2564 K. Chikawa, K. Iséki, T. Kusakabe and K. Shibamura
length 12:

24584 37973 93149 119366 74846

59399 180515 39020 59324 63473

26093 67100 (2)
length 22:

9045 63198 99837 167916 91410

60075 27708 66414 17601 24585

40074 18855 71787 83190 92061

66858 84213 34068 41811 33795

79467 101463 ®)
length 28:

70225 19996 184924 93898 183877

99394 178414 51625 14059 63199

126118 40579 80005 36893 95428

95998 21304 1300 244 2080

32800 33043 1763 20176 24616

16609 74602 25630 W

The numbers with brackets denote first natural numbers appeared
ag cyclic parts.

Therefore we have 15 cyclic parts: five cyclic parts with length 1,
three cyclic parts with length 2, one eyclic part with length 4, one cyclic
part with length 6, two cyclic parts with length 10, one cyclic part with
length 12, one cyclic part with length 22, and one eyclic part with length 28.
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On the distribution of prime ideals
by
E. FoaerLs (Riga)

Introduction

1. In 1944 Linnik (see [13]) proved the existence of an absolute
constant ¢ > 0 such that the least prime in any arithmetical progression
Du+1[(D,1) =1, % = 0,1, ..] does not exceed D°. In 1954 Rodosskil [15]
gave a shorter proof of the same theorem. In 1955 I proved [3] the existence
of an absolute constant ¢> 0 such that there is at least one prime
p =1(modD) with (D, 1) =1 in the interval (z,2D° for any 2 > 1 (%).
It is the aim of the present paper to prove an analogous result for an
algebraic field as stated in the following

THEOREM. Lét K, f, § denote respectively any algebraic field of degree
n =1, any ideal in K and any class of ideals modulo f. Further let

=4]-¥f>1,

where A denotes the discriminant of the field and Nf the norm of f. Then
there is a positive constant ¢ (which depends on n only) such that for all
x > 1 in the interval (2, xD°) there is at least one prime p representing the
norm of a prime ideal p e H.

In particular for n =1, f = [D] we get the result concerning primes

p =1(modD) as stated above. Taking n>1, # =1, f =0 (the wunit

ideal) we deduce that in any class of ideals (in the usual sense) there is
@ prime ideal p with the norm < |4,

Taking # =2, { =[k] (¢ any natural number > 1) we deduce the
exigtence of a prime p, € (z, zD°) representable by the prescribed primitive
binary quadratic form y with the diseriminant A%?, where 4 is a fundamental
discriminant and D = |4|k?. For 4 < 0 only positive forms are considered.
See further §§ 3 and 6-8, where the statement will be improved for intervals
(z,2D°) (0 < & < ¢, D > Dyfe), &> D710, -

(*) In 1960 I improved (see [4]) this theorem for intervals (z, xDf), 0 <e < e,
Dc’ log (c/e) .,
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CoroLLARY 1. Let mg(x) denote the number of primes p <x with
p=Np, pe$; then for all D >Dy>1, 3 >D°

ng(®) > w/Dintiellogy .

‘COROLLARY 2. Let g be any natural number > 1 and 1 any rational
integer, prime with respect to ¢, such that there is an ideal a ¢ H with
Na =1(modg). If D is replaced by |A|q"NT, then the theorem still holds
for primes p =1(modg).

The method used in the proof of the theorem is essentially the same
as that employed by Rodosskil (see [15], pp. 351-3556 or [14] X § 4), the
necessary properties of the Hecke-Landau function {(s, ) being proved
by [5], [6], [7]. The notation used in those papers will be generally
retained here.

We shall prove the theorem for a fixed #» < 1 and for all ) > D,
with a sufficiently large D,> 1. For a finite number of exceptional
cases (%) with 2 < D < D, the truth of the theorem (if ¢ is large enough)
follows from the asymptotical distribution formula for prime ideals in
classes $ (see [11], Satz LXXXYV).

On the classes of ideals

2. There are different definitions of classes of ideals in the field K.
According to the usual definition the ideals a, b are equivalent or belong
to the same class & if there are integers a,f ¢ K such that

A1) afa] =Db[A].

The number of classes & will be denoted by h,.
The ideals a, b are equivalent modulo § if (a, f) = (b, f) =0 and (1)
holds for some integers a, f satisfying the conditions

(2) a=f=1(modf)
and
(3) a0, 50,

where £>0 is an abbreviation for “all the real conjugates (if any) of
¢ ¢ K are positive numbers’. The classes of ideals modulo f and the number
of classes will be denoted by $ and h respectively. The notation a~b
means that a and b are equivalent modulo f.

LemMMA 1. Let 8 and 8’ be two sets of conditions for the equivalence
of ideals in the field K such that 8 C S’ and let the corresponding classes

) ,(2). Consider that (i) there is only a finite number of fields K of degree » with the
diseriminant 4 and (ii) there is only a finite number of ideals f in X with a given norm.
For these theorems see, for example [1], Pp. 341 and [12], Satz 818.

e ©
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be Wy, ..., W and By, ..., By respectively. Then each class A is the sum of
the same number j =1 of classes B.

Proof. Suppose that the principal class %, of § is divided up by &’
into the classes B, ..., B;, evidently forming a group. Let B:, B be
any two of the classes (not excluding B; = By) into which U; is divided
up by 8. Since B}, BY C A;, we have

, BI/BY C 9,
(in the sense of class composition). Hence for appropriate » = »(4)
(1 <v<y)

BB =B, or B;=\B'B,.
Thus B; is one of the classes BYB,, ..., BYB;. This proves that by 8’
any of the classes %, ...,y is divided up into j classes B.

LemMA 2. If b and h, denote the numbers of classes $ and K, respectively,
then
4) h <€ by NT < (|4]"2log"1|4|)Nf< D .

Proof. Let a, § be any integers in K satisfying the conditions

(8) a=f(modf), ([a],f)=([B], ) =o.

Then there is an integer & in K such that aé = 1 (modf) (see [11] Satz XV).
Multiplying [a][f] = [#][«] by [£] and writing af = $,, f¢ = a;, We obtain

(e[} = [B1IA:]

This proves that for any a, f satisfying (5) the prinecipal ideals [a], [f]
are equivalent in the sence (1) (2). Hence the class & containing all
the principal ideals of the field is divided, by condition (2), into j << N
classes B corresponding to (1)+(2) (cf. the definition of Nf as given
in [12] IIT, p. 112). By (3) each of these classes B is divided into < 2"
classes $, whence h < o Nf-2" < ko Nf. Since h, < |4["1og™ 4| (see [10],
§ 3), this proves (4) (®).

3. In this paragraph we shall consider an example of forming classes
of ideals which play an important réle in the theory of binary quadratic
forms. (The corresponding classes ® will be used further in §§ 6-8). Now
let K be the quadratic field generated by V4, where 4 is a fundamental
discriminant (cf. [12] Satz 873; I, p. 172), and let k be a fixed natural
number > 1. We deal exclusively with ideals a, b, ... prime with respect

o = p; =1 (modf) .

(*) Hecke ([9]) considered his I-functions in a real cubic field having imaginary
conjugates. He did not use the equivalence condition (3), which was introduced by
Landau ([11]); hence Hecke’s L-functions are in the set of Landau functions {(s, %)
with possibly imprimitive characters.

Acta Arithmetica VIL 18
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to [k]. Such ideals belong, by definition, to the same class €, if we have
in (1):

(6) aand B are congruent mod k] to rational integers prime with respect to k

and
) Na- N> 0.

Let Oy denote the ring of all integers in K which are congruent
mod[k] to rational integers. We choose a fixed primitive a €« € (i.e., the
largest natural number I dividing all the numbers & ea is I =1. For
any ae @ there is a primitive ideal b eC and a natural number I such
that a = [I]b; if 1 > 1, then we use b instead of a). Let a) denote the ring
of all the numbers common to O and. a (a similar definition for bx). If
ay, @ 18 a basis of o and £ any number e ai, then there are rational in-
tegers z,y such that

§=ar+ny,
whence
NE = aya;@® + (0y05 -+ ap01) 2y + ap02%?

(o’ denoting the conjugate of a). Let o’ be the ideal formed by the numbers
conjugate to those of a. Then we have aa’ = Na (see [16] p. 353). Since
aal, oas—+ ax0f, 0zaj are Tational integers belonging to the latter ideal,
there are other rational integers a, b, ¢ such that

g0y =aNa, oe+ae =bNae, oo =cNa,

(8) ax? + bay +cy? = N&/Na .

Tt can be proved that (8) is a primitive quadratic form with the discrimi-
nant d = Ak* (see [8], pp. 277-279, where the proof does not depend on
the sign of d; cf. also [17], pp. 123-124).

Take any ideal b belonging to the same class € as a’. Then there are
numbers a, 8, satistying (6), (7), such that o'[a] = B[], whence ab = [£]
with £ = (a/f)Na belonging to the group formed by the quotients of the
numbers (6). Being an integer (since [£] =ab) £ is in the ring Dy and
simultaneously in a (since a divides &); hence & e az. Consequently there
are rational integers @,y such that & = aw+ ay and, by (8),

ax® +boy +oy? = N&[Na = Nb,
gince ab = [£], N&> 0. This proves that for any class € of ideals there
is a quadratic form representing morms of the ideals b e €.

To verify the converse correspondence, let aa? -+ bay + ¢y? be a primi-
tive quadratic form having the diseriminant @ = b%— 4ac¢ = Ak?, where 4
is a fundamental discriminant and % a natural number > 1 (cf. [12]I, p. 172
and Satz 873). Being interested only in positive numbers representable
by the form we may suppose a> 0 and (a, d) =1 (cf. [12] Satz 206, 201).
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a=(a, §(b+Va)

having the norm @, which is representable by the form (with # =1, y = 0).

Now let us suppose that the theorem of § 1 is proved. Then for any
class § of ideals mod [k] and any # > 1 there is a prime p such that
p = Npe(z, m|Ak2|°), pe$. By Lemma 1 each class € is a sum of the
gsame number j > 1 of the classes $, since the set of conditions (6)--(7)
is included in that of (2)4(3). Hence the theorem holds for classes € as
well and consequently there is a prime p e (z,z|d|°) representable by
the binary quadratic form with the discriminant d.

Applying the same argument to the principal class & (now in any
field K) we can deduce for any integer o ¢ K, prime with respect to f
and to any «>1, the existence of an integer = ¢ K such that |N=x|
=p e (2, 2D°), n = a (modf).

4. In this paragraph let ¢ be a fixed natural number > 1 and let H
be the classes modulo f[¢] in general.

If a, b are ideals of the same class H, then, by § 2, there are integers
a,Be K such that a[a] =b[p), ¢ &0, §&0 and «= g =1 (modflq]).
Hence « = 1+ qy where » is an integer ¢ K. Multiplying by the associate
numbers o’ =1+ ¢y, a’’ =1-+gy", ... and considering that the elementary
symmetrical functions of y,y’,»", ... are rational integers, we deduce
that Na =1 (modg) and, in a similar way, that N§ =1 (modg). Now
we have, by (1), (3), Na-Na = Nb-¥p, whence Na = Nb(modq) and

%o(Na) = xo(ND)
for any Dirichlet character y, modulo ¢. Hence we may define
1ol H) = 1o Na)

and consider the function of mixed characters (*)

i -
) E(sy 20 2) = >, talH) (N (s, H) =Zl(-l—%&)

1

with aeH

(0>1),

‘where

{(s,H) = ZNa—”‘ .

aeH

Since yo(H)y(H) is some character modulo flq), = x'(H) (say), we have
(10) £(8y e ) =L(85 %) -

(*) For the idea of mixed characters T am indebted to professor Linnik.
18*
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Let us call a “$ norm-residue” any integer e [1, ¢—1] prime with
respect to ¢ if there is an a ¢ § with Na = I (modg). The number of such
P's will be denoted by »($).

Let $, be the principal class and let

(11) $ =H,+...+H;

be its representation by a sum of classes H; then the classes Hy, ..., H;
form a group. Consider that there is exactly one norm regidue in each H.
Hence there is a subgroup © = Hy+...+Hy (j; = »($y)) in (11) corre-
sponding to the set of the »($,) different ‘$, norm-residues’” and $, may
be represented by a sum of sets

$1 = H,G+H,G+ ...+ HG HE = G).

All the norm-residues of any set H;® (1 <i<r), being different and
belonging to $£),, must coincide with those of ®. This proves that any
%, norm-residue’ is represented by (11) the same number of times. And
the corresponding thing ig true for all the other classes $H,,.. as well,
since

$p=HH +..+HH;, $3=H'H,+...+H'H;,

etc. This proves that »(H,) = »(Hs) = ... = v(Hn).
If 1is & “$ norm-residue”, then, by (9) and [7] (3),

(12) 25 Na~ﬂ=%¢1(—m;’iq<l);7<ss>c<s,xq,m (6>1),

ae
Na=l(modg)

where y' runs through all characters of classes § (they are imprimitive
characters of classes H as well).

Using the funection {(s, g4, ) instead of {(s, y) we can prove results
concerning the distribution of ideals or prime ideals in any class $ mod f
having the prescribed norm-residue modg (cf. (12)); this accounts for
Corollary 2. However, we need not deal further with the functions
£(8, xq, x) since, by (10), they are in the set of functions (s, x) with
exchanged f{.

Proof of the theorem

5. The proof consists of going through a sequence of deductions
similar to those used for n =1 in [4], pp. 299-308. For n > 1 and a large
the theorem is a weaker one than that for n = 1, gince the analogue of
Biegel’s theorem for Hecke’s L-functions is not at our disposal (3). Some

(%) But that analogue can be proved by the method of Estermann (see [14], IV,
§ 8) for any fixed field K with 4 <« 1.

icm°

On the distribution of prime ideals 261

parts of the proof become simpler in detail and for this reason we shall
revige it.

By the use of [5] (11) and [7] (1), by the analogue of [4] (14),

—log? Np/x i
(13) Zexp (—4y—— Npm2log Np

pmeH
m=1

= 2 Ty BRI [1— 6,57 () e~F6—W_ 8} 4 O (D¥2)
where &> 0, y > 0,

8 = 2%( $) 2 @~ el—30—D—t+in(s— 2y +islog |
z

e (78

(14)

¢, = @ = 1— 0 +ir runs through the zeros of {(s,y) with 0 <d <16 =1
if the exceptional zero f’ = 1— ¢’ exists and ¢, = 0 otherwise. The remain-
ing term is obtained by the use of (4) and the estimate

Z'fE(— 1+, x) <log DL+ 1),

which is a simple consequence of [5] (41), [5] (36) and the fact that there
are no zeros of {(s,y) in the strip —1 <o < 0.
Write
=D, £>0;

y=nlgD, n=n>2.

Let ®(z,y, H) be the left-hand side of (13) and let Iz denote the
integration repeated B times with respect to %, the range of integration
being (n, n+1). By (13), (14)

IB—-———q}(m__’ Y, D) >1—a% ¢ 208D _ [p 8 — g, Do2—9molt |
2 oy a¥l2 et

2 \B _,eXp{—mny(20+1%)logD}
(19) Ins < (o) D o FEEMELLNED) o,
e

(15)

The sum in (16) extends over all the zeros ¢ # ' of Z(s) = [lt(s,2) in
z

the strip 0 < o < 1, which is cut into the regions G, &;, G; (as defined
below) and T, Ty, Ty denote the corresponding parts of IpS.
Let G, be the region [f| > 1. By (16), (4), [5] (6), [5] (36),

T, < Y e-wtosD < b [ ¢~nlosD 2log D-log D(1+1)ds
e€Gy 1

17

< hlogtD [ e-mttoeDizlog(1-+1)d < hloghD [ e=tn-DrlosDay
1 1

< hD*-mlogD < D*mlogD .
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Let G, be the region of the points s = 1— iflog D -+ iy[log D with
h<iglogD, |yl <yi=nA)= min (e, logD) ,

o being defined as in (6], and let us write the zeros ¢ ¢ G4 as follows:

o =1—Aflog D +iy/logD ,

Then, by (16), [5] (6), [7]

A=Ry ¥ =%

log D
1, < Ze-u—zﬂo&/w < Y- f (E+27,) 6=+ 2m=0u g}
i

o€l

(18)
ap<a<log D o
< ¢ Etmo

provided that () 5, > C.
Let @, be the remaining part of the rectangle 0 <o« 1, [I| <1
Supposing 1, < loglogD, B> C+1 we have, by (16), [56] (6), [7],
loglog I
(19) T, < 2 ¢~ || ~B < gt 200k Z |y| < o= €m0 f o (B=C0 g}
N

e€Gs e€ly
Fs g—(E+ 2t B-Clo & g—+mh |

If U denotes the left-hand side of (15), then, by (15), (16), (17), (18),
(19),
' (20) U > 1—a? ¢~2m¥108D — g, g~ E+mdho— gy D2—log D .
Considering that, by [6], 8' > &, we have for (*) 7, 2> 124
(21) 1 —g? e~ M8’ logD > 1 — g—2nodplog D =>1— e~ (Gol4)log D > (60/2A)10g1)
(since 1—¢=? = 10 for 0 < 0 < 1). We may suppose that

7= 1[4, cg D*-mlog D < (6,/84)log D

(since, by [6], [5], & > D™); then, by [6],

cpe— 4 <

ot < v = e o)
o

4, D 4n

Hence, by (21), (22),
U > (8o/4A)log D .

Introducing the number 2 = ¢, we must divide the sum

- _ log* Nyjw '
B(a,y,$) = b Zm exp (— 2 7PIE) rpmtog
.

(*) The constants ' and 4 ave those defined by the theorems of [7] and [6] re-
spectively.
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into five partial sums Sy, h8’, 8y, hS;, kS; (say) corresponding to the
restrictions

Ped, Np<wipeH, o<Np=p<z prehH, m>=1, Np* >z
meH,m=2, Npn <z, peH, o< Np=9p' <z, 2<f<n,
respectively. We can show that
Sy < a2e, 8 < w4+ exp (10gz——1—0i2,—z—/£>
and
Sy+ 8y <€ (44 &[ne) wy v

(cf. [4] (B4), (1), (52), (53)). Proving the estimate §, < a*2¢ we make
use of [7] (44), which is justified if 5, < 1 is large enough. Writing

V = I[2V my 82 et 1h 2 exp (—-— 19%@) Vp logp
5

pe
< Np=p<z

we get the inequality
(22) V > (8y/44)log D— g6~/ 1o D
For a sufficiently large 7, the right-hand side of (22) is > 0 (since §, > D~*",
by [5]), whence the theorem.
If n, is large enough, then we have, by (22)
2 plogp > 60" 8,log D > ¢ea”* D™ log D,

ped
< Np=p<2
whence
ng(2) 2 logz > (2D D log D, wg(2) > 2/ D" logz .

This proves Corollary 1. For the Corollary 2 see § 4.

On primes representable by binary guadratic forms ()

6. The statement of § 1 concerning the quadratic form is a con-
gequence of the theorem and §3. In the following paragraphs, 6-8, we
ghall improve that result for intervals (%, 2D°) with 0 < e < ¢, D> Dy(e),
@ > DU’IOE (0/4:).

(?) In the present exposition the deductions of the paragraphs 6 and 8 are ultimately
based on the functional equation of £(s, ), proved by Landau for the general algebraic
field. If the reader is interested only in quadratic forms, it is a nuisance to go through
the complicate proof (extended to nearly 50 pages) of that equation. For this reason
I have worked out more direct proofs of the necessary properties of the function £ (s, X)
(see (24)) and I hope to publish them as soon as an opportunity presents itaelf.
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Let A, K,k,C be defined as in §3, d =4k, D =|d|, H denote
classes of ideals modulo [%k], X(C€) the characters of classes € and let
x Xy it ae@,

(a) 1o it @ is not prime with respect to k.
The principal character will be denoted by X,.

Further let h, denote the number of classes €; by § 3 and [12] Satz 209

(23) hy < D¥2logD

(since 2(%);—1—”<10g!di by [12]1 1, p. 83 and (72) with s =1, u = |d|,
m

©»->00). We introduce the functions

== Z‘Na—’ y

(24) ae®

t(s, X) Zx t(s, ) = ZX Nn‘-[]l X(pr_

Nwrk
(6>1).
Denoting characters of classes $ by x, we have, by [5] (14) (with n = 2),
for any positive n <1 R
CA+n+it, X)| <LA+9, X
According to §§ 2, 3 each class € is the sum of §j <

and [7] (3) for c>1
= Zc(s,5> =11 DS, ),
$Hct 2

(25) 8X~—h12X(¢ 2 D)

HCE
Hence the functions (s, &) and {(s, X,) are regular in the whole plane,
except for a simple pole at s =1; the other {(s, X) (X 5% X,) are integral
functions (since Res(s, €) = jh*Res((s, x,) does not depend on €
8=1 8=1

={(L+n, %) <772
h classes . By (24)

and %’X((}:) =0).
By (25) and [5] (15), [8] (16) for any positive #n < 1

E(—n+it, X) < hoy2DMebn(l 4[4 yi+en,
E(o+it, X)| <o(n, D)l (—g<o<ldiq, [t >1).
Using these estimates we can repeat all the deduetions of [5], [6], [7] (%)
with » = 2 and X instead to y, taking into account the changes induced

(26)

. (%) Although some of them are now superfluous and some may be simplitied or
improved by means of identity (30) and adequate properties of Dirichlet I -functions.
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by the factor 2 < D in (26). Thus we now have uniformly in —d <o
<146 (0<d<1logD < })

1+a—u

t(s, X) <57 D1 14y

provided that [s—1|>{ when X =X, (ef. [5] (32)). This estimate
holds also for the function (s, €) = ' Y X(€)¢(s, X).
54
By the arguments of [7] § 2 we obtain for # > 1
D)1 = e+ O (D2,

ae@

D 1 =hyus+ O(DYea)
Na<z -

Na<z
(Nak)=1

where u = hy 'Res{ (s, X,). We have
8§=1

D 1<afhloge (z3>D%, D> D),
_ Mo
@27) D logNp<afh, for @>D%, D>D,
Npﬂfzai,‘fnZI

(cf. [7] § 6), etc. By the method of [5] Lemma 5 we prove the estimate
(28) Nx(l) <logD(1+]1]),

where Nx(T') denotes the number of zeros of (s, X) in the rectangle
—2<0<1, [{—T] <1 (the presence of critical zeros in o < 0 not being
excluded).

7. By an ambiguous class we denote any class € for whlch G2 is
the principal clags §,. If € is an ambignous class, then all the characters
X (C) are real and vice versa.

It has been proved (see e.g. [2], p. 34 and [16], p. 373) that the number

of the ambiguous classes is 4 = 2", where

Yl if d isoddor d=4 (mod16) ,
A+ if d—0(m0d32),
A+1  otherwise

and A denotes the number of the different odd prime divisors of d.

According to [2], pp. 20-28 there are 2~ real and different Dirichlet
characters yp(m) modulo D = |d| having the same values (1 or —1) for
all m > 0, prime with respect to D, which are representable by the pri-
mitive quadratic form

y(z,y) = ax®+ bay + oy (@ = b*—4ac; a>0if d <0).
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Since, by § 3, these m are norms of ideals b of an appropriate class @,
we may define 9"~1 real and different characters of the classes .€ putting

(29) X(€) = X(b) =xp(Nb) with beC.
(Congider that by (29) and the multiplicative property of yp we have
X (ab) = yp(Nab) = yn(Na- Nb) = xp(Na) 2o(Nb) = X (a) X (b);

of. [12] I, p. 83 and Satz 804).

. Let ® denote the group of the classes €, , the group of all characters
X(€) and 4, the number of the real characters X (C). Since the real
characters X are the elements of second degree in ®, (i.e. XX =X,)
and the ambiguous classes are the elements of second degree in G, we
have 4, = 4 =2""" by the isomorphism of & on ®,. This proves

LeMMA 3. For any real character X (G) there is a Dirichlet character
yp modulo D satisfying (29).
Lemma 4. For any real character X(G) the function [(s, X) satisfies

30) [Ja—X@Fp-9¢s, D)= D polmym=s- D gp(mym=  (¢>1),

» m=1 m=1
Nypl4
Nptk
where yp, xn are Dirichlet characters modulo D = |4|k* and yp(m)
= xp(m) (4/m).
Proof. Let p, q denote primes, not dividing D, such that

(31) (i) -1, (%) —-1.

In the field K generated by y4 [¢] is a prime ideal with the norm ¢
whereas [p] =p-p’, Np = Np’' =p (see [12] Satz 881, 812). Hence, by
(24), (31) and Lemma 3, the left-hand side of (30) is

B ]:[ 1~X(?D)Nv‘“ - 1,[ 1—xn(lq“)q“” (],:]‘1—9531(10)1)‘”)2
»tD
1 1 ' ‘1
= U 1= (@) 1+ )¢ (];I iz xo(p>p“’)2
1

1 1 1
=£[ 1= (@)~ 1= 10(0) lga] T p)p= 1+ 2nlg) g

=[]l~xpl(p)p""1~x;(q)q* - 4y - A
e 1= polp) ()7 1- 2ote) (§) 4

=H 1—9c11><")'*‘°],7 T
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where 7 runs through all primes not dividing . Kronecker's symbol
(4/m) being a real character modulo |4| (see [12]T, p. 83) is also one modulo
D, the lemma follows.

By identity (30) the problem about the distribution of the zeros
near the line ¢ =1 of {(s, X) for a real character X (&) is reduced to the
same problem for Dirichlet functions L(s, yp). Now using [14] IV Satz 5.8,
6.8, 6.1, 8.2 we get the following

Lemma 5. For an appropriate absolute constant ¢, > 0 in the region
o= 1—c¢flogD(1+]t])

there is at most one zero 1— 05 of at most one funclion {(s, X) with a real
character X (€); & is real and for any ¢> 0

(32) 8> ¢y(e) D,
where cy(e) > 0 does not depend on D.
(32) is the analogue of Siegel’s theorem for functions {(s, X).

8. In the previous paragraphs 3, 6, 7 we have proved or sketched
proofs of everything that is necessary to adjust the deductions of [4]
to the functions {’/{(s, X). It remains only to remove the obstacle con-
nected with the probable existence of zeros of {(s, X) in the strip —1
< o < 0. Using (28) we shall prove that there is a line L in the strip
—§—2D7 g ¢ < —} such that

(i) the distance between any point ¢+ it ¢ L and the nearest zero
of the function

726y =[] s, X
p.4

for D> D, is > 1/D**log(2+{t|) and

(ii) the length of the piece of L between any two of its points o, -,
ay+4(t+1) iy < 2.

In order to construct the line L let us first cut the strip —3—2D"12
< 0 < —1} into the rectangles R, (9—4 <t<g+}) (9 =0, £1,..). By
(28) the number of zeros of Z(s) in R, is < N = ¢;hlog D(1+]g]) for
an appropriate constant ¢;. By vertical lines (i.e. runing parallel to the
imaginary axis) we cut R, into N equal strips; in at least one of them
there is no zero of Z(s). Let I, denote the vertical line halving that strip.
The distance between any point o-+it of I, (with [t—g] < %) and the
nearest zero of Z(s) is evidently > 1/ND'2. In a similar way we deduce
the existence of a horizontal segment I; in

(g+3 <t<g+i+2D7R, —}—2D741/ND" <o < —4-1/ND7)

such that the distance between any point of Ij and the nearest zero of
Z(s)is > 1/NDV2. Now the broken line L which is built up by the segments
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of 1, between I;; and [, together with the segments of l; between I, and
I+1 (g = 0, &1, ...) evidently has the required properties (i), (ii) (see (23)).

In the formula corresponding to [4] (15) integrating along the line L
and using (23), (28) and [5] (42) (with X instead of y) we get the remaining
term O(D?) and may proceed as in [4], except that the sum

2
b(x,y,C)=h 2 exp (— 195_}78/_50) Npmi2log Np
P, m Y
pmeC
m=1
(with
o=DF E20; y=(7logD,
l<n<n<n+B, 1<vy<min(e¥ logD),
where 7,, B and 1/a are sufficiently large absolute constants) is to be
divided into five partial sums as in § 5. Proving the estimate §; < ad/2¢%
for the part of that sum with pme €, m =1, Np > 2 = xe', we make

use of (27) which is justified if 2 > D?; consider that for & < 25 we have

Y = noe~**log D
whence
2> 6 > D%,
provided that 7, is large enough. In this way we come to the following
result: There are positive absolute constants ¢, ¢’ such that for any positive
£<6, D= Dye), #>D""% and any fived primitive binary quadratio
form v with the discriminant d (# k) in absolute value =D there is a prime

p < (@, 2D°)
representable by y. The number of primes p < » representable by the form v is
a(z,v)> afh, D*loga  for o> DEOECE,

These statements hold for d = &2 as well and may be proved as follows.
Supposing d = k?* we deduce v = (au + fv) (yu -+ §v), where %, v are variables
and o, f, y, 6 rational in'tegers with (a, ) =1, (y, 8) =1 and (ad- fy)*—
—4ayfd = d or (ad— fy)? = k2. If a prime p is representable by the form v,
then the linear factors of v have the values 1, p (or —1, —p), respectively.
We may suppose
(33) ou+po =1, yu+tdov=2p
(otherwise change the réles of a, 8, y, 6 or change #%, v to — u, —»). From
the first equation (33)

u=u—pt, v=uv+at,
where u,, v, is a particular solution and ¢ =0, 41, ... Now by the second
equation (33)

(ad— By)t+ (yuo + 0vg) = p

©

Im On the distribution of prime ideals 269

or
(34) kt+1=p, -where k=ad—pfy, I =yu+ oy,

and (k,!) =1. (If ¥ and ! have a common divisor j >'1, then from
kuy =8—B1, Tvy=al—y, ’

which is a consequence of omg+ v, =1, yu,+ v, =1, we deduce that &
and y are divisible by j, whence y is not a primitive form.) Conversely
from (34) and awuy+ v, =1 we deduce (33). Hence the primes representable
by the form ¢ with d = k* are = I (modk) and the desired result follows
from the theorem proved in [4].
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