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is solvable in F. Hence (27) reduces to

k
fl@y ey Gay @) = me;’ri'f'aaowp'n-f'd ’
7=0

where clearly
V’(bi) =l1' (7 =1,., k)7 W(oao) :}'k+ly

and the induction is complete.
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Congruence properties
of certain linear homogeneous difference equations

by
L. CArLiTZ (Durham, North Carolina)

1. Introduction. In a recent paper [1] the writer considered the
recurrence

(1~1) Unt1 = f(n)“n"f' g('”’)'“n-l H

where f(n), g(n) are polynomials in n (and possibly some additional
indeterminates) with integral coefficients. It was assumed that

(1.2) w=1, w=f0), g(0)=0.

The main result of [1] is contained in the congruence

(1.3) -1y (:) Unsomti® = 0(modm™),
=0

for all # >0, m>1,r>1 and where
(1.4) 1 = [(r+1)/2],

the greatest integer < (r-+1)/2. Indeed, to get (1.3) it is only necessary
to assume that the coefficients of the polynomials f(n), g(n) are integral
{mod m).

A number of applications of (1.3) were given, in particular to the
polynomials of Hermite and Laguerre.

Tt seems natural to consider the recurrence

{1.5) 6%, = agy(n)ul® + ay(n) ul + .. + ax(n) Uiy

of order k+1, where the as(n) are polynomials in n with integral coef-
ficients. Corresponding to (1.2) we now assume that

(1.6) as8) =0 (s=0,1,...,j—1,5=1,.., k)%

also we suppose that (1.5) holds for all » > 0. In view of (1.6) it is not
necessary to explicitly define u®), vy u®,. We take u$® =1 and it follows
that

4® = a0),  uf =a1)uP+a,(1), ete.
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We shall show that g satisfies the congruence For n — 0. (2 2) is obvious. For m — 1 we have by (2.1) and (1.6)
. r P k
r e,
(1.7) ;Z:H)” (,,)u&"im(u&")’ * =0 (modm™), Um1(®) = (- am)) (@) + ) a(m) tms(a)
= j-l

for all % > 0, where ry is defined by (1.4). For a somewhat more general
result see Theorem 4 below. = (4 ay(0)) tm(2) + }; a4(0) U 5(%)
A number of applications of (1.7) are discussed. For example the 7
sequence {un} defined by = {2+ ao(0)) Um(®)
= Uy(0) Um() (modm) .

. © Pedd \1 " s o=
exp{aot+a1—2-+ “+ a"’k»{ 1} »;;_Jun%' For n =2 we have
pe k
where the a; ave integers (or polynomials in several indeterminates with Umia®) = (@ + ag(m + 1))ty a(e) + Z ay(m -+ 1) 1 4{(0)
integral coefficients), is shown to satisfy a recurrence of the form (1.5). ¥ =
Moreover the final result is made more explicit by determining the residue
of um(modm), when certain conditions are satisfied (see Theorems 8 o (¢+a° 1))%m+1 ? JI4122 L) ma-s(2)
and 9 below). In the second place the ge 10 defined ans
) bon D quence- {un} defined by means of = (04 @g(L)) () + 03 1) o)
00
-~ n
(L= at) ™ (1 — bt) (1 — et)~* = Z“”t ' = { (@ + ay(1)) ta (@) + as(1) } ()
e S = Uy(®) Um(®) (MmOd M) .
also satisfies a recurrence of the form (1.8) of order three; the number Assume that (2.2) holds for n =0, 1 , 8 where s is a fixed in-
of factors on the left wide can be increased. Finally some more special teger < k. Then (2.1) yields
applications are discussed in § 7. )
2. Asin [1] we consider in place of (1.5) the recurrence of order &k +1: g rmer(®) = (B + ag(s + M) thgym(®) + 2 ay(s + M) term—i(®)
(k) $—-1 )
(2.1) ’ Unga(2) = (aa—l—a,0 n))u,(k) +;‘a7 (m)u$ (o) : = (5 + ag(8)) thsml wH—Za, 8)'Ms+m—a(¢)
. =1 R =1
where as before the a;(n) are polynomials in # with integral coefficients; N
the ayn) may contain additional indeterminates but are independent = (”'*'““( y a4(8) s (@ )) ()
of #. We assume that conditions (1.6) are satisfied and that (2.1) holds =
for all # > 0. We take u{(®) = 1 and it follows that = 2ty 41(®) Un() (moOdm) .
@) = 0+ a)0), u(w).= (@ ag1)) 4 @) -+ a(1), et Hence (2.2) holds for s+1 and therefore for all n =0,1,..., k.

Tt is now easy to complete the proof of (2.2). Indeed,

Clearly u®(m) is polynomial in @ of degree n with highest. coefficient
equal to 1. : -
We show first that if m is an arbitrary integer > 1 then Upsmar(8) = (m+ao(n+m)) Un+m B) + Zaj(n—!— M) U - i ()
1 §=1
(2.2) = o Un{0) U @) = U m(40) (m0d)

k
for all n > 0, where for brevity we put = {a/‘—'rao(“)%n(ﬁv)-{- ;—E ai(n)un(w)} Up(2):

(2.3) tn(90) = ui(w) , = Uy p1() Um(®) (mo0dm) .
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We may state

TeroREM 1. Let un(w) e the sequence of polynomials defined by (3.1)
and (1.6), where the a;(n) are polynomials in n with integral coefficients.
Then

: Un(B) Un(D) =2 Uygn(®) (0Od M)

for all w20, m > 1.

A little more generally we have

THEOREM 2. Let un(x) = u(,,"’(w) be the sequence of polynomials defined
by (3.1) and (1.6), where the ayn) are polynomials in n with coefficients
integral (modm). Then we have

(2.4) U stm{B) == () Uen(®) 5= Un(0) ub(0) (mOd M)
for all n>0,t>1,m>1.

An immediate corollary ig contained in

TEEOREM 3. Let un = 4" be the sequence defined by (1.5) and (1.6),
where the ay(n) are polynomials in n with coefficients integral (modm). Then
(2.8) Unpim = Unliim == Uiy, (m0d M)
forall nz=0,t>1,m>1.

3. Tt follows from (2.1) that

. ] '
{8.1) DUn(®) = U y3(0) — . (1) tp—1(a) .
=0

Repeated application of (3.1) leads to

L
DPUy(B) = 2 Agi(n) Unes(@) (3,0 =0,1,2,..),
#="ks
whelze in. the summation we may suppose § > —n; the Ay(m) are poly-
nomials in # with coefficients integral (modm). Tt follows that

im
(3.2) %»(w)uin(w)—-%mm(w) = 2 Bi(n)tuny(®) (8, =0,1,2,..),
o =Kbm
k.where the ‘By(n) = By(n; t, m) are also polynomials in n with coefficients
integral (modm). Also we may assume that in the summation § > —n,
or what is the same thing
(3.3) By(n) =0
We shall require the

Leawa. Let wuy(w), (o), uy(), oy Un(®) denote o set of polymomials

Zplsw ;:fth ooefficients integral (modm) and highest coefficients equal to 1.
0

(—Htm <j<—mn).

degus(@) =5 (0<8<N).

icm°
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Let Aq, Ay, ..., Ay be integral (modm) and such thai

N
ZAsus(m) =0 (modm) .

8=0
Then it follows that

A, =0 (modm) (0<s<N).

For the proof see [1], p. 151.
By (2.3) and (3.2) we have

m
Z Bj(n) Uy 5(2) = 0 (modm) .

J=—ktm

(3.4)

Applying the Lemma to (3.4) we get

(3.5) Byn) =0 (modm) (—Fkim <j<tm).

We now define the operator 4 by means of

(3.6) APn = Un( @) Pn— Pkt 5

where ¢t and m are fixed integers > 1. More generally we define for v > 1

(3.7) Apn = (@) A" pn— A Pt «

Tn (3.6) and (3.7) pais an arbitrary function of n. It follows from (3.7) that

r

K= 3 (=1 ()1l (@) gnroim

(3.8)

Tt we apply 47" to (3.2) we get
tm

Hunfw) = ) A7 {Bim)unsso)}
Jou—kbm

(3.9)

Tn addition to the operator 4 we shall require also the operator o
defined by

pn = Z',‘(— 1y (:) Pntatm -

8==0

(3.10)

Cleary (3.10) is equivalent to

pusrm = 317" [[) s

8=0

(3.11)
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Returning to (3.9) we get
Ar_l{Bi(”)anH(”)}

r—1
v B
= 2 =0 (1)) B )
8=0
7—1 s
l(r«l—s) 18\ «-
_s;l: ( N ) (m)un+i+elm(m)'%‘(_]) (@)6‘:.31(7’11)
r—1
= Y (7)eBin omi{r=1=4) =10
i il —1) g—i |Um () ttn s 145t ()
1=0 8-1
r—1 —1—
i -1y ) Unm () U4 (i) 0)
i=0 suo
-1
Y [r—1 p—
% ( 4 )6{'87 ’Vl/) -4 un+7+1lm(w) .

Substituting in (3.9) we get

im  r-1

(8.12) Aun(@) = 2 2 (r‘il) 8By(1) A7 "t g il @)

o - d==Kdm =0
We shall now prove by an induction on » that
(3.13) A"un(@) = 0 (modm™)
for all'r > 1, where 7, is defined by (1.4). The cage »— 1 is contained in (2.4).
We aceordlngly assume that (3.18) holds up to and including the value

r—1. Since By(n) is a polynomial in » with coefficients integral (modm),
it follows from (3.10) and the elements of finite differences that

(3.14) 8By(n) = 0 (modm?) .
Consider the typical product
(3.18) As = 8"Byn) 4™ Uy i 0)

occurring in the right member of (3.12). For = 0 iti foll 'om (3.5
and the inductive hypothesis that follows from (8.9

(3.16) Ao = 0 (modm+iray

For i1 it follows from (3.14) and the inductive hypothesis that
(8.17) A;=0 (mod mf+[(7*’l)/2]) .

Since

. 14171212 (r+1)/21,
=212 [+1)2]  (1<i<r),
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it is evident from (3.12), (3.15), (3.16) and (3.17) that
A"uy(z) = 0 (modm™) .

We may now state the main result.
THEOREM 4. Let ux(®) = ul(x) be the sequence of polynomials defined
by (2.1) and (1.6), where the a;(n) are polynomials in n with coeffivients

integral (modm). Then we have

(3.18) D1y (Z) U)o ) = O (mOdAM™)

8=0
for all n20,r=1,t>1,m>1

THEOREM 5. Let un = ul® be the sequence defined by (1.5) and (1.6),
where the ayn) are polynomials in n with coefficients integral (modm).
Then :

T
(3.19) -1y ()ufg 9(0) thmrsim = 0 (modm™)
§=0
for all n=0,r=1,t>1,m=1.
Remark. By making very slight changes in the proof we can
replace (3.18) and (3.19) by

»

(318) (=1 () uhn@) taim() = 0 (modm™),
8=0
.
(3.19%) (—1)° ( )um Uprom = 0 (modm™),
=0
respectively.
4. We state

TEROREM: 6. If the hypothesis of Theorem 4 are satisfied then

¥

(4.1) D (=10 () s tnl@) s r-apml) = 0 (modm™)

§=0

for all » >0, j > 0. In particular
r

(4.2) Z (—1)° (:) Yt atmWj+r—siim = 0 (0dM™) .

8=0
For a more general result we putb
(4.3) UL e = Ul o ul O™+ .+ Agug™)

where it is understood that after expanding the right member by the
multinomial theorem, each u¥™™ is replaced DY tnjimer(®).
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THEOREM 7. Let A, ..., A be inlegral (modm) and such that
(4.4) M+t s = 0 (modm).
Then if the hypothesis of Theorem 4 are satisfied it follows that
(4.5) Uins = 0 (mod.m"™)

for all my=0,..,020,7=>1,t>21,mz=1
The proof of this result is exactly the same as the proof of Theorem 2
of [1] and will be omitted.

5, We now discuss several applications of the above results. To
begin with, consider the sequence {u,} defined by

t2 tk+1 tn
(5.1) exp {aot+a1§+... -{—akﬂi} = Zu”ﬁ'

ne=0

Differentiation with respect to y yields

(@o+ @+ ... 4 axt®) Z Un oy = Zun-um )

n=0 n=0

80 that
(6.2)  Untr = Gqlhn-+ G NUR—1 + AN (N— 1) Ups
ot am(n—1)..(n—k+1)Up—x .
In particular when k =1, (5.1) includes the familiar generating function

for the Hermite polynomials exp {2at—12}.
In the general case we may put

(5.8) Un = On(ay, ay, ..., az) ,

where Cy is the cycle indicator of the symmetric group ([8], p. 68); note
however that in the general definition of O, the number of indeterminates
is not limited.

' If the eoefﬁci(?nt{s Goy Gy, -.»y G aL6 indeterminates or rational numbers
integral (modm), it is clear that Theorem & applies and we get

r
(5.4) 2 =1 ()t = 0 (mod ™)
8=0
for all # > 0.

However in the present situation we can make (b.4) more explicit

113)}{ 1:1e1:ermining the residue (modm) of w,. Indeed it follows trom (5.1)
a

(5.5) Uy = 2 mlag’ o ... agt
TRl o Mg 112 (1)
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where the summation is extended over all non-negative n; such that

(5.6) ‘ Ny + 205+ o+ (b4 1) gy =m0
If

(6.7) (m, (k+1)1) =1

it follows eagily from (5.5) and (5.6) that

(5.8) U = g’ (modm) .

Therefore (5.4) reduces to0

r
(5.9) -1y (:) AN g m = 0 (mod m") .
=0

In passing from (5.4) to (5.9) we have made use of the easily proved
lemma that if

O = A (mnodm)
then (5.8) is equivalent to
r
(=1 ()™t gm = 0 (m0d ™)
8=0

We may state

THEOREM 8. If m satisfies (5.7) then the sequence wn defined by (5.1)
satisfies (B.9) for all n > 0. The coefficients ay, ay, ..., ax are either integral
(modm) or polynomials in an arbitrary number of indeterminates with
coefficients integral (modm).

We remark that if a; is divisible by j+1 for j=0,1,...,k then
Theorem 8 applies without any restriction on m. In other words the
sequence {us} defined by

Upt1 = Dothn + 2bMUp—y 4 3byn (N —1) b2+
+t D) bn(n—1) . (n—F+1)Uy—r ,
where the b; are integral (or polynomials with integral coefficients),
satisfies (5.9) for all m > 1.

When (5.7) is not satisfied we can no longer assert (5.8). However
in some cases it is still possible to obtain explicit results for the residue
of U,. For example if

(5.10) m=p=Fk+1,
where p is a prime, we find that (5.53) reduces to
(5.11) Up = af— a,_; (modp) .

To extend this result we put

Un = On(@q; Gy -vy Up1)
Un = On(aoa Ayy ey a".v-Z) ’
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the notation being that of (5.3). Then by (5.1)

QU m!

(512) Uy, == AT e T s a:)-—lvm—ﬂm .
Bpé.ﬂ/} sl {m—sp)! po

We take m = p¢, where ¢ > 1. Let p/ being the highest power of p divid-

ing s; then it is easily verified that the coefficient

m!
# sl (m—sp)!p®
is divisible by exactly pe=7—1. Since m— sp is divigible by pf-2, it follows
from (2.5) and (5.8) that

Vpsp = G0 (modp”™),
g0 that
(5.18) Agom—sp = Ag05 P (modp®) .

In the next place, since

G )= e

this follows from (249" = (a°+4%)*" (modp")),

am
! .
o= | [ = =0 mou™
ey

for p > 2 (by the generalized Wilson theorem), we get
—1

(5.14) Ay = (1"; ) (mod p¢) .

Thus by (5.12), (5.13) and (5.14) it follows that

(B.15) e = (a5 — ap3)™ " (modp®)
provided k=p—1, p> 2. '

We may state

TEEOREM 9. If k= p—1, pem, ¢>=1, p > 2, then

k3
(5.16) 2: (=1 (:) (08— ) "™ 1 o, = 0 (mod p™)

=0

for all m>>0. When e=1, (5.16) holds for all p. The ocoefficients

oy by ...y lhp—y OTe (?ither integral (mod,p) or polynomials in an arbitrary
number of indeterminates with coefficients integral (modp)

=]
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6. As a second application we consider the sequence defined by
means of

- - - . "

(6.1) (1—at)™(1—bt) (1 —ot) “=Zu,,n_!,
n=0
where
(6.2) Un = Qul®, Y, 2; 4, b, 0) .
It follows easily from (6.1) that
n!

(6'3) Up = Z ’I:'j'k' a"biok(m)f(y)i(z)kﬂ

i+frk=n
where

(#)y=2(@+1)... (@+i—~1), (@)p=1

and the summation is over all non-negative integers i,§, & such that

44§45k = n. Thus 4, is a polynomial in the six variables #,y, 2, a,b, ¢

with integral coefficients.
The generating function

(1—at)™(1—bt)™
hag received some attention (see for example [4] and [5], vol. 8, p. 248).
For simplicity we confine ourselves to the case of three factors; the more

general cage can be handled without difficulfy.
Differentiating (6.1) with respect to ¢ we get

d 00
" ag by oz ) "
Z-"”*‘;ﬁ - (1—at_+1~—bt+1—ct Z Yngl

n=0 o

If we pub
ax I by n & A4+ Bt+ O
= I=ht 1=t ({d—ab)(l—bt)(1—el)’
it follows that ’ ’
(6.4)  Upia— (a+b+0) R+ (bu+ca+ab)n(n—1)Up1—
—aben(n—1) (n—2)Un—p = At + Bty + On(n—1)Up—s .

This is evidently of the form (1.5). Hence if the parameters »,¥, 2,
a,b, ¢ are integral (modm) or indeterminates (or polynomials with in-
tegral coefficients) Theorem 5 applies. Moreover %y is explicitly deter-
mined by (6.3). In certain cases (6.3) can be simplified considerably. If
first #,y,# are integral (modm), we have

" @D g1

j— !
o, = T Ay

i+ i+k=n
Acta Arithmetica VII 13
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go that in this case

(6.5) Uy, = 0 (modm) .
Using (6.5), (8.19) reduces to
(6.6) U =0 (modmn)  (n=rm).

On the other hand if @,y, 2 are indeterminates and m = p, then
gince :
(#)p = 2 — @ (mod p) ,
(6.3) implies

(6.7 Up = aﬂ(afﬂé—w)+bp(yp~y)+éﬂ(zp———z) (modp) .

For general m, if z ig integral then (6.3) yields

m
(6.8) U, = 2 (T) a‘b’(w);(m)i (modm) ,
. i-o
while if both ¥ and z are integral we gel

(6.9) Um = A™L)p (Modm) .

If we specialize the parameters the recurrence (6.4) simplifies con-
siderably.: For example if a=1,b = w, ¢= ', where o'+ w-+1=0
and y = o, 2 = 0o, (6.4) reduces to

(6.10) Ungs = 80Up + N (0 — 1) (0 —2) U .

.Fl:om (6.10) it follows that u, is a polynomial in 3z with integral
coefficients, which is not obvious from (6.3). It follows from (6.10) that

tn = 0n,o(30)"%

Bs<s

(6.11)

where the coefficients ¢, , are integers that satisfy the mixed recurrence
6.12)
together with

Ontis = Cp,a+M(N—1) (N —2)Cpsp,sy

Opo=1 (n=0,1,2,..).
Another way of determining ws is by means of
)

(6.18)

Zun :‘:T = oxp (8w F (1)},
where i
ad t81'+1
Ft)= 2T

Tt is easily verified that (6.13) and (6.10) are equivalent.

icm°
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It follows from (6.10) that
3(z?— ) (modp) (p =1 (mod3)},

(otherwise) .

(6.14) U =

37 (mod p)

7. Let g, denote the number of polygons of n sides (including de-

generate cases) formed by a network of # lines. Robinson [10] showed
that ¢, satisfies the recurrence

(7.1) Int1=n+in(n—1)gns (r=2),

where g, = ¢, = 0, g; = 1, it is convenient to define g, = 1. Thus Theo-
rem 5 applies to (7.1) and we get

(7.2) D=1 () 5 gmrm = 0 (mod m™) ,
a=0

8
for all # > 0, provided m > 1 and odd. The writer [3] has given a direct
proof of (7.2). Moreover
gn = —2"" (modm™) ,
so that (7.2) becomes i
T

(7.3) D1y (:) oty om = 0 (modm™) .
8=0

In the next place let K, = K(3,n) denote the number of reduced
three-line latin rectangles. Riordan [9] (see also [8], pp. 204-210) showed
that K, satisfies

(14) EKppr=(0+12Ep+n(n+ 1)Ko+ 2002 — 1) Ky o+ Knsr s
whe_re
(7.5) Fngrt 0+ 1)y = —n -2,

The writer showed that K, satisfies the congruence

r

(7.6) -1y (;) 9r=ImE . om =0 (mod m")
8=0
for all # > 0, m > 1. Now Kerawala [6] had earlier found that K, satisfies
a certain recurrence of the fifth order, which indeed can be obtained by
eliminating %, from (7.4) and (7.5). However this recurrence is not of
the form (1.5) and therefore the general theorems of this paper are not
immediately applicable even though (7.6) is of the same form as (3.19).
Notice also that the modulus in (7.6) is m” rather than mr.

In conclusion we mention that in certain cases recurrences of the
third order have been found for hypergeometric polynomials ([7], Chap-
ter 14). For example, for the polynomial

fn(w) = EFZ(“%: n+1;1, %; @)
13*
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it is found that

(1.7 (n+1)fasa(®)
— (31 1+ 40) ful@) — (31— 1 +40) fos(®) + (7 —2) frsl®) .
If we put ‘
@ g = 0! fulw) ,
(7.7) becomes i
(7.8) tnsa = (30 + 1 +4w)un—n(8n—1 4 Up—1F N (R —1Y (N—2) Uy .’
In the second place for the polynomial

en(®0) = oFo(—m, 14-f; 1,14 a; @)
it is shown that

(7.9)  (n4+1)(a+n+1)gnpr(@)
= (3n(n+1)+a(@n+1)— (B+n+1)2) @a(@) — 1 (@ + 31— @) pa—s(®) +
+0(n—1)@pp_o(2) .
If we put
tn = 0! (a+1)ngn(®) ,
(7.9) becomes

(1.10)  Upga = (3n(n+1)+a(2n +1)—(f +n-+1) ) un—
—n2(a+n)(a+3n—a)up +n2(n—12(a+n)(a+n—1)thp—s.
Clearly Theorem 5 is applicable to both (7.8) and (7.10).
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Sur le probléme de M. Werner Mnich
par

G. SANSONE (TMirenze) et J. W. S. CAsSELS (Cambridge)

Un de nous a donné récemment [2] une réponse négative au probléme
de M. Mnich (): existent ils trois nombres rationnels «, v, w tels que
(1) utv4w=uow=1.
T démonstration dans [2] utilise et la théorie quelque peu approfondie
des points rationnels sur les courbes de genre un et les propriétés d’un
corps de nombres algébriques de degré 3. Nous donnons ici une démon-
straion tout & fait élémentaire (?) qui n’utilise que les propriétés classiques
du corps d’Bisenstein (c’est-d-dire du corps engendré par les racines
cubiques d’unité).

Comme on vérifie sans peine (voir [1], [2]), la réponse négative au
probléme de M. Mnich équivaut & l'enoncé suivant:

THHORBME. Les seules solutions de 1équation
(2) oy 428 = ayz
en mombres rationnels sont les solutions banales, c'est-a-dire les solutions od
zyz = 0. '

Sans nuire & la generalité, nous supposons par absurde qu’il existe
des entiers (s, y,2) tels que (2) tienne, et tels que
(3) ‘ wye #0, 3+z.
Nous supposons aussi que |oyz| est le plus petit possible, c'est-a-dire que
) A
pour toute solution entidre (2, ¥y, 2) non banale de l’equation (2).

Posons -
y=38s+3y+2,
(5) oc=3ex+3ey+2,

o=3ex+3ey+2,
(*) Pour V'histoire de ce probléme, voir [1].
(*) M. Sansone a trouvé la démonstration et I'a soumise & la Rédaction des Acta

Arithmetica an mois de novembre, 1960. M. Cassels y a rapporté quelques simplifications.
Les auteurs tiennent & remercier M. A. Schinzel de ses précieuses snggestions.
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