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then Tg is continuous and
™ = g(1(0)) = Pye) (9)
=170, (9) = 279, (Tg) = 27Ty (o),

Tt is now clear that ¢ must satisfy either (4.6) or (4.7) since it is one-one

continuous and satisfies (4.8).
We are now able to complete the proof of Theorem 4.1. Suppose that

the mapping ¢ satisfies (4.6). Then if f is any funection in lipa,
Tf(o) = o(Tf) = (T*D,)(f)
= My (f) = lf(t(‘f)) = M(g+0),
and a§ & consequence,
Tf(0) = Af(e+a),

—i <o <-+4.

—i <o < +14,

oekR,
for all f in lipa.
Similarly, if the mapping ¢ satisfies (4.7), then
Tf(o) = A (¢—0), ock,
for all f in lipea.
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A remark on an imbedding theorem of Kondrashev type

by
P. SZEPTYCKI (Pretoria)

1. The present note may be considered as the second part of Paper
[1]. An approach developed there in order to obtain an elementary proof
of complete continuity of the imbedding of the space W5 (R2) in C(RQ)
for m large enough (see the definition below) is applied here to study the
similar property of the imbedding of WZ,(£2) into the space of functions
integrable to the power p over a sufficiently smooth variety contained
in 2, and of a dimension smaller than that of Q. An elementary proof of
the Kondrashev theorem is obtained under conditions imposed on the
variety under consideration, which differ from the original ones as pre-
sented in [4]. To prove the continuity of the imbedding mentioned, it is
natural to impose the geometric conditions I invented by Ehrling; for
its complete continuity, the more stringent conditions II seem to ‘be
necessary.

Several papers have been published recently in connection with simpli-
fications of imbedding theorems (cf. for references [2]).

In what follows 2 will denote a fixed bounded domain in N-dimen-
sional Euclidean space with points x,y,... and corresponding volume
elements dz, dy, ...; C(£2) will denote the space of functions continumous
on 2, C°(Q) the space of functions with continunous derivatives of all
orders on Q. In () we introduce the norm

Wl = (3 [ 1Duf1 da)'rr,

a 2

p>1,

where the summation is extended over all derivatives of f of order not
larger than
o°f

a an !
Omgt.. . 0wyl

m(D,,f: la| =a1—)—...—|—aN).

By completion of C*(R) in the norm || |, we obtain a Banach space
W5(2) of all functions of I”(2) whose generalised derivatives up to order
m all belong to I?(Q). In the occurrence of other norms, we shall indicate
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the space concerned, e. g. fo’ () denotes the norm of f in W% (X). The
A

simplified notation |Df|” = 3 |0f/0w;° is used throughout this paper (the
summation is extended over all the derivatives concerned).

In integration over varieties of dimension less than that of 2 we de-
note the surface element of the variety by the same letter as the variety
itself.

In some of the estimates which follow, constants which are generally
different, will be denoted by the same symbols, but in each ease it will
be adequately described.

2, We consider an s dimensional variety S, contained in . S, will
be subjected to one of the following conditions.

I. 8, can be divided into a finite number of subvarieties V, having
the following properties (Ehrling [2]):

(i) In 2 suitable system of coordinates V, can be represented

by the system of equations ys+1=<p3+1(§ﬂ/),...,?/N=(pN(?t'), ‘where

I/ = (Y1, .., Ys) Varies over an s-dimensional domain Q, and the functions
Peqns +oo @y Satisfy the Lipschitz condition in Q.

(ii) There exists a fixed N —s dimensional spherical segment X' with
radins and solid angle both positive, and such that for every point y =

= (§,¢(;)) of V, there exists an isometric image X, of X with vertex
at vy, situated in the y,.i, ..., yy-space and entirely contained in Q.

In connection with the above and the following definitions we intro-
duce the following notation. If X, with vertex at « is an isometric image
of the fixed spherical segment X, and r is a positive number not larger
than the radius of X, then we denote by X,(r) the spherical segment
obtained from X, by shortening its radius to r.

We also introduce the stronger condition IT.

II. For any fixed positive 6, S, can be divided into a finite number
of subvarieties V,, with the following properties:

(i) The variation over V, of the angle between the tangent plane
to V, and any fixed vector does not exceed §/2. .

(ii) For every sufficiently short vector & the variety V,--% obtained
from V, by shifting each of its points by % is also contained in £.

(i) For every vector &, which forms with the tangent to V, at a certain
point an angle not less than (and therefore with the tangent at every
point of V¥, and angle not less than §/2) the variety V, can be represented
in a system of coordinates ¥y,..., ¥y, in which the vector & lies in the
subspace ¥Ys 1, ... Yu, in the form

Ysia = ‘Pa+1(f’7)a oYy = ‘PN@)

iom
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where gj varies over an s-dimensional domain Q, and @i, ..., @y satisty
the Lipschitz condition on £,.

(iv) There exists a fixed ¥ —s dimensional spherical segment % with
positive radins and solid angle such that: For every sufficiently short
vector k forming with the tangent to V, at a certain point an angle not
less than ¢ and for every » from V, there exist segments £, ; and X,
with vertices respectively at #+4% and =, situated in y,,4, ..., yy-SD2Ce,
contained in £ and such that the common part Ay g of Zp([k]) and 2y 5 (|%])
(cf. notation introduced above) has & volume not less than a]7c]N -9,
where the constant ¢ > 0 does not depend on 2 and %, but might depend’
on 4.

We are not going to discuss the possible interdependence of these
conditions; we mention only that the set of conditions IT is stronger than
the set I. The relation between these two sets is similar to that between
the cone property of Ehrling and the strong cone property of Nirenberg
of [2] and [3]. If the variety S, is situated inside Q and is smooth enough,
e. g. of class C% then both I and II are sabisfied.

3. We are now going to prove the following

ToeoreM (Kondrashev, cf. [4]). Let feW5,(Q2) for m > [(N—s)/p]+
+1 (1) and S be on s-dimensional variety in Q satisfying conditions I.
Then: (i) f resiricied to S, if of class IP(8,) and (ii) the imbedding W5,(2) —
— IP(8,) defined by restriction of fumctions from W5(Q) to S, (which is
Justified by the previous statement (1)) 4s continuous. (iii) If S, satisfies con-
ditions IL then this imbedding is completely continuous.

The proof is based on the following lemmas.

LemyMA 1. If X is an n-dimenstonal spherical segment with vertes at
0, and f and p are fimed numbers, 0 < f < n, p >1, then there exists a
constant C depending on p, f, and X, and such that for every feC™(X)

[ e If@)Pdo < Olfin
z
if only m = [(m—p)[p].
LemmA 2 (Nivenberg [3]). If 2 is an n-dimensional spherical segment
with radius h and verten at 0, and B s o number such that 0 < a =

=1—(N—p)/p <1, then there exists a constant C which depends on p,
B and the solid angle of X and such that for every fe0®(ZX)

J 1f@)—f(0)ida < OB+ ( [ al~"|DfP da) ™.
z z

For futher comments on these two lemmas we refer to the Paper [1].

(%) [q] denotes the entire part of g¢.
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Levma 3. Let V, be an s-dimensional variety situated in Q2 and sabis-
fying conditions II. Let k be a vector which forms with the tangent to V
at every point an angle not less than 6/2, where 8 is a fized constant, and
such that Ve-+k s also contained in Q. Then there ewists positive constants
C and v such that for every function feC®( ) and m = [(N —s)/p]+1

[ @+ —f@)PaV < Olfifn e 7
Vs

Note that in this inequality ¢ does not depend on f.

Proof. We use the properties (iii) and (iv) of II. We represent V,
in the form y,,, = ¢s+1(§;), e YN = sz(i;) and to every point
7= (55, q:(?;c)) and z-+k = (52', (p(;'})-{~ k) of V, and V,+%k we attach
N —s-dimensional segments 2 and 2, ., with vertices at @, and z+ % iso-
metric with the fixed segment X and situated in the ¥y, ..., yy-Space.
Also from the condition (iv) we can assume that the volume of the common
part of these two segments shortened to |k} viz. 2y (|k]) » Zp k(1k]) = Azp
is not less than a|k|"°, where o >0 is a constant independent of .

We have for a fixed # and every ye;;

[If(@+k)—f(@) <If(@+k)—F)+f@)—F).
The integration of this inequality over A, yields

a6 |fla+*)—f@)| < [ (If(@+ k) —Fw)+If(@)—F(y)l) dy

Ag,le
< [ ek —fldy+ [ If@)—f@)ldy
Zp+1:(1%1) Z(1k[)

and applying Lemmas 2 and 1 we get
el =* |f (@4 k) — f ()]

SCRM=[ [ |Df@Y lo—k—ylPay+ [ lo—y"|Df(y)P ay]""
Zg 451l Zgp(1%1)

<OWPF=+[ [ ly—a—KADf@)Pdy + [ ly—ol 101 (y)?dy |
Iz

Tptike
SOR=Ufily -+ o

Integrating the above inequality to the power p over V, (i. e. in effect
the integration is extended over two XN-dimensional domains — the
tivst composed of the segments 3, arranged on V, and the second composed
of the segments X, ; arranged on V.+k) we get

©

icm

Imbedding theorem 71

[ fl@+1)—f@)Pav <Ok?|fk
Fs

%S asserted.

Proofof the theorem. We prove first that the imbedding W5, (2) —
— I?(8,) is defined and continuous it S, satisties the conditions of I.
It is sufficient to prove this fact for any one of the finite number of sub-
varieties ¥V, of §;. For a fixed segment X, as described in the condition
(ii) of I, let us denote by V,xZX the N-dimensional domain obtained by
attaching to each point # of V, the eorresponding segment X, with vector
at .

For every function fe0%(Q) and for every fixed #eV, and yeX, we
have

Ifl@) < (@) —Fl+If )l
The integration of this inequality over X, yields

vol(Z) If(a)l < [ If(@)—fw)ldy+ [If(y)ldy

which from Lemmas 1 and 2 and the Schwartz inequality gives for
m > [(N—s)/p]+1

(@) < ClfIWn(Zs).-
Integrating this to the power p over V, we get
[If@Pav <o [ D' |D.fPds < O|lfl3-
Vs

Vst |al<m

We can extend this estimate by continuity to the whole of W%, (R2)
and the firgt part of the theorem follows.

To prove the complete continuity of the imbedding we must verify
that the image under this imbedding of a bounded set in W5,(£) is compact
in I”(8;). We are going to use the known suffieient condition for the
compactness of a set in L”: A set in IP(S,) is compact if it is bounded
and if

lim | |f(w-+k)—f(=)|" ds

tel—>0 &

is 0 uniformly with respect to f in this set. The first condition is automa-
tically satisfied as a consequence of the continuity of the imbedding;
to prove the second condition we reason as follows. Let feC™ (L) and for
a fixed number 6 > 0 let us divide S, into subvarieties as deseribed in II.
If for a fixed subvariety V, the angle between the tangent to Vs and the
vector % is not less that 6/2, then according to Lemma 3 we can find a con-
stant C, which may depend on 4, such that
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[ flo+T)—f@)Fav <OIfE kP
Ve

where y is a positive constant.

If the angle between k and the tangent plane to V, is less than §/2
then we can find enother vector k; of length |k,| = |k| and such that the
angles between & —k, and the tangent to V,+ %, and between k,, and the
tangent to V,, are not less than 6/2 (if V, has the properties described
in IT then V,--% has these properties also provided that % is short enough).

We get the vector k,

([ 1F@+m—f@rar)” <( [Ifa+o—Ffe+r)Pav)”
Ve .

Vs

< ([ f@+ k) ~f@pPar)”

8

= @) —f@+k—k)Pav)" +{ [ |f@) ~f(a+ k)P av)”
VS

Vstk

each of two above integrals can be estimated by means of Lemma 3.
Thus in both cases the integral under consideration tends uniformly to
0 and the proof is completed; the estimate of lemma 3 can obviously be
extended by continuity to the whole of W2, (Q).
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Approximation des opérateurs de J. Mikusifiski par des fonctions
continues

par

C. FOTAS (Bucuresti)

Soit ([0, co) Vespace des fonctions continues définies sur [0, oo)
muni de la topologie de la convergence uniforme sur tout compact de
[0, c0). Par rapport & la convolution, C[0, co) devient un domaine

d’intégrité dont le corps M des quotients formels -;:, f,9eC[0, c0), est

Pespace des opérateurs de J. Mikusidski (). Une suite {?—} converge
n

fo _ B f_T

vers I (dans M), s'il existe des représentations raira p = 7
n n «
telles que f, — f (dans C[0, oo)) (3).
TUn probléme naturel est de savoir si tout opérateur f}e‘)ﬁ peut &tre

approché par une suite {k,}, k,<C[0, oo). T est évident que si g est nulle
dans un voisinage de lorigine, alors cela n’est pas toujours vrai. Dans
cetite note nous montrons que la propriété ci-dessus a lieu dés que g n’est
pas identiquement nulle au voisinage de lorigine.

Je tiens & remercier M. J. Mikusirigki qui a bien voulu me proposer
ce probléme (au cours du Colloque d’Analyse Numérique tenu & Cluj,
décembre 1960).

Nous commengons par établir une proposition préliminaire dont
notre résultat sera une conséquence immédiate.

Leyvuz. Soient f, g des fonctions sommables dans [0, 1], g non nulle
presque partout au voisinage de 0; alors il emiste une sutle de fonctions k,
continues dans [0, T] telle que {g*k,} converge en moyenne vers f.

Démonstration. Dans le cas contraire, en vertu du théoréme
de Banach et de Hahn et du théoréme sur la représentation des fonetion-
nelles linéaires continues sur Pespace des fonctions sommables sur [0, T'],

(1) Voir J. Mikusinski, Operational caleulus 1959.
(%) Op. cit., p. 144.
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