272 N. C. Ankeny and 8. Chowla

3. For primes p = 1 (mod 4) we have (theorem 3 of the Annals paper)

3) = -g-lﬁ(;—f) [917”] (modp),

1<m<p

where g is a primitive root (modp), (;—j) is Legendre’s symbol, and [«]
denotes the greatest integer in .

To the right hand side of (3) we apply Voronoi’s theorem (J. V. Uspen-

sky and M. A. Heaslet, Elementary number theory, New York and London
1939, p. 261)

N-—1
(&) (@) Py = (1) 2k G D) Szk_l[%f‘—] (mod ) .
8=1

Here N is an arbitrary positive integer, a is prime to N, while P, and @,
are the numerator and denominator of the %-th Bernoulli number
(where O is our B except for sign when k is even) in its lowest terms.
We apply (4) to (3) with N =p, a =g, k={(p—1) =m. When
» =1 (mod8), it follows that

p-1
(5) ;;A—S'(g) [‘%S] = 40, (modp),
on using 8" = (g) (modp), ¢*" = —1 (modp).

From (3) and (5)
(6) %h = — Cp (modyp) .

Since p = 1(8), we have B,, = — O, and (6) becomes (1).

4. Combining the result: “k is prime to p” of our previous note
(Acta Arith. 6 (1960), pp. 145-147) with the result of the present note,
we see that for primes p =1 (mod4) we have:

% =0(modp) if and only if B, =0 (p),

where m = }(p—1); this is the extension of Mordell’s result (Acta Arith. 8
(1960), pp. 137-144, theorem II) mentioned in paragraph 1 of this paper.
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1. Weyl’s inequality relates to exponential sums of the form
P

1) S =Ze(amd+ad_lmd—1+...),

=1

where o, az_, ... are real, and ¢(0) denotes ¢2, Let h/g be any rational
approximation to a satisfying

(2) le—h/gl <q~*, (h,q)=1.

The form (see[4]) of Weyl’s inequality with which we are concerned asserts
that, if K = 2¢-1, then

(3) 8% < P(PE 4+ PEq' + PEYy)

for any ¢ > 0, where the implied constant depends only on d and & In
particular, if P < ¢ < e (this corresponds roughly to « being on the
minor ares in Waring’s problem for d-th powers) we get

1
(4) 18| < PR

In a recent paper [1] Chowla and Davenport have shown that this
form of Weyl’s inequality with d = 3 can be extended without loss of
precision to double sums of the form

P Q
(8) 8= D olaf@ 9)+8(@,9)] (0<Q<P)
@] Y==1

where f(x, %) is a fixed binary cubic form with integral coefficients and
non-zero discriminant, and @(»,y) is any real polynomial of degree 2
at most. In the present note we give an extension to a class of forms
of degree d in n variables. We prove:

THEOREM. Let f (2, ..., &x) be any form of degree @ in n variables with
integral coefficients which is expressible as a sum of n d-th powers of linear
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274 B. J. Birch and H. Davenport

jorms with real or complex coefficients and non-zero determinant. Let
D (@y, ..., %) be any real polynomial of degree less than d. Let

Py Py
(6) Sp = ) D) e[af (@, ooy ) +B (15 -vry Ta)]
&1=1 Zp=1

where 0 < P; < P (j =1, ..., n). Then, subject to (2),
(7) |S¢,,‘K < PE[PK—l—i—.PKq_l 4 _PK_dq]n.

This includes the result mentioned above, since a binary cubie form
whose discriminant does not vanish is expressible over a quadratic ex-
tension as the sum of the cubes of two linear forms with non-vanishing
determinant.

The homogeneous forms of degree d and order n may be considered
as points of an affine space of dimension (n+d—1)!/(n—1)!d!; the forms
satisfying the conditions of the theorem form a Zariski open set, X say,
of this space. In particular, if d =2 (quadratic forms) ord =3, n =2
(binary cubies), ¥ is the whole space except for certain subvarieties.
If d =4, n =2 (binary quartics) or if d =3, n =3 (ternary cubics)
Y has codimengion 1. Thus a binary quartic will generally satisfy the
conditions of the theorem if its invariant J is 0 ([2], p. 268), and a ternary
cubic will generally satisfy the conditions if its invariant §is 0 ([2], p. 377).

Our inequality may be applied in the usual way to prove new results
of Waring type about the solution of Diophantine equations. However,
in this sort of problem really sharp results are more often gained from
better estimates for the number of solutions of equations (perhaps giving
mean value theorems like those of Hua and Vinogradov) than from
improvements of the Weyl inequality.

2. From now on, we suppose that f(=,, ..., #,) is expressible ag a sum
of n d-th powers of linear forms, say

(8) F@yy oy ) = L84 ..+ IE,
where -
) L@) = D) draty.

8

‘We can suppose that all the coefficients A are in a finite algebraic ex-
tension Q of the rationals.
For d—1 sets =, ..., x@-0 of n variables, write

n

(10) (a0, ..., %0=0) = D L(x0).. L(x@-D) 4, .

r=1
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LeMMA 1.
- n
(11) 81 < P 3 ST [ min(P, j@tad) ™1,
(1) afld—1) g=1

where the sum is over m(d—1) integers satisfying
(12) 20 <P (A<r<n, 1<y <d-1).

Proof. The result is obtained by repeatedly squaring and using
Cauchy’s inequality, on the lines of the usual proofs (see e.g. [3]) for a poly-
nomial in one variable. After the k-th stage one obtains an exponential
sum containing a pelynomial whose terms of highest degree in x are of
degree d— % in x and of degree 1 in each of =®, ..., x®. At the next stage
this polynomial, say F(x), is replaced by F(x-+a*tD)—F(x), Finally,
when k& =d—1, we get a polynomial

n
d@! > L(x®)...L(x@-)L,(x) + terms not invelving =.

r=1
The coefficient of @ in this is d!M,. Estimating the separate sums over
Dyy vy Tn, We get the result.
LeMMA 2. There exist n independent linear forms

n
(13) N dm,
8=1

with the following properties: if my, ..., My are such that none of the forms (13)
vamish, then the equations

(14) My(x®, ..., 2@ =m, (s=1,..,0)

have < P* solutions in integers o of absolute value less than P. If my, ..., mn

make just g of the forms (13) vanish, the number of solutions of (14) is
< Ps+y(d—2)_

Proof. By (10), the equations (14) are » linear equations for the »
produets Ly(x®)...L(x@-V), and their determinant is deti. »# 0. Hence
they are equivalent to

(15) La®)... Lx@0) = D' Aym, (1<r<n),
8=1
where det A,, # 0. The right hand sides of (15) are the forms (13) postu-
lated in the lemma.
The A, are in 2 and the L,(x") are numbers in £ with bounded
denominators. If the »-th form (13) is non-zero, then factorisation of
19*
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the corresponding equation (15) gives < P° possibilities, each of the
form

Lr(x(d—-l)) — Es-d—l) Eid_l),

where the £ are particular numbers in @ and the P ) are units in Q with

fixed product. For each », [L{(x®)| is bounded by a multiple of P, so
there are < (logP)" possibilities for s(r"), where b is the number of fun-
damental units in 2. Thus each equation (15) with non-zero right hand
side determines the factors on the left with < P™ possibilities.

If none of the right hand sides vanish we get the first part of the
lemma, Now suppose that exactly g of them vanigh, for definiteness say
the first g. For each » =1, ..., d—1, suppose that ¢, of the L.(x®) vanish,
then

Lr(xm) =0 eﬁl), vy

G+t gaarz9.

This leaves < P*~% possibilities for thoge of Lyx®), ..., L(«®) that don’t
vanish, so for given values of the L,(x™) for r> g there are < P'™%
possibilities for x¢). Altogether the number of solutions is

< P5+(0—(11)+.--+(ﬂ—0d-—1) < PH-(d—Z)a_

3. Proof of the theorem. For s =1, ..., n, write m, for the value
taken by d!M, in (11); then each m, < P“, For given my, ..., my, the
number of values of the ¢’ for which ! M, = ms (s =1, ..., n) is estimated
by Lemma 2; here we have to distinguish the cases g =0, 1, ..., n. Thus

n n
(K — 1 D et (@ . —_
8% < P& 31 3O prr@0 [ [min[P,(|am,|| ™1,

0=0 My,msMin 8=1

where Y@ denotes that n—g of my, .., m, are independent variables
each < P, and the others are functions of them, determined by the
vanishing of g of the linear forms (13). (If g = n, then m, = ... = m, =0.)
Suppose for simplicity that my, ..., Mg, are the independent variables.
Then

n
(g) _ . -
20 pta 2”’I]mm[l:‘, [|ems)| 1]

MtseensPn a=1

i n—{

< pH@-Dpo 2 ”min[P, || o) | ™)

MaseeMppmg 851
< PO 3 min(P, [jaml| )"
|m| < P8-1
It is well known (see Chowla and Davenport [1], Lemma 3) that the
inner sum is
< (P77 41)(P+g-logg) .

icm°
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Since this expression is > P*™, we can estimate the previous sum as
< PU(P*¢ +1)(P+¢-logq)I".

This gives the result of the theorem, namely (7), on recalling that we
can suppose logg < P, sil_me otherwise the desired result is trivial.
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