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On polynomial transformations

by
W. NARKIEWICZ (Wroctaw)

1. We shall say that subset X of a field R has property (P) if every
polynomial P(z) with coefficients from R such that P(X) = X is linear.
It is easy to see that any number field in which the “Irreduzibilititssatz”
of Hilbert is true has property (P). Consequently, any algebraic extension
of the field of rational numbers has property (P) and any number field
which is transcendental extension of some (its) infinite subfield also has
this property. (E.g. see [1], [3]). On the other hand, it is trivial that no
finite set has property (P). The problem can be posed, having a fixed
number set Z, to characterize the subsets of Z with property (P). In this
paper we solve this problem in the case where Z is an algebraic number
field. (By an algebraic number field we always understand a finite al-
gebraic extension of the field of rational numbers.) Indeed, we shall prove

THEOREM I. 4 subset X of an algebraic number field has property (P)
if and only if it is infinite.

We shall say that a set Z has property (P) hereditarily if every infinite
subset of Z has property (P). Thus algebraic number fields have property (P)
hereditarily. It turns out that also every finitely generated transcendental
extension of an algebraic number field has property (P)hereditarily. This
follows from

TuroREM II. Let K be a finilely generated transcendenial extension of
a field R. Then K has hereditarily property (P) if and only if R has this
property. (The “‘only if”’ parts of our theorems are of course trivial.)

2. For the proof of our theorems we need the following

Lemma 1. Suppose that T(x) is o transformation of the set X onmio
itself. Suppose that there ewist two functions f(x) and g(x) defined on X,
with values in the set of natural numbers, subject to the conditions:

(a) For every constant ¢ the equation f(x)+ ¢(x) = ¢ has only a finite
number of solutions,
(b) There exists a constant C such that from f(x) > O follows f(T ()
> f(=), ’
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242 W. Narkiewicz

(¢) For every constant M there exists a constant B(M) such that from
Ha) < M and g(x) = B(M) follows g(T(x)) > g(x).

Then X is finite.

Proof of the lemma. Let z e X. There exists a 2, ¢ X such that
T(2) = 2, = 2. Similarly there exists a 2, ¢ X such that T'(e;) = 2 and
0 on. We thus obtain a set A, = {Zx}ima.

Evidently X =stJxAz' If f(ex) < O but flexs) > C, then f(z4q)

> f(a) = (T (%+1)) and by (b), f(er+1) < 0, which is a contradiction.
We thus have

(1) F2) < O=Ff(o1) <O

If f(ex) > O bub f(zk+a) >71(2), then by (b), f(2rs) < C < f(#), which
iz a contradiction. We thus have

(2) Flew) > 0=F(anr) <1 (o) -
From (1) and (2) immediately follows ma;x f(m)gmax(f(z), G) = M,.

For we A, we infer from (c) that: if g(z) > B(M.) then g(T(x)) > g(=).
Tn the same way as (1) and (2) we obtain

@ 9(2x) < B(M,) =g (2041) < B(M) ,
2 g(2x) > B(M,) = g (2+1) < (%)

and similarly we see that g() is bounded in 4,. From (a) it follows that

for every 2 ¢ X the set A, is finite; thus the sequence {2} is periodical.

From (2) we infer that in every 4, there exists an #, such that f(x.) < C.

From the periodicity of {z;} and (1) ‘we see that ma;x f{z) < C and so M,
xedy

does not depend of 2. Consequently g(x) is in 4, bounded by a constant
independent of z. Thus f(z)+ ¢g(«) is bounded in X and from (a) we infer
that X is finite.

As a simple corollary to this lemama we obtain the following

TeeorEM ITL. If X is a set of complex numbers such that X™ i
nfinite but X+ is void (where X™ denotes the n-th derived set of X and n
is finite), then X has property (P).

(In particular every infinite set without limit points has property (P).)

Proof. It is sufficient to prove this theorem for » = 0 only, because
if P(X) =X then P(X') = X'. In this case X has no limit points, and
we can write X = {&;}i~, 80 that for ¢ < j, |m| < |ay|. If there exists apoly-
nomial P(x) such that P(X) = X and P(») # ax+ b, then we put f(z;) = j,

g(®) =1, B(M) =2 for all M, and C = 1+;P s%p‘ lj. The conditions of
()| <oy
lemma 1 are obviously satisfied, and thus we find that X is finite—

a contradiction which proves the theorem. (It can be proved, moreover,

icm
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that if X satisfies the conditions of theorem IIT and P(w) is a poly-
nomial with property P(X) = X, then P(z) = e¢*%z+b where a is a real
number.) -

3. We now proceed to the proof of theorem I.

Let K be an algebraic number field of degree m. Let us fix an in-
tegral basis of K: {w)i=. By {w(i”)}f;’;l (1 < »< m) we shall denote the
conjugate basis in conjugate fields of K. Every number of K can be repre-

m

sented in exactly one way in the form z =~;— 2D Pk, Where Dy, ooy Pmy d
k=1

are rational integers, (py, ..., Pm, ¢) = 1 and ¢ > 0. Let us define f(z) =¢

and g(z) = max |p;|. (For the facts from algebraic number theory used
1<is<m
here and in the sequel, see e.g. [2].)

Suppose that X is an infinite subset of K, and P(z) is a polynomial
such that P(X)= X. We have to prove that P(x) = ax+b. Suppose

n

that P(x) 5= aw+-b. We can write: P() =%k20akwk where 4 is a ma-

tural number, and a; are integers in K. Moreover, a, 7 0 and » > 2. By
B; we shall denote constants which depend only on K, @y .y 0n, and
P(#). The remaining constants we shall denote by M;.

LeMmA 2. There emists a constant By such that from the conditions:
(i) u—rational integer, a—integer in K, u divides an2";
(i) No integral rational divisor (# 1) of u divides @
follows |u| < B,.
Proof. We shall denote by (h) the principal ideal in K generated

8
by h. Let u = [T P#¢a; > 05 be the decomposition of u into rational
i=1

primes, and

71 Ty k2
@ =[] >0, @=[[#][]a H#>0,a>0
i=1 i=1

i=1
are the decompositions into prime ideals in K. Let
By = MAaX (81, «ry &y B1y ors B)+m .

(P:) | (u) thus (Py)|(axz™), bub (Py)+(x). Suppose that (P;) is nob rami-
fied in K, and thus (P;) = k... {;. There exist an 1. not dividing (m?. ?311011
an i, divides (a,). Since (a,) has only a finite number of ideal divisors,
we see that there can be only a finite number of such i., and @& fortiors
there is only a finite number of such P;. Since there is only a finite number
of ramified (P;) in K, we have thus proved the existence of B, such that
1Py < B,.

17*
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Let
k2t LT
=[]
j=1 ~ j=1

be the decomposition of (P;) into prime ideals in K. (Py)*|(anz™) ‘thus
ah; < nd;+ B; and ai,ufg . (P:)t(x), whence (i) there exists a uj # 0
and in this case a; < gfu; < & < Bs or (ii) g = 0 for all j and there exists
a % such that %> & and now
ndj+ By > aidy; o < n+§j <n+f; < By
By putting B, = B we obtain the assertion of the lemma.
LemmA 3. If we write

13
.B4 — inf g(a‘nw )
zmtegm inK [g (.%'
then B, # 0.
Proof. Let
a? = 2 wf 1<y m).
Then for every complex i, ..., 4, and 1 <{v < m the following identity

holds:

"
1 j n
o Shet
k=1
m
- \‘ MZ Z 60\ TT_ ,,,,, ,111
AR

1 J=1 k=1 Z‘w—ﬂ

1;1{;]11(1'1...1'”) ,

where the coefficients ]‘75"’"'"”') are defined by

m m
2‘ ij(n..w w§”’ — n ( w}"’)“
F=1 f=1
and I'™® py
m
AR~ v
2 T9RL0 = wPul .
e=1

These coefficienty do not depend on the choice of » (see [2], Satz 55).
The proof of (3) is immediate by application of Newton’s formula.
For simplicity we shall write (3) in the form

@) af)( fwﬁ)"
k=1

Obviously T%(4y, ...,

m
= D Thlhyy ooy Am) ool
k=1

Am) are homogeneous forms of degree n inm variables.

icm°®
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Suppose now that there ex1sts a sequence of non-zero mtegels in K:
{#;} such that
00 [9 wz)}"
Let

Ms

Ty = #H o W .

k=1

By considering, say, a subsequence of {#;} we can assume that

(8) 9 ()= ||
and that there exist limits

ak—}im%) (k=1,..,m).
—>00 kn
From (3"), (4),-and {(5) we obtain
] ()
tim D o En) oy,

o0 ( EU) )n

consequently, for k =1, ..., m, Tk, ..., 0n) = 0, whence for » =1, ..., m

D Ty, ooy bl =0
k=1

From (3') follows

"’(Zakw"’} =0 (v=1,..

and thus
m
Z 6km§;) =0
k=1

But &, =1, and we must have det|oy’| = 0, but this is impossible. This
contradiction proves the lemma.
LEMMA 4. For the set X, the polynomial P(x) and the function f(x)

-defined. as above, condition (b) of the lemma 1 holds.

Proof. Suppose that
m

1 _
ZEZPMUH (Prs s Pmy @) =1, T =4qz,
f=1
m w
1 1 =
w):Q’;'Pkwkzﬁgpkwk, (@, Py, .., Po)=1.
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Evidently @ divides Ag*. Let u=AgrQ7. Then p divides P, for
k=1, ..,m. Let v =(u,q) Thus

m n
Zﬁkwk = AQ'"P (50) = Z a,kq”"‘a?’“ = aﬁ"—{-Rq N
k=1

k=0
where R is an integer in K.
m
From v|u|Py follows 'Vl D Proy, and thus we have »|an@,. We have
k=1

(Pyy oy Pm, @) = 1, whence no integral rational divisor (= 1) of » di-

vides %, and from lemma 2 we obtain |v| € B;. Now sincel,u = dy,
q = dg, (&, d) =1, and d, divides A"t we have |dy| < 40" and we

obtain u < 4" < 4B} = B;.
n
Now if f(P(x)) =@ <f(z) =g, then evidently q = % and so

w 1/(n—1) (E‘. Y(n-1)
f(@) < (Z) < A) :

The lemma is thus proved.

LEMMA B. For the set X, the polynomial P(x) and the funciions f(2)
and g(x) defined as above, condition (c) of lemma 1 holds.

Proof. The following inequalities can easily be verified:

(a) flz-+y) <7@)f ).

(b) f2y) < f@)fY)

(c) gle+y) < {max(f(®), ()} {g(=)+g @)}

(@) glay) < mtmax [[{lg(@)g(y) = Buy(@)g(y) where Ti" are
defined as in lemmgm’S.

(e) For natural u, %g(m) < g(%) < g(@).

Suppose that f(#) < M. Then from the aﬁove inequalities it follows

that
n—l' n—_—j’
o3 S 2o S <0007
k=0 k=0

with a suitable M(M). From lemma 3 and (e) we obtain

o) 5 L
fa)" Af ()"
1
AM"

g (lamw") > gaam =1g (an g (am[f (#)]")

4 i| 4

1 n
Z 0 B[y (@f (@)]" = B,g()".
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If, for an infinite sequence {z;} with f(z;) < M,

limg (P (wi))
1o (g (@;))"

=0

then (as g(#;)—>oco) we have

1 = e S
0 B, g(Z.“"w") g(P(ml) =4 ml)
<—=<4 — =/
M lg (@] [g ()"

< [;Zﬁ} [g (P () +g( ;:%; waé‘)]—w,

which is an obvious contradiction. Thus there exists a constant M, > 0
such that g(P(z)) > M,g(x)", whence the inequality g(P(2)) < g(v) can
be true only for g(z) < Mz"® ™ = M,. The lemma is thus proved.

Theorem I now follows from lemmas 1, 4 and 5 and the trivial ob-
servation that condition (a) of lemma 1 is also satistied by our set X
and the functions f(x) and g{(=)

4. Now we shall prove theorem II. It is sufficient to prove it in
the case of a single transcendental extension of a field R. Suppose that ¢
is transcendental upon R and K = R(9). Evidently every element v of K
can be represented in the form z = 5—(%) where P and ¢ are poly-
nomials with coefficients from R and without common zeros. Suppose
that X is an infinite subset of K and W(f) is a polynomial of at least
second degree with the property W(X) = X. Let us put for every o ¢ X:
f(@) = degree of @ and g(z) = degree of P. We can write

(et

W) = >, Ax(®)1",

1
@)

=

o

where A and the 4; are polynomials with coefficients from R. At first
we prove that condition (a) of lemma 1 holds. If R is finite, then this
is evident. Suppose that R is infinite. We can always select an infinite
sequence {r;} from R such that Alr) # 0 and An(r;) # 0 for all <. Let
us define

1\ : o
Wi(t)=m§Ak(r,-)t for i=1,2,..
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and
P 9
w= () '
IED v g0

@

Then evidently E;C R and Wi(E;) = E;, whence for every ¢ the set E;
is finite. Condition (a) can now easily be verified, since for every ¢ there
exist only a finite number of rational functions with bounded degree
of numerator and denominator which can take only a finite number of
values at every point from an infinite set.

‘We now proceed to condition (b). Let

PO\ _209) 1 2’A(f/\).P"w)Q"'"‘(za-).
(Q(ﬁ)) 1) A(ﬂ)@"(ﬂ),% *

Let

n

() = (4@, ) Aty 0" ) ,

=0
(1) = (u(?), Q) -
Then »(t)|An(t)P"(t); consequently

(1) Aa(t), p(t) =di()v (1),
Q1) =dy(t)v(t), (d(t), dy(t)) =1
and so

Aty ()40 dz@)v"(),  du()|A(2)"(0);

thus
w04 (t) AnH (),

and we see that the degree of u(f) is bounded by a constant M, dependent
only on the polynomial W(t). Consequently we obtain

HW (@) = nf (2)+ deg 4(t)— M,
and thus f(W (@)} > f(x) for sufficiently great f(z). It remains to prove
that condition (¢} of lemma 1 is satisfied. Suppose f(2) < M. Then

9(W (@) = deg( 3 4u(tyP*(1)Q" () — degu(t)

k=0

13

> deg 3 440 P) Q") - 11,

k=0

icm
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and evidently

n—1
deg( 3} Au) PQ"(0) < (1-1)deg P (1) + ndegQ(t) + max deg4s(1)
k=0 0<jsn~1
<{n—1)degP(t) +M, with some constant M,.
But*

deg 4,(t) P"(t) = deg Au(t) + ndeg P () > (n—1)deg P(t)+ M,

for sufficiently great degP(i). Consequently, when g(x) is sufficiently
great, we obt;a,in g(W(m)) > g(x) and so condition (c¢) is also satisfied.
From lemma 1 it now follows that X must be finite, and this contradiction
with our assumptions proves our theorem.
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