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1. In this paper I shall prove the following (announced in [1])
THEOREM. Suppose that all the zeros of £(s) in the rectangle

0<o<l, <o

are simple and have ¢ = §. In that case we have (1)

T

M@)o e — log T
(1.1) J — Ldy > T'2exp|—12 10glongogloglogT>
with

. } log T ;
X = Texp (ﬁ 100 Toglog 7 Tlogloglog 1‘)

for (%) .
(1.2) ¢ < T < exp(w).

Remark. It may be noted that the assumptions of this theorem
have been checked [3] at least up to o = 104,

The following lemma (see [2], p. 419), being a slightly modified
version of a theorem of P. Turin (see (5], Satz X, p. 52), will be essential
in a proof of (1.1). .

Tmyma 1. Let m be a non-negative number and 2, 2, -y 2y cOmMplexs
numbers such that

-

1= fo] > ] = o = ] = e > el el > 2 777

Then there exists an inieger v with m < v <m+N such that

1,25 + bt ... + @] . (1 N )‘“
13) pErTmlm b L o > By +by4 ...+ Dil | =
e (§ el /hI<n7'1<nlul A PyPey e

(*) As in [1] M (:<;)§i_f > ,u(n): u(n) the Mobius function.
n<L

(?) Here and in what follows ¢, denote positive numerical constants.
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where by < N is any integer for which |2,! < || — In thai case

AY
N
when there do not exist numbers hy satisfying the latier inequality, we put
at the right-hand side of (1.3) hg}j_iilv[bﬁ—bg + ..+ bsf instead.

2. Let integer, numerical » > 2 be laige enough to satisfy the fol-
lowing statement (see [4], p. 185, Theorem 9.7):

for every T = 2, there ewists some t=#(T), T <t <T+1 such that

(2.1) [Ea+it)| >t (~1<0<2).
Having fixed » we prove the following

LEMMA 2. There exist positive numerical D, p such that

e — e 1! 7
|So| <H¥) “pe o) (r—1)!
where o runs through nom-trivial zeros of [(s), provided that Y > ¢, and
that all the o’s with |Jp| < Y +1 are simple Czeros
Proof. Let N, be a positive integer to be fixed later.
_ 1
Y=oy
and consider the integral

We write

D= ng—(r—llﬂ)w

244 F)
-I _ 1 > Ds(gwsﬁ_g—wa)r ds
L Y T ous | Fls)°
2 il(w) 2us £(s)

\ad —ys\ » P2
(6 -l ) s +0 5
3 Sps ) E(s) |\

L
2ms
2 o r’w? ns 4 Tl

(2.3)

We have obviously

I,

fl

n

=1

Let us note that

[ sfers —e—w\r dg

and also, moving the line of integration eg. to o= —1,
w8 — g-vs\7 (g

e es < Da—re

It ( 2ys ) =0 for < Demrv.

We have then

icm

©
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Ny—1 = Ny(1—1]N,) < Nyevl2.~1N1 = De-rv

and
Dew = Nyevt < Ny(1+1/Np) < Ny +1,

S e g \T (D P2
(J)( we) () wvols=).

<1 for

go that
— #(Ny)
2mi

Now
Devv
Ny

, N [ DY\ ds i
3 [ o
°T omi (i N, (qu)'s’+ ¥

y=1,2,...,r—1,

whence
2u(Ny)
4’ (r 1!

(2.4)

;+z
O(Yf‘f) '
On the other hand by Cauchy’s theorem of residues

—14il(F)

g ] T 1 s(ews_e-y‘é}rﬂ_‘i
S vl el e

2
[el<(¥) ve 1-3#(¥)

+oo
Y o g T MTZ) (1 dt )
_>_4 Dg( Sve ) e )+0( O\, f HESETH]
1Dl <t(¥) —0

\1 (__ e—lﬁe)T’L (_Ar;"‘-'?‘ OlNl )
o 2y i’(e)+0 Y)+ /)

I, =

i

Ld
[l <1(F)

This combined with (2.4) gives
Ny

e —po\ T 9
> DQ(*—-—e —° ) *,L=ﬂ(N1)T—+O( )+0(1/N1),

oty 2pe | (o) S r—1)! Y

We choose N, with u(¥,) # 0 (e.g. N, a prime number) to be so large

1 Ny
i . than = ————— -
in (2.5) less an 2 1)
Having done that we take Y to be large enough to make O(NTT*Y) less
1 Ny
4"47' 1

(2.5)

as to make the error term O(1/N,)

than . (2.2) then easily follows.

Y

3. We introduce the following notation:

T, = %g—-m (D, 7,y as in (2.1) and in lemma 2),
A =0.11loglogT, , — 3rlogloglog 7,, % = t{(log T)1—1),
n = log7, T1 —log*! Ty(loglog Ty)> .

A+B
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Let, further, k¥ be an integer varying in the interval

 JogT, ( _log T,
(3.1) m < k< AriB < lologlong .
We consider the integral
1 4/3+iZ . .
i s [EV —evsT €8s — g Ps\k (fg
e * A8 7
2 f D ( 28 ) (6 2Bs ) £(s)

48—1Z

(3.2) I=

and evaluate it as follows:

1 i evs g rs\r eBs _p—Bs k (e
T s s €0 TN B (1413] 7%
R N e e EO R

LSl [ gl (el o
£ 2m {D 2ys ¢ 2Bs n§+0(1“)‘

Similarly as in Section 2 we have

~ —_—p 3 — p—B\k ds
I— #(n) DS(W e ”“)’ ( e ) ds 0
Xi<n<Xy {4/8) 21/)8 ’ ZBS ﬂ,R—I— O(T ) !

where
X, = De—m+-Bk X, = Dervt(d+DBk
Further

Xg
v 1 i s evs — g—vs\7 seBg_e_B ds ]
B J{an ’D( s ) (e" 3B ) }dM( p) 4 0 (104)

X1
1 f o (ews__g—ws " 658 — g=Bs\k gy
— | D A8 ) 0.
J 7S (5 o

~
I

I
!
—
=
3
|
"
o
a
=

X
Xa 1 7 .
=— | M@alt £(1 loga) (Bwt\ SinBt)’” \ 0 (7o
‘le () {ﬁﬂfcos((ogD—i—Ak Iogm))( " 5 dtﬁ 0 (104
Xs e
1. t\ [sinyt\” (sin Bt\*
= | M(x)= | sin(t(logD + Ak — (__)(,,Jt’. S 5o }
A[ (){ﬁoj in(¢(log D + Ak —loga)) )\ i B Wido+
o4y
Hence we obtain O
1
|11<f m s1mpt ﬂlnBt i+ 0(103)
X1
f"zv'[ x”d +O(T°4).
X

©
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We have also
Xy = Dervt(4+Bk Dev-T, =T

and
‘Yl = De—1rt(Ad=B — Deld+Bk gry . p—2kB—tyr
logT
> Texp (~ ca—loglog Tlogloglog T) s
so that
(3.3) 1) < f IM ‘dm-{-()(fl’“)
X

We apply Cauchy’s theorem to the rectangle with vertices § 47, —1 4-4iZ.
Our assumption (1.2) ensures that all the g's inside this rectangle are
gimple and have o = }. Hence

1= N (ew_e"m)r (eAeem_,e_Ee)k —}—+0(Z—T~IAT—§:;) +
= 2pe 2Be | '(e) 7 7
1 —~144Z B BB ds
1 o [evs — e~vs\T N s __ p—BS ds
Tom fz D( s ) ("’A 3Bs ) RON

—1—1,

The O-term is obviously O(7%¢) and the latter integral is
+00

0 (e~<f1vﬂ>k l \C(%L.F)l) = ‘0<1) .

Hence and by (3.3) we get

ve — g—ve\” eBe__eg—Be\E 1 |
])@(6 ) (EAQ ) S g () o4
2 5 28¢ ) ol O

{Sel<Z

T
(3.4) J H%(@—’dm>
X

4, In this section we shall estimate the absolute value of the sum

lof ave — g—ve\" efe—g Bk 1
B DQ( %y ) (GM 2Be ] le)
[Sel<Z ve ¢ ‘

from below. We put it in the form

y eBeo — g—Bao\ ke L[ eve—gve\r 1 Alo—o0) eBe — g—Be @‘) 1
s = (v D 2 et e )

S| <Z
. ¢Bev— g~ Beo .
where g, is that zero with 0 <Jg, < Z at which T attains
maximum, and define
eve — g—we\r 1 _ Bo— ¢~ Biﬁ’
(4.1) by = ne (———-—Ew—e——) 4—_7(—9'5, Ry = edle—e0 Eﬁeo_:;:l?ga Q
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?Jrranging them so as required in lemma 1. The number of termsg in §
is, a8 easy to see, < N = [log® T,(loglog T,)?], so that putting b; = 2z; =
for those j < N which do not occur in (4.1) (if such j’s exist) we have
defined by, 2z; (with 1 = |oy| > [oo] > ... > Jew]) for all 1<j < N,

Put Y, =loglogZ,. Let

Ban, g~ Bon
2 = edlen—a) e -6 &

eBo — ¢~Beo g),

denote this of our zs corresponding to o’s with |Jp| < t(¥;), which has
the maximal index j = k. Let, further,
&5, — ¢~ By, Qo

2p, = @40, —ea0)
Boy _ g~ Beo
& [ th

be any of g's with |Ses|> t(¥,). Writing on = 4y, on, = +iys
we assert *

' 1
(4.2) lyml = Ival > =5 -
1
In fact, we can obviously suppose |y;|<2Y, and have then by (2.1)
1 12+ ilynl
- 1.5 - / -
7 < (3 +it (7)) = g(g)ds’ < (lym] =1 ¥2)) ¥1,
12+ ¥y)

whence (4.2).
We shfxll show now that the condition of lemma 1 is satisfied for
every h; with |Jgz,| > ¢(Y,). Writing

Be, — ¢~ By, Boy, — ¢~ B
1= o] =y ey (el )
1 | eBeo g—BgoI ! 0, ‘ | thl

>E~B,2{(6B+E—B_2)1/2¥ (GB+6~B+2 1z
P+ t+oh ’

we shall distinguish the following two cases. If |y} > 2Y;, we obtain
Jeal = [en| > 1/3 7, .
In the case of |y,] < 2¥, we get
ef+eB—2 BBy

lon] — Jon,| > e-Bi2 i 1+,
(eB+e—B—2)llz+ (eB—}-e“B+2 2
47 3+ )

_ —1—2(yi+ yi) + (¢ + 6 ) (vh,— y2)
BI?.! GB-]—O_B—Z 1/2 €B+G_B+2 1/2 * ‘
e ( ) +( ) ](-Hy?.)u-wi,)

LREC Hoh,
i~y _ (]
> fme) (=) e

Ce~ Yy 3 - 'i,’gﬁz

©
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Hence in either case
\ 4 N

(4.3) Jal =l > > ——

by m+ N
and also

2N

4.4 o] > 2
(-4) 124 m-+N’

so that we are entitled to apply lemma 1 with h; = h+1. We get then
with a suitable &

18] = lie.r.(Qn efﬂ_%;_:_kﬁ d 3-1 DQ(MQY,,}._ X
J @ Ty e 20
N 1e-tlen—co) gBen —g—Ben ook [ N N
e TeBe e Bu gyl (31@'22\7 IE)

> cgoane | P o (—1log>* T (loglog 7'
¢ i 4Bon | g
112 68+ ¢~ B — 2 cos (2Byn) [*
(4B |onl)*
logT logloglogl‘)

= cqed exp (—log® T (loglog T

~. ¢ eld+BIR g —~11 -
> g0 exp( 11 loglog T

I

log?'

Pyl 19 e j

> 21" exp ( 12 foglog T logloglog 1’) .
This and (3.4) give the result.
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