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ACTA ARITHMETICA
VII (1962)

Mean-value estimations for the Mébius function I

by
S. KnArowskI (Poznai)

1. This paper. and its continuation will be concermed with some
improvements of my earlier results [2], [3] in the distribution of values
of the Mobius function. Writing

= 2.“-('"’) ’
n<E

where u(n) denotes the Mobius function, I have proved ([2]) the following:
Suppose s

(1.1) f(M(“’ ) do < alogT, (T>1, a independent of T).

1

Then \

logT
1.2 max |[M(z)| > Tt e —
(1.2) 1<z<T l ()] XP( log]og.’l’)
for

T > max(¢, exp300a) ().

The implication (1.1)=(1.2) has been refined in a way in [3]. The
result is:

Suppose
(1.3) ’ |M ldw < e, (T>1, a independent of T).
1
Then
M ()] ( logT
1.4 l do > TRexp [— ————=
(1-4) {’ ] P VioglogT

T > max(e,, €%) .

(*) Throughout this paper e, 6, ¢;, ... stand for positive, numerical constants.
9*
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The proofs of both these results base on the observation that (1.1) resp. (1.3)
would imply what follows:

(1.3) Al the complex G-zeros have o = § (the Riemann hypothesis).
(1.6) Al Z-zeros are simple.

(1.7)  Let o, ga, be different complex (-zeros. Then

: 1

—o] > e TesSP. |10
I@I 92| 15]’/a(max|ef|)4 ’ ‘ | 811 max[m!
im1,2

One might improve a little the results of [2], [3] by deriving ostimates
(1.2) resp. (1.4), holding however vnly in some finite Z-interval, from (1.5),
(1.6), (1.7) assumed true also in a suitable finite range. But this would
be of no deeper significance.

The aim of this work is to improve the resulty of [2], [3] in two di-

rections. First, it will be shown that (1.3) implies & much better ine-
quality than (1.4); I shall in fact prove
TegorEM I. Suppose (1.3). Then for

T=(+0"%H
we have

T
(1.8) | ‘lﬁﬂm > L

1
ET

(c3 can be numerically calculated).

Secondly, as it will be seen, for the proofs of (1.2), (1.4) we can
dispense with the condition (1.7) altogether. We have, namely,

TeeorEM II. Suppose that all the zeros of £(s) in the rectamgle ‘
0<o<l, <o

are simple and have ¢ = . In that casc we have

Ly
M ()]
19 L@ gy logZ
{1.9) Xf p do > T' (xp< 12 mm()g,,,logloglog’l’)
with
leg?
X = Texp [—100 —2—_ !
exp‘( 100 1Oglongogloglog1)

for
{1.10) e < T < exp(wW)

{04 cam be numerically calculated).
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In the present paper I shall prove only Theorem I; the proof of
Theorem II is postponed to the second part of this paper.

The essential idea of the proof £ Theorem T is due to A. E. Ingham.
Actually, Ingham was concerned with the function 4(z)= p(@)—=z
{w(@ = X A(n)) and found some lower bound for its absolute value (2).

n<x

His idea is, roughly speaking, the following: on multiplying both sides
of the explicit formula for ¢ (#) by a certain suitable factor, on integrating
it further and observing that the {-zero with minimal positive imaginary
part is “very remote’” from the remaining {-zeros, one can reject those
remaining ones and carry out the desired estimation by using only one
(numerically known) {-zero.

I hear from Mr. Ingham that he had no intention of publishing his
result. It seems therefore that the best form of my acknowledgement
would be, with Mr. Ingham’s consent, the reference to this letter to Pro-
fegsor Turan.

2. In what follows we assume (1.8) (and have therefore as its con-
gequence (1.5) and (1.6)). Let {T,} be the sequence of numbers such that

< T, <v+1 (v=1,2,..),
and

Ic—(ls—) <ost1/ﬁ_°, s=a+o:t_, j<o<2, t=T,.
The existence of {7,} follows by (1.5) (see [4], p. 303). Write

det y; L
w)_hmz 7o)’ t<ao< oo,

where ¢ = f+1iy (8 =% by (1.5)) runs through the [-zeros. As is well-
known (see [4], p. 318) My (=) is defined correctly (i.e. the limit lim exists)

¥—>00

and furthermore

M(z— 0)+M(m+0 (—1)* " (2n/m)™
(2.1) M) = +2- Z (2n)InL(2n+1) "
LemMma 1. We have, under (1.8), for w>,§, y=1,2,..
1 @@
(2.2) 2o ' 121 77| < oot ),
where
[ 0 for min |[#—n| > —ill‘w
n=1,2%..
1

‘3 for  min lp—n|< 5.

n=1,2..
(*) I have known the result, together with a sketchy proof, through the medium
of Professor Turén who had been informed about it by Mr. Ingham in a letter.
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Proof. We consider the integral

1 f
2ni

25T,

x¢ ds .
T

and get by the theorem of residues (see [4], p- 318)
)" (2m/w)™ w0
—2+ Z @n) 'nc Bn+1) l“O(vw/m) ’

the constant involved with O(...) being numerical. On the other hand

23) A»)=

e

Byw) =

21T, %

24T
e 1 Tu(n) J w\8 ds
ds _5../ 2m i ( )

0— i, n=1 n

—

Suppose min |o—n| > 14 and use [4], p. 53, Lemma 3.12. This gives
n=1,2,...

M@—0)-+M(x+0) b @
— 3 +°(7)+0 (;“““mm |m"::m) ,

n=1,2,...

) =

whence and by (2.3) the result follows in this case,
Introduce now the following notation:

1 24400 . i 2441 .
y L Y .
I(y) = s f ;—ds, I(’!/:T)—ﬁ f sdb:
2400 23T
Ay, Ty =I(y)—I(y, T).
As is well known (gee [1], p. 75)
|A(y’T)|<nT|logy[ if y#£1,y>0,
Ay, T)| <y it y>0.
1 i y=1,
Iy)=14+ i y=0,
0 if O0<y<t.
Hence
o0 oo
24) Fyo) =2,u('n)1( ) Z” (Z) yu(%)A(:—i, T»)
Tl o=l

=M(w—0);M<w+0>+0(2

==l
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Let m = m(v) be the integer defined by m—}i<e&< m+%. We have
(corapare 1], 79)

2 2
@ }_ 1 < 1 n+a& i nEm,
v ll ™ n—u|
(2.5) ]A(f 1')< 8q
. o, 2
(fn— <3 if n=m,
so that
m—1 2 m—14 ws
& & 2]
> A(a’ T') NP R U
ne=1 n=1
9-([:!:1'*‘1)X 2 2([¢1+l)m o
&
D a3 m) <5 D) ST osb@+),
n=m-+1 n=m+1 N
® @# 0 (32 ®
n=2([x]+1) 4 (/n,’ T") = 5'u=-=2([4§]7-¥-1)""2(1/2)“ = au; '

This together with (2.3), (2.4) and (2.5) completes the proof of Lemma 1.
LeMMA 2. We have, under (1.3), for 0 <2 <}

% z* ds
M) =5- | =57
21r(l7£ 5 C(9)
Also
20
2.6 r)| <
® ',ZTQC() )| <
and
(2.7) | Myw)| <ey if O0<z<1.
Proof: We have ([4], p. 53)
24T,
1 z8 ds 1
(2.8) 0= | Trgto (;)
2—iT,
14447,
\7 a¢ 1 x® ds 1
= 7 o= Ty 0 e 1K
oY _(g)+2m1/4;[ . T oM (vmm)

Hence, passing with » to oo,

Q o ds
M) = — f——-——— .
271:(1,&)8 Z(s)
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Thiy gives in particular (2.7) for 0 < < }. For § <@ <1 (2.7) follows

straightaway from (2.1). Further

14-HT, i =
. Is s ds \
1 J o8 ds 1 J o ﬁ&) ’ <oy /1 Beyy

27:@(1/4) s L(s) 2mm_m s C(s P

whence and by (2.8) we obtain (2.6).
Lemma 3. Let us assume (1.3). Then

r
(2.9) fwi;-”(—@-ldw<(a+cm)’l'l/2, (r=1,
. 1

Proof. We have by (2.1)

| My()| < |M(2)| 4617, (021),

whence

r
f 1) dp < (@ 20y,) TH2
1

3. We turn to the proof of Theorem I. Supposing T >
write

(a+2)

M,(e*) = lim j;—“;, (o< U< +o00),

e T ol'(e)

and multiply it by e-ew—du-o¥ where § = opflog(2+a) (< 1; ¢4 guf-
ficiently small—to be determined Iater), g, = -+ 14.13 ... is the {-zero
with ‘minimal pogitive imaginary part, o=logTp, ¢ = (a-+2)"¥"
(61 Will be determined after ¢4 is fixed; for the time being we assume

1 . logp™
only ¢ < . and 03> ¢y S0 that writing 0 = fog Tp we have 0 < < 1),

Next we integrate the resulting expression in —oo < 4 < 4 oo

+c0
My(e¥) Y gMle—qn)=d(u—w)s
(31) mdﬂ = J lim 2 Wd% X

—% e,

o0

We shall show in"§ 4 on the right-hand side of (3.1) [ and lim can be in-
verted. We put first -

[
iy = [ B

icm®

iwhence by (2.9) f(f) <

Mean-value estimations for the Mébius function I 127

(a+ ¢)t*?) and have

d
o o = f(e¥)
f__lMl(e“ﬂ du— f_du———du
ei-uw(u—m)ﬂ eku-i-d(u—m)’
w(1+8) o(1+06)
e e et R,
Gutdu—a 10 oirite) Huttu—o
a-+c oc)(u—a))(or,—l-cl)
2 ] 6(1‘&—::::;.;(1%-{"D6 gd(u—m)ﬁ e du
(140 @(146)
- 1 dz
<(ated(h+20) [ 557
Swh6?
(056 (E20) e

T

After having fixed ¢ (0, what is the same, 8) we choose ¢y in such a way
ar to make the last expression

<¥r_ 1
8 o (el
Further
w(1=0) a(1-0)
M| eradu | My(e¥)]| .
’ gutdu—or ] Fursu—or }u+o<u—w)'
— —00
el fley oo i) Grosu—o),
Jut-d(u—o)? Fu-tou—w? 3 utd(u—o)?
—oo ¢ 6 0 0 é

Making ¢ > -~ we obtain
2044

201 B l__ 2018
2 Tog(2+a) 2 log(2-+a)
1 pon l o __ _1__ 0,
=5~ m-zlog 2 +a) 3 C18C19 <

whence the last integral is < 0 and thus

L rabu—0) <3 logp™

1-—0) (1] ?
LG I TR S . B
J hutdu—o) T puttumon T a0 J St a0
% -

This will be in turn

Gy

def
= FiRgtat Fizaed T gawdR ea(mo)z =L
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if only
206 = 2

N]P

m log (Tp) >

(which will be satisfied if ¢, > I 4-61’)

After having fixed ¢4 (wh;ch W11] be done in the nexti section) we can
make 2 again
Ve 1

8 ol (ed]”
It follows that
(oY) w(1+0) M) -
[5 . VT: 1
®2) |J st | i <V

w(1-0)

-} 00
4. In order to justify theinversion of [ and limin (3.1) we use (2.2)

—00 y—4+00
and (2.6) which yield

+00
, Al U
[ fasion= > _ce’(_‘):r"‘”"’(“‘“‘”dul
A Wi<T, o (e
¢ b e3u e Ole log 8/4
<t | et J Y gy - 0 | dy
2 Futsu—a ' ——
4 log8/4 ¢ log 8/4 0’}“ 'l‘lls o 6}""“(" o)t
(6, ) ! ) 2 W /9\8e
7
vlfﬁ + f q;m 1/5 +3;175 (ﬁ) .
Hence =1
“+o0
f M y(e¥) s \Cat N .
gunta(u—ap V¥ = j ewe—e)—du—wl gy
oo 1'
But
“+oo
f pule—en)—du—wl gy
-0
(e—eu? h
(e—e)o+ {l/a(u-—w)— } _ (e—a)® ~—
o P Vil gy = e(e m)w+————-—-M ._lc’
- P
-]
‘whence
+00
(41) _ﬂQ d V T li Y1 (o—o;)w+(“"“)2
gorutdu—ap A% = i im e B
e < iz, @ e)

icm

Meam-value estimations for the Mobius function I 129

Since ([3], p. 385)

‘ <%
o~ 27
we have
1 (Q__ oo +(e ex)2 a __(v-;)’u)’
]eC'(e) 3’
(e=1+1y, o= btiyy =3+i1413 ),
g0 that by (4.1)

+oo
(4.2) t M(ev)

P 2 71)’
e ‘/ 61'2(1914 Tedl” 2 2 )
Now it may be observed that denoting, as usually, by N (x) the number
of Z-zeros in 0 < 0 <1, 0 <i< @, we obtain

(y—y1)®
NV,
L
>r1
% @k @yt _em iy,
=J ¢ ¥ aN(z) = N(@)e +J Ne © |2 Pis,
20 ) 2

which, in view of the (rough) inequality

N@) < e, (2>20),
gives
(y—r1)? e by _(z—y1® by ¢ 8
Ze 4 <2’$fa;2(w p)e © da;<cnfte-'dt<7“-e i,
y>y1 20 6/
Consequently the sum of the series in (4.2) will not exceed

2055 =
E
whence fixing now ¢ at a sufficiently small value we get from (4.2)
+ - —
f () g oVEL 1 _¥m 1
'_;Q s | Z GRS Tol(e] . 2 ek (el
This and (3.2) give
o(1+6) —
[ MRS
Fou—a) T
i | Z Ted (o)
ie.
[ 2y(a)
! a)l"‘/” dz > oy ,
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whence

f L2l >

L4
f ngm)l dm = oppTH2.
T

and finally

Thig clearly implies (1.8).
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On the zeros of Hecke’s L-functions Il
by
E. FoerELs (Riga)

Introduction

1. In the first paper (see [1]) it has been proved in particular that
the Hecke-Landau function {(s, y) of the field K of degree n > 1 with
a complex character y modulo f has no zero in a rectangle

1—A4,flogD < o<1, Jtj<D?

{where D = |[4|Nf>=D,>1, 4 denotes the discriminant of the field
and A,> 0 depends only on n). For at most one real y in that rectangle
may be a simple zero B’ = 1—06 of Z(s, y); it is real and, if D, is large
enough, then

50} 8> DT,

B, if it exists, is called the “exceptional” zero. The corresponding character
% =z and funetion (s, ') also are called the ‘“‘exceptional” ones. Con-
gider, that y’ is a real character, not necessarily different from the principal
one.
" In this paper we shall prove the following
THEOREM. There is an absolute comstant A > 0 (which depends only
on n) such that for

s _|? # 0<AflogD,
" | AflogD  otherwise ,
Alog(s IA €[4, $log D]
in the rectangle (1— AoflogD < o < 1, |t| < D) there is no zero of the ]‘unotwn

Z(s H L(s, x) with at most one emceptwn B

We may suppose that the exceptional zero exists. If it does not
then this theorem (with &, = 4,/logD) is a simple consequence of that
proved in [1]. And so it is (with 6, = }4,/log D) if 8, [} 4o/log D, A,log D]
Hence, in what follows we suppose that

< A logD.
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