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ACTA ARITHMETICA
VII (1962)

On the representation of large integers as sums
of distinct summands taken from a fixed set

by
P. Trpos (Haifa)

Let A be a sequence of integers a; < dy < ...

Am) = D1,
asn
i.e. A(n) denotes the number of a’s not exceeding n.

Some time ago I conjectured that if (v, v) = 1 then every sufficiently
large integer is the sum of distinet summands of the form »%»". Recently
Birch [1] has proved this conjecture, his proof being elementary but
ingenious and difficult.

Further I conjectured that if the sequence A satisfies agii/ar—1 and
is such that every arithmetic progression contains at least one integer
which is the sum of distinct a's, then every sufficiently large integer is
the sum of distinet a’s. If we further assume that Am) > nte (61 Cay een
denote positive absolute constants), then I have proved my conjecture,
but this result has seemed of little interest since I have hoped that my
conjecture is true.

Recently, however, Cassels [2] has proved the following theorems:

1. Assume that

lim (4 (2n)— A4 (n))loglogn = oo

n-+00

and that for every real 6, 0 <9 <1

[‘\48

lapdj® = oo, Jal= min la—mn|.

Je== — 0L N 00

-

Then every sufficiently large number s the sum of distinet a’s.
9. For every ¢> 0 and n >0 there exists « sequence A containing
infinitely many ferms in every arithmetic progression and satisfying

1/2+4
Q17— O = O(a’n n)
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s0 that the number of inlegers < @ which are the sum of distinet @’s is < ex
for x> m,.

It is easy to see that the first theorem of Cassels contains Birch’s
result. The ingenious proof of Cassels is analytic and uses the method of
Hardy Littlewood.

The second theorem of Cassels clearly shows that my conjecture is
wrong, but then my old result is perhaps not entirely without interest.
In fact, T have succeeded in strengthening it somewhat. In this note I
am going to prove the following:

THEOREM. Let O be a sufficiently large integer, and a, < a, <= ... an
infinite sequence of integers satisfyiny

= A\ 5-1)
(0) A(w)> CzVs-0E for 2 >my, o8 @< (»0> for r>n,.

Assume further that every arithmetic progression contains al least one integer
which is the sum of distinet @’s. Then every sufficiently large integer is the
sum of distinct a’s.

It would be interesting to know, especially in view of the second
theorem of Cassels, whether the exponent in (0) can be improved. I have
not succeeded in doing this, but perhaps an improvement of my method
will give the Theorem if (0) is replaced by A(x) > x*2+¢ for every s > 0 if
2 > x,(e). Perhaps the Theorem remains true if we only assume A ()
> Oz but a simple argument shows that A4 (z) > Cx'” is not sufficient
if ¢ <}'2. In fact, the following simple result holds: Let a, < a, < ...
Agsume @ < ]32%?—% where ¢ is an absolute constant. 'Then for all suf-
ficiently large &, ap << ay+ay+...+ ax—1. It iy easy to gee that this result
is the best possible in the following sense: Let fj tend to infinity arbi-
trarily slowly with k. Then there exists a sequence a, < a, <7 ... satisfying

2 k=1
k _;@ for which lirl?_sogp(ak—i%’ a;) = co. This of course implies
that there are infinitely many integers which are not sums of distinet a’s.
We leave the simple proofs of these statements to the reader.

First we prove three lemmas.

LeMMA 1. Let n be sujfficiently large, Z > 10nM2 and let Jn < by < ...
<bz<n be any Z integers. Denote by f(m) the number of solutions of
mo=b;+bsy i % j (bi+b; and by4b; are not counted as distinet solutions),

ay, <

Then there exists an tnteger kb, 1 <k < ()li)fg”) satisfying

I o= T (U ET e Nt L

e ©
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The number of sums b;+by, © #7, is clearly equal to (g) > 172, also
5 < by +bs < 2n. Thus

20

2

Mim)> 120,
n+1

Hence there clearly are two integers ¢ and d satisfying

a
100 10(Z —10)
@ a—e=[], Mim >
[
Consider the m's in (¢, d) for which
| Z gy L L logn
), RS A = S 172’“-’[21%2 -

Tf there are more than 2% integers satisfying (3) for seme k, then two. of
them, say « and o, satisfy v—u < 10n/2%Z and (1) is satisfied. Thus to
complete the proof of our Lemma it suffices to show that for some %
there must be more than 2% integers satisfying (3). Assume that this is
false. Then since f(m) < Z we obtain

-

a d
7 Y’ TC2’ N
vl D <2+ D fm)
¢

@ D fms

3
i

1

’ a
where | = [;)hl)fg";] and Z/f(m) is extended over those m in (¢, d) for
- c

_Z
T+

which j(m) < Thus sinee Z > 10n12

d
N’ Z n 1042
(4:’) 2 ]‘(m)<(d*0+1)(f_{:—‘ﬁg—‘2l<207m@—)—é—o(z).

From (4) and (4') we have
[
Zy‘(m) < {Znr+0(Z) < 1P (Z—10) for sufficiently large 7,

which contradiets (2), and thus our Lemma is proved.

Levmma 2. Let G be a group of m elements and ap, ay, ... @ finie or
infinite sequence of elements of G. Suppose that there are k distinct elements
by, ..., by of G which can be represented in the form [1a#, e =0 or 1 (the
product is always finite). Then there exist % or fewer a’s, ,.a,-,, ey iy 7 <Ky

50 that each of the b’s can be represented in the form q gy
i=
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Tirgt of all we can assume that the number of a’s. is at least %, for
otherwise our Lemma is trivial.

If the unit element of & cannot be represented in the form [[af,
then all the elements @, &, @y, ..., dy* &y ... @; are distinet and our Lemma,
is proved. Thus we can assume that the unit can be represented in the
tfor m [ a% and let ai...a; be its shortest representation (s << %). There

8
are at least s distinct elements of the form [[af since the s elements
F=1
Qiyy Qiy* Giyy oovy Oy oo Gy aTE L distinet.
8
If all the b’s are of the form [[af, our proof is complete. If not,
j=1
8+1
there exists an ay,,, so that [] ¥} contains at least one b which iy not of
j=1

s 8
the form [[af (for otherwise all the »’s would be of the form []a%). If
j=1 j=1
: . 8+1 .
all the b’ are of the form [] ag}, our proof is complete; otherwise, we
i=1

$+2

can find an a,, such that [] aff contains at least one b not of the form
f=1
§+1
1 a. Continuing in this way we finally obtain ai,, ..., @i, Gigys ey Gy,
j=1
s+t

50 that every b is of the form [] af and that each ay,,, 1 <7 <4 gives

j=1
at least one mew b, or k > s+t and the proof of Lemma 2 iy complete.

”

LexuA 3. Let @y, @, ..., , be any r integers. Then 2 e == 0 (modr)
is solvable in numbers & = 0 or 1. -

Lemma 3°is well known. If the sums », @ -, ..., %+ ...+ o, arve
all incongruent modr, one of the sums is 0 and there is nothing to prove.
¥ o4ty =+ oy, (modr), & <k <7, then apy1-+...+o5
= 0 (modr), which proves the Lemma.

Now we can prove our Theorem. Put o = 5(1/3~1) and

~ . log A (x o
(5) tmap €L g, a<p<a by .

Assume first f> a. Let & = £(a, f) be sufficiently small and choose
sufficiently large n, so that

(6) A(n,)—A(g) > nf-e .
By (5) such n clearly exist. If f = a we distinguish two cases. If
(7) ii__rgsup —4—96(—‘?—) =D< o, Dz,

©
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we choose sufficiently large n, so that

n D
(8) Amy—A4A (5) > Z--n, .
By (7) such u clearly exist. If
li A(x)
© limpup =% = o

we choose n sufficiently large and such that

Afm)  Am)

i U <m<n
(10) pws el l<m<n.

Tt follows from (9) that (10) can be satisfied for arbitrarily large n. Pub
1 3
(11) L) (A (n)—A (E))] =Z
and apply Lemma 1 to the Z largest a’s, aiii; ..., tisz, in the interval

(nf2, n). From (1) it follows that there are two integers n <u <v < 2n
logn

such that for a certain & < 5> the equations
2log2
g
100
(12) ata=u, artap=v, T=v-u< Gok

1+1<1,j,4,i'<1l+2,

both have at least [Z/(% -+ 1)225+1] solutions where each @ occurs as a sum-
mand in at most one of the equations (12). To prove (12) observe that
Lemma 1 implies that equations (12) both have more than Zl(k+1)22%
solutions. If an a; occurs as a summand in both a;+a; = % and ay + ;-
= v, we only count it as a solution of one of the equations, and we can
clearly arrange this in such a way that equations (12) should both have
at least

solutiony, as stated. 3
. o 1
By our assumption every residue class mod T (7 = v—u) contm%s
integers which arve the sums of distinet a’s. Thus by Lemma 2 there are E &’

(13) afl,...,a;}” Ré‘T,
80 that every residue class mod 7' is the sum of distinet a’s from the
sequence (13). )

Henceforth we shall consider only those golutions of (12) where
each ¢ occurs in only one of the equations (12) and where none of the
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numbers (13) occur in any of the equations (12). Under these conditions
both .of the equations (12) have at least

z 7 Z _low Z _1
N e B [

since by (6), (8), (10), (11) and (12) Z > } One and, by Lemma 1, 2% < /n.
Clearly all the numbers

(13) Lu,(L—1)u+v,..,Lv; In=Lu-+LT

can be written as the sums of distinet a’s; in fact, they can be writien
as the distinet sums of solutions of (12) without using any of the numbers
(13). The numbers (15) are L -1 consecutive terms of an arithmetic progres-
sion with first term Lu and difference v —u = 7.

Now we shall show that every integer

(16) Lu+sT, § =0

is the sum of distinct a’s where the numbers (13) will not be used. If we have
accomplished this, then it immediately follows from Lemma 3 that by
)

using the integers (13) every integer not less than Lu-- ) a;, is the sum
of distinet a’s, and hence our Theorem is proved. -

Thus we only have to prove our statement about the integers of
the form (16). Denote by B the sequence by < b, < ... which we obtain by
omitting from the sequence 4 the numbers (13) and the [% (A (n)—4 (4@/2))]
numbers @iy, ..., o4z, some (or all) of which were used in the represen-
tation of the numbers (15). Consider now the 7T smallest b’s, byy .oy by,

By lemma 3 there is a sum bl.lm+...+b1.m =a; = 0 (modT), 1 <" <.
T

<4 < T. Omit the b’s oceurring in the representation of #, and consider

the 7' smallest amongst the remaining b’s; again by Lemma 3 there is
a sum

bi‘f’+ vk big) =2 =0 (mod1), »<T

(now we can ouly assert 4, < ify << 27T). Suppose we have already defined
Tyy -y 2p-1. Take the T smallest b’s which do not ocecur in the repre-
sentation of m;, ..., 4;. By Lemma 3 the sum of some of them is
a multiple of 7'; this defines @r. Clearly @r—>co but the 2, are not neces-
sarily monotonically increaging. Every b oceurs in the representation of
at most one 2, and it clearly follows from Lemma 3 that there are fewer
than T b’s which never oceur as summands for some 2. Now we prove
17) 2 < LT

and. for all & > 1

(18) 2+ + gy + LT > P .

e ©
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Assume that (17) and (18) are already proved. Then it is easy to see
that every integer (16) is the sum of distinct o’s where the numbers (13)
are not used. First of all we have already shown that the numbers (15)
(i.e. numbers of the form Lu+sT, 0 < s < L) are the sums of distinct a's,
where the numbers (13) and the a’s which occur as summands in the
have not been used. Thus all numbers (16) of the interv_al (Lu o,
Iu-+LT+a,) ave the sums of distinet o’s, and by (17) this implies th.at
all numbers (16) of the interval (Lu, Lu--LT - =,) are the sums of dis-
tinet a’s. Assume that we have already shown that all numbers (16) of the
interval (Lu, La 4+ LT+ 2,4 ... + a5-1) are the sums of distinet a's. Clearly
all numbers (16) of (Lu+ ay, L+ LT + 5+ ... + 2y +a3) ave the sums
of distinet a’s. By (18) this implies that all numbers (16) of (Lu, Lu+ LT+
“+ &+ ...+ xy;) are the sums of distinet a’s (the numbers (103) are clearly
not used as summands). Thus clearly every number (16) is the sum of
distinet a’s, and our proof is complete.

Thus to prove our Theorem we only have to prove (17) and (18).
First we show (17). By (6), (8), (10), (11), (12) and (14) we have

D m . 10m  80nl-e B Z ,,,} Dne
19) Z=gnt, I gm<-perr &= {(k+1)22k+ﬂ (kF1pars

(if lim A (x)fa¢ == co then in (19) ¢ should replace D).
Thus by (19) we have, for sufficiently large =,

noo(™ s oer.
afg) - o) >

Thus, by the definition of the b’s, by < ayr. Hence by the definitiou of &,

and (0) we have

m 9 9

T

3 S Y[\l o (2T

s M } a; < _\J (o> 46y <0 2T (7 +e..
?:f/ i1 = !

Thus to show (17) we only have to show

2T 1fa B
(20) 2(7) +e <L

or by (19) and (20)
801\ He . . Dne o
(Foe) +o< e

(21) 9

But (21) clearly follows from o?+a =1 for sufficiently large C fnd 1’;
(since the numerator of the right side is larger than the numerator o
the left and the denominator is smaller and ¢, can be neglected). Thus (17)
is proved.
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In the proof of (18) we will often omit the simple but tedious com-
putations (1). Denote by a, the greatest ¢ which occurs in the represen-
tation of 2y, .., #—1. By the definitions of @, we have

(22) . V o < Tayir .

Assume first ay < 8741 (G141 o Qrrz Were the 7 largest o's in (n/2, n)
to which we applied lemma 1; these a’s did not ocour amongst the ).
Then there are at most 27 a’s not exceeding a, which do not occur ag
summands in the representation of the u;, 1< ¢ <k—1 (ie. the R T
numbers (13) and possibly 7' b’s. Thus

[\ﬂ'e

Y/
Bl

a;—2Tay > 4\4 a;—2Tay, o .
i=1

(23) w,‘-{—...-l-;l‘),-ml >

qe=

-

Assume next that a, > az41; then we must have a, > a5 and a, > n,
since the a4s, 1 <4< Z, do not occur among the ¥’s and thus do not
oceur in the representation of the #'s; a, > n follows since ay, z has been
the largest @ not exceeding n. Here Z further a’s not exceeding a, do not
occur as summands in the representation of the x;. Thus we have

y—Z

Tyt oo By > Z ;2T a7 .
i=1

But from (11) and a, > # we have y > 2Z. Thus
(24) Gt et T> D =20y
1< /2
Thus by (22), (23) and (24), (18) will follow if we show that
(25) . N GHLT> 3Tay .
1sSi<(y+1)/2
(25) is trivial unless ayi.r > 1.L. Thus by (0) (I is large)
T\Ye L
(26 , y+ Iy L
) 0 -3
(26) implies, by @ simple computation (as in the proof of (20)) using
a?+oa=1 and (19), that
(27) y>L'>1T.
By (0) and (27)

2\l
Uypq < @y < (22 .
y+T 2 (0)

1) T Font ]
() We shall constantly use the fact that L%7 i large; this is implied by (19).

©
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Thus to prove (18) it will suffice to show that if y > L* then

\ 2\l
(28) ‘}J o > 3T(»(/—,/) ..
1=ds(y+ 02

To prove (28) we distinguish three cases. Agsume first that in (5)
B > u. By the definition of f we infer that, for every & > 0 and > %s),
a; > 0/#+0, Thus by a simple computation

(29) D a et —a,
1< (Y42
where ¢, is an absolute constant and ¢, depends only on e. Hence we have
to show that for y > L* '
2 1Ja

(30) eyt B+ —¢, > 3T (?> .
Since 141J(f-+e) >1/a for sufficiently small ¢ (B<1,a= (i'5=1)12),
it will suffice to show (30) for y > L%, and this follows by a simple com-
putation using (12), (14) a?+a=1 and f>ea

Agsume next that p = a but (9) holds. Put A(n)n*= u,. By (10)
we have

(31) Uy = Am) > Alm) for m<n.
,1'“ ma B
By (31) and (11)
(32) 7z > %‘ ne .
From (31) we have for a; <
1 \le
‘ > |-
(33) w> (o)
and for a; > n we infer from f= a that for every &> 0 if n > nele)
(34) a; > tllate)
Thus if ggrnm <7 we have from (33)
W qit+1e
(35) _}J > 6.
1i<(y+1/2 "

Trom (33) and (28) we only have to show that for y > IL*

1+1fa 2 ila

(36) ol > 3T (l) ,
Un, c

which again follows by a simple computation using (19) and (32) (it again

sutfices to show (36) for y = I%).


GUEST


354 P. Exdos
Finally, if aigs12 > 0, we have by (34) for ¢, = ¢y(e)
ey > cgyttiate),
1<i<n/2
Thus we have to show that
oo > oz (2",
or, for sufficientl;r large C,
(38) yroelet s
Indeed (38) is trivial for sufficiently large ¢ and #, since from
gy >N, Y > A(n) > Ont and by (19) we have 1 < 80nt-q/(,

In the third case (7) holds. By (7) we have for ¢ >1,, a; > 1 (t/D)e,
Thus )

Cq

a; > ik

I<i<+ 12

yl-l-lllz —C,

where ¢, and éa are absolute constants. Thus we only have to show that

for y > IL*
(39) G

O\ e
Py T — ¢ > BT (—g) .

As before, it suffices to prove (39) for y = L% By (8), (11) and (19),
(89) follows from &®>+a=1 by a simple computation for sufficiently
large ¢ and = (if » is large y = I° is also large).

Thus the proof of our Theorem is complete.
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ACTA ARITHMETICA
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Uniform distribution mod1 (II)
by
H. KrsTEN (1) (Ithaca, N. Y.)

1. Introduction. Let [a, b] be an interval properly contained in [0, 1]
and define
£ = 1 if
=10
FE+1) =f(£).

f(£) is the characteristic function of [a,b] extended periodically. The
present paper is concerned with the distribution of the sums

a<ELD,

(1.1) 0<ti<a or b<é<l,

&
Z fy+ k)
k=1

which equal the number of terms among y-+&,y-+2%, ..., y+No with
fractional part in [a, b]. We assume that 2 and y are independent random
variables each with a uniform digtribution on [0,1] and show that

N

(log )™ Y (F(y+ ) — (v —a)

k=1
has asymptotically a Cauchy distribution. This is expressed in the fol-
lowing

TrEOREM. If |B| denotes the Lebesgue measure of the sei B, then, for

every real a,

N
(12)  lim P{(log_N)" 2 (fy +F2)—(b—a)) < a}
—+00 k=1

N

= lim } {w, y| logM)™ D (Hy+ka)—(b—a) <a, 0<@, y< 1”
N—»cc

k=1
o
1 toodt
- T J 14"
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