 1,2,...} of R iy p-convergent to o,
and write o-lims, = @, if there exists a constant number & > 0 such that

Y00

(3.15) o limp(f@,—m)) <k forall &3>0 (3).

Remark 3.3. Let R be the same ag in Theorem 3.1, For the modular

My, Wwe find that g-convergence implies M,-convergence. Namely, if o-

Ema, = @, there exists a congtant number & > 0 with Nlbi—r-ﬁg (52(:19,,—:00)) <
P00

100

<k for all & 2 0. It follows by (8.14) that

Limm, (&(a,—a,) <k for all £ > 0.

P00

Since m,(£x) is & convex function of & > 0, for each @, wo have

P>00

Ty k
hmme(f(mv—mo)) <§‘ for all &21.

It follows that m,-limz, = z,.

200

. The converse of Remark 3.3 is not true in general. However, if m,
18 complete, m,-convergence implies g-convergence, that is, we obtain
the following theorem showing the conditions under which m, is complete;
a fortiori B becomes a Banach space with the norm defined by m,.’

TEEOREM 3.2. Let R be a quasi-modular space which s semi-regular
a:;d non-atomic. Then the following four conditions are equivalent to each
owher: :

(1) m, i3 complete;

(i) m, is monotone complete;

() When g is a modular m, (3.15) is equivalent to m-lime, = 2, in the senso
of (2.'4), be:c.a.use ¢(éw) is a convex function of & > 0 for every x el in this case. This
fact' is venfled. in the same way as in Remark 3.3 below. On the other hand, for an
arbitrary quasi-modular g, (3.15) is not equivalent to lim g(a (a,~ x)) = 0 for each
a> 0, e )
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(ifiy B 48 reflevive (i. 6. R = K);
(iv) m,-convergence implies p-convergence.
Proof. We denote by |||-}]|, the modular norn of m,. First we assume
(i). We put

1
no(w) = |llalll, and “'v“”)”Q(I”)

for allmeR and » >1. A sequence of functionals {n,},s) satisfies conditions
(3.5)-(3.9). Here we shall show only that (3.8) is true, as the others are

obtained without difficulty. Let {w,; <R (v > 1)} be Z:no(aa,,)< + o0
P o=
and @, | @, (v # p). Putting y, = Z;|w,,| (x = 1), we have

" '

0 <Ybumrs,. and =yl < D sl = N (@)

Pleyrek r=ptl

for ' >p=1.

Therefore {y,} (» > 1) is a Cauchy sequence. Since |||+ ]||, is complete, there
exigts yoeR with lim||ly,—y,lll = 0. It follows from the above that
100

=) b ad
Yo = leyv =2 @, and Zm,eR,
y= y=1

pe=l

which shows that ne(®) = |||#]||, (veR) satisfies (3.8). N
Therefore, by virtue of Lemma 2, we can find positive numbers
&, v and a natural number » such that ||j#|||, <& implies

1 ,
Ty (@) = Q(~ m) <y

Yo
Let {#,}p.4 be a system of mutually orthogonal blements with
S'm,(#;) < ~oo. Then we can find >0 with Ym,(aw;) <1, and also
igd 2ed
¢ >0 with | Da'@il, <&, where A’ is an arbitrary finite subset of A.
ded’
It follows that

’

a O 1 [a ,
@( Y”’A)=‘>Q(““mx)<'}/7

Yo

and hence

: -
Y o 8
S — el and 3 @ eR.
2 p

led Aed
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Thus m, is monotone complete by virtue of (M.8"), and so (i) — (ii) is
proved.

(i) — (iii) iy already kmown [4;§ 38].

Now we shall prove (iii) — (iv). Since B = R, m, is monotone complete,
and a fortiori complete. Then as shown above, we can find positive numbers
¢, " and a natural number », such that |||o|||, <¢' implies

1
el—a) <y

Let m,-lima, = 0. Sinee m,-lims, = 0 is equivalent; to lim||[a,||, =0,
Y00 . P-r0Q P00

for any £ > 0 we can find py = w(£) such that ||[&w,[|l, < & for all 4 = .

From this it follows that

lln_l 0 (—é m,,) < 9.

Hb0O Yo

Q(Ti w,‘) <v (w=m  and
Here & i arbitrary and we have (iii) ~ (iv).

If we assume (iv), we can find positive numbers ¢ and y’ sueh that

lllwlfl, <& implies ¢(#) <p’. This implies completeness of ||| - Illp5 1. @. that
of my,, similarly to the foregoing proofs, q. e. d.
] Next we consider the case of R being discrete. Since a discrete space
is always semi-regular, the assumption of semi-regularity mow becomes
u_une.e(?ssa,ry. But instead of this, we must assume the following two
conditions on the discrete basis {¢;; AcA} of R (see (2.9)): '

(d.1) for any @eR, there exists M, > 0 for which [&] < M, (Aed)
where o = 3'&0,. ’ ,

led

(d.2) {es}1¢4 18 weakly bounded, namely, sup|@(e,)| < oo for each
@eR. o
We say that a basis {e,},,, of R is normal if it satisties (d.1) and (d.2).

A basis which satisfies (d.1) is normal if and only if ti i 5 (5
. : : if the b f
defined by the formula ¥ if tho banis of B, {8},

1 if
0 if

=,
A,

(B ) =

also fulfils (d.1) in B. When R is a normed diserete space with a perfect
norm ||, R always has a normal basis. Indeed we may select a basis
system {e;};, 4 out of all atomic elements of R with llell, = 1.

On the other hand, we can prove the sufficiency of this condition

for the existence of a i i
perfect norm, in the case of R bein, i- P
space. That is, we have , e b annsimogui
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TEEOREM 3.3. Let R be a discrele quasi-modular space and have
a normol basis {6,},, .. Then R is a modular space with a perfect modular m, .

Proof. We denote by S the totality of all xeR for which [§| <1
(Aed), where & = > &¢;.

led

For any #<R, there exists a > 0 such that aweS and g(aw) < 4-oo,
because {,},,4 is & normal basis and ¢ satisties (p.4). We define a fune-
tional 7% on E as

(3.16) m(x) = Bug{lil (lz])— o ()}

Te
Then, similarly to Theorem 3.1, we can see without difficuity that m
gatisties the modular conditions: (M.1)-(M.7) except (M.3). For any ZyeR
we pub

ne(#) = o(@) and n,(2) = Tol(|z]) (@R and v >1).

Lemma 2 also ensures the existence of positive numbers &, y and
a finite dimensional normal manifold N, = N,(Z,) such that
no(@) = o(#) <e  (welg)
implies
My, (@) = [Tl (#]) < v-

I we[NF1S and (n+1)e > o(x) >ne for some n, there exists an
orthogonal decomposition such ag

=@+ Tt ...+ Tt Yt Yt e

where &2 < o(®;) <e (4=1,2,..., k), y; is an atomic element with.
4oo >p(y;) >e for each 1 <i <k and o(2) <s&/2. We easily get
kE<2ntl) and & < (n+1). Sinee y; = &6 and |&| <1 for every
1 <i<k (because weS), we can find a positive number § = (%) >0
for which

sup [T (62)] < 6

holds. Then we obtain

J *
@l = 3 ol (il + ) Fal(lyal) -+ ol 12D

=1
< 2(n+1)y+ (1) d+y

n-1
— &

4 dy+23
<Ly L g < 2
&€

] [
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Putting e/(4y-+26) = ¢, we have

-t

Bl (|2]) < — o(®) for all @

-
such that ¢ < g(¥) < oo and weN;-. Hence

(o) = sup {o[Zo|(|2|)—el@)}-+ sup {olZ/(la))— o (@)}
maNd-nS raNg~S

< osup {ofBl(lal)—e@)}+ sup {ofZol (@) o ()}
@aNE S, 0@ < . waNp S

<oyt sup o|Zo|(lel) < oo,
2eNg S

because N, is finite dimensional. Therefore (M.3) holds. Applying the
same method as in Theorem 3.1, we can show that

my (@) = sup {|T(x)| —M(T)} (weR)
:-6572
is a perfect modular on R, q. e. d.
) Finally, we deal with the general case, that is, no agsumptions of the
existence of atomic elements are made. The following theorem is nothing
but a generalization of those of [7; Theorems 3.6]:

TreorEM 3.4. Let B be a quasi-modular space with o quasi-mod-
ular ¢ and semi-regular. In order that R be a Banach space with a semi-
continuous norm | |ly, <t is necessary and sufficient that we be able to define
a monolone complete modular m, on R. In this case the following three
concepts of convergence:

(1) |Ill-convergence,

(i) o-convergence,

(iii) m,-convergence,
are mutually equivalent.

. The assertion of this theorem follows immediately from Theorems

3.1, 3.2, 3.3 and Lemma 2 (here we can prove the monotone completeness
. 1 1

of ||-lo by putting ny(s) = |||, and n, (z) = g(--f w) for each » 21 and
’))

2eR). ‘

§ 4. Finite quasi-modulars. TIn this section, we shall explain the
supplementary results regarding quasi-modulars.

) A quasi-modular ¢ iy said to be finite if the following condition is
satisfied:

(p-8) o(®) < +oo for all weR.

icm
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TueoREM 4.1. Let o be a finite quasi-modular on R, and let R be
a Banach space with a semi-continuous norm. Then the norm bounded linear
Junetional is wniversally comtinuous. And hence R is semi-regular.

Proof. Let f be a norm-bounded linear functional on R, and ||-|| be

a complete and semi-continuons norm on R. Sinee ||-|] is semi-continuous,
if we put )
(4.1) ng () = g()

and

(4.2) n (@) =l (»=1,2,...),

then (4.1) and (4.2) satisfy the conditions of Lemma 2. Hence there exist
a finite dimensional space N, C B and ¢, y >0 such that

(4.3) o(@) <e and we(1—[N])R = R, imply |z <.
Lot [p;14;.4 0. For every weR, and a > 0, we have
(4.4) inﬁe(a[pa]w) =0,

because of (3.4) of Lemma 1 and (p.5). (4.4) implies by (4.3)
(4.5) )infllf(a[pa]m)l < vl
Since a is arbitrary, (4.5) implies also

(4.6) inf|f([pJa) =0 for wck,.

{4.6) means that f is universally continuous on R, (cf. 4, § 19). In a finite
dimensional space N,, any linear funetional is universally continuous,
therefore, f is universally continuous in the whole space R. ~
From this theorem and Theorem 3.4 we have
COROLLARY. Let o be a finite quasi-modular on R. Then R is a Banach
space with a semi-continuous norm if and only if R has a complete modular.
In this case, we do not assume that R is semi-regular. i
THEOREM 4.2, Leét R be non-atomic. A gquasi-modular o on R is finite
if and only if there ewist ¢ amd y such that

(4.7) o(20) < yo(w) for all @R with o(w) > e.

Theorem 4.2 iz a generaliia,tion of Mazur-Orlicz’s Theorem 4:in
[7]. The proof of this theorem is similar to that of [1] or [12] and thus
omitted.

We also have

THEOREM 4.3. Let R be non-atomic and let ¢ and o' be finite quasi-
modulars on R. Then there ewist &, y such that

(4.8) o (@) < yo(w) for all w@eR with o(w) >e.
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By the same method applied to [12], we have

THEOREM 4.4. Let R be discrete. Then o quasi-modular ¢ 4s finite

if and only if

(£.9)  g(éa) < H-oo for all atomic elements acR,

(4.10) there emist & >&' >0 and y >0 such that ¢ = o(@) > &' dmplies
0(20) < yo(@).

In [6] H. Nakano has defined coneave modulars. Theorem 4.2 of [6]
ig included in .

TasorEM 4.8. Lot B be non-atomic with a finile quasi-modular )
such that o(a) = o(b) if |a| = |b] and lim QL?Q < oo for every aeR
§r00 - ) )
Then R is semi-regular if and only if
1im 249)
fsoo £

>0 for every a 0.
Proof. If R iy gemi-regular, there exists a modular m such that
m(2) < p(x) for each z<R by Theorem 3.1. Since

. m(&w
h1n——§—l >0 for every @ >0,

it follows that

—T-' >0 for every m =0,

o i i 269) .
onversely, if 5_,1112 : >0 for every # >0, then, putting

_ o 0(£2)
p1(@) —-hm_‘“f - and  p,(w) = inf supp, (@),
d=00 02y b gtee] ded
we have

(411) py(aw) = apy(w) for o =05
(#12) pa(@ty) = py(a)+py(y) it o Ly

413) 0 < impli
(413) 0 < @4 2 implies gggpa(wa);m(w);

(£14) 2y(0) >0 it @ >0,

8
any 0( i 514:14-)1‘ ioll:x(;;s frcim;he )f:c]slts that p, () > 0 for any 0 < weR and that for
av gyt =-1,2,...) there exi
sach that b < X8t 0 < beR and a subsequence {v,}u1,s,..,

] =12,... i ; .
(of. [4;§14]). vy (8 ). Note that in this case R is totally continuouns

icm
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From these facts we can see that f(z) = p,(2')—p,(27) is a universally
continuous linear functional on R such that # > 0 implies f(#) > 0. Hence
R is semi-regular, q. e. d.

§ 5. Function spaces Ly and 1(2,). In this section, we shall
consider the function space Ly, , which is defined in §1. Let M(s,t)
and N(s,t) be real-valued functions satisfying (1.1), (1.2) and (1.3)
in §1.

Lemya 3. In order that Ly y C Lare,y o 48 necessary and sufficient
that there ewist positive numbers o, 8 and o function a(t) belonging to L,[0,1]
such that

(5.1) N(as,t) < 5M(s, )+ a(t)

for all s =0 and a. 6. 1€[0,1].

The proof of Lemma 3 is essentially the same as in Theorem 1 in [2]

and so it is omitted here.

Applying this lemma, we obtain 2 necessary and sufficient condition
for the semi-regularity of Ly, that is (cf. Theorem 4 in [107]).

THEOREM 5.1. Ly g 48 semi-regular if and only if

M(s,t
62 1mEY S0 foraoe te[0,1].

4500 8
Proof. Let Ly, be semi-regular; then for any meagurable set e
with me(€) > 0 we have a positive measurable function @ (t)e Ly, (1. e.
the conjugate space of Ly 4), Whose support e, = {{:@(t) # 0} is con-
tained in e.
Putting N (s, t) = @(f)s, we have Ly o C Ly, 4 and by (5.1)

(5.3)  slat) < 6M(s, t)+o(t)

for all s > 0 and a. e. te[0,1], where ¢(t)eL, [0,1].
From (5.3) it follows that

Ms,t
hm———(—l) >0 for a. e. teg,.
800 8
Since ¢ iy an arbitrary measurable subset of [0,1], we have (5.2).
- Conversely let (5.2) be true. Then we put

(6.4) F(5) = Min (1, @M)

8500 $
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F(1) is a finite-valued messurable function, as can easily be seon on
[0, 1] with F(#) > 0 for a. e. te[0, 1]. Tet H, be the get

M(m,1)

B, = t:te[0, 1],v~—~7—1; > A (1) for all m > n}.

Then H,4, [0, 1] and

M(:, t) N

(5.8) )y for all s z=n and tel),.
For the arbitrary measurable set ¢ (m,(e) > 0) in [0, 1], there oxists

By, with mee(e ~ Hy,) > 0. Now we put for every 0 < @ (e Ly, i

floy= [ F@)-a(nar.

e Bng

(5.6)

Then by (5.5) we obtain

1

F(t)a@) @t <momle ~ Byg)+4 [ M{w(1), o) d.
. §

zr\Eno

This shows that f(x) defined by (5.6) is & universally continuous linear
functional on Ly, y- Since ¢ iz arbitrary, Lyr,yy 18 semi-regular.
Let L,y be o finite quasi-modular space with the quasi-modnlar

1
o@) = [ M (la(1)], 1) .

We can find positive numbers &, y such that

0(20) <yo(w) for all wmeR with g(w) = &,

Dby virtue of Theorem 4.3. Hence, by a similar method applied to the proof
of Theorem 5.1, we can prove

) THEOREM 52 In order that Lrs, o be finite, it is necessary and suffi-
cient that there ewist a positive number y and a funotion ay(t) ey [0, 1] suoh
that "

5) M(26,1) <pI(s, 1) | ay(t)

for all 8 > 0 and a. e. te[0, 1].
‘This theorem is considered as a generalization of that of [9] con-
cerning the so-called /,-condition.
Let cb(s,t),.(s,t)e[o, +00) %[0, 1] satisfy the following:
(@) D(s,t) is a convex function of s 2 0 which is not identical to
zero for a. e. te[0, 1],

in aqdition to (1.1):(1.3). Such a funetion ®(s, 1) is called & modular
Sfunetion and L,p(,, y s called a wmodular Sfumetion space.

icm
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From Theorem 3.2, 5.1, 5.2 and Radon-Nikodym’s Theorem we can
infer

THEOREM 5.3. In order that Ly, (where M(s, 1) satisfies (5.2)) be-
come o Banach space, it is necessary and sufficient that there ewist a modular
funetion Py(s, 1), y >0 and ay(t) belonging to L,[0, 17 such that

(5.8)  Dols,t) < M(s, ) < Bolys, 1)+ (1)

for all s =0 and a. e. te[0,1].

) We may choose ag @y(s,t) the maximal modular function &, among
those @ for which D(s,t) < M(s,?) for all s = 0 and a. e. £¢[0,1].
Finally we comment shortly on a sequence space which can be con-
sidered as an example of a discrete quasi-modular space.
Let M, (&) (n = 1,2,...) be the sequence of non-decreasing functions
of £ > 0. The sequence space [(J},) is the totality of all sequences = = {£,}
(n >1) with

olam) = 3 M,(al&,)) < +o00 for some a > 0.
n=1

We eagily see that [(M,) is a quasi-modular space with the gquasi-modular
9(“’) = ZMn(lénl) for @ = {En}el(zl[n)
n=1 .
Corresponding to Lemma 3, we have the following

LevMaA 4. U(M,,) C U(N,) if and only if there emist positive numbers
&,y and an integer v and o sequence of positive numbers {a,} (n > 1) with
oo B

Za,, < +oo such that

N=1

(5.9) N, (~1 E) < yMyu(é)+a,  for  Mu(§) <e.

”

To avoid repetition, we do not prove the above lemma. We also
have

THEOREM B5.4. 1(1,) is finite if and only if there ewist positive numbers

o0
& v and a sequence of positive numbers {a,} (n > 1) with Y a, < + oo such
N=1

that
(5:10) M, (28) <y M, (E)+a, for M,(&) < &
(6.11) M,(&) < 4+o0  for each &£=0 and n = 1.

studia Mathematica XXI 3
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If 1(M,) has a normal basis, we can gee by Theorem 8.2 that I(M,)
is a modular space with a modular m, (@) and "

(812)  my(a) = > M (8),
Ne=1

where M, (&) is a convex function of & =0 for every n > 1.

TumorEM 5.5. Let 1(M,) have a normal busis; then U(M,) is & Banach
space if and only if there ewists a sequence of convew function { My} (n 3 1)
satisfying the following conditions :

(5.13)  M(&) < Mo(§)  for  ML(E) < e

(0.1420 there ewist positive numbers e, a, y and o sequence of positive numbers

s 2;% < oo such that
Nn=
.]’I%(flf) < yM;b(f) ’l' Ay, fm‘ Ju*’n.(f) <e.

We cannot find an explicit condition for the existence of a normal basis
but there e'xist many examples of quasi-modular spaces which have n(;
normal basis. For instance: (s) = {the space of all sequences} and (@) ==
= {the space of sequences whose coordinates are 0 excdpt finite members}
ha,ve. o norma,l basis. (s) is not considered asy a normed space, yet (d) is
Zongdered a8 2 normed space. On (d), however, no perfect norm can be

¢fimed. In the case of 1, (0 < p < 1), m, which ig defined in Theorem 3.2

is 1)-type, 1. e. m,(x) =i§]é‘i[ for @ = (£} with |&) <1 for all ¢ > 1.

Eéenee, I-space is the best possible, if we consider l; a8 a normed space

f} . Z< »<1). Here I, (0 <p <1) iz a complete semi-normal manifold
N ¢
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