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§ 1. Introduction. Let § be an m-rowed positive-definite sym-
metric matrix with rational integers as elements and T an n-rowed
rational integral symmetric matrix (n <m). If A(S , T) denotes the
number of rational integral (m,n) matrices @ satistying G'SG@ = T, then
we know from the researches of Siegel on the analytic theory of quadratic
forms that a certain ‘““weighted average” A8, T) of A(S, T) over the
classes in the ‘genus’ of § is equal to the infinite product of the p-adic
densities of representation of T by S, p running over all the finite primes
and the infinite prime spot. If the ‘genus’ of S contains only one class
(this not being true, in general), then this gives us an ‘exact’ formuls
for A(S, T) itself, in terms of the ‘local’ densities of representation.
On the other hand, from the work of Hardy-Ramanujan, Hecke and
Petersson, we have for » =1 and m >4, an ‘asymptotic’ formula for
A(S, T) in which the principal term is precisely 4,(S, T). A generalization
of this was obtained recently in [8], for # > 1 and m > 2n+2.

If § is now an m-rowed non-singular symmetric rational integral
indefinite matrix and T, an n-rowed rational integral symmetric matrix,
then Siegel [11] has shown ‘with suitable mild restrictions on #’ that
#(8, T) (the “measure of the representations of 7' by 8”) is equal to
the infinite product of the p-adic densities of representation of 7 by &8,
extended over the rational primes p. Thus u(S, T') is a ‘genus-invariant’
of § while for § >0, A(8, T) is not so. It is interesting to observe that
whereas for § > 0, we have only an ‘asymptotic’ formula for 4 (8, 7),
we have in the indefinite case, an ‘exact’ formmula for u(S, T).

Our object, in this paper, is to seek analogues of the foregoing, in
the case of representation of hermitian matrices with elements which
are integers in an imaginary quadratic field k — I'()/d) of discriminant
d < 0, over the field I" of rational numbers. The methods are complicated
by the fact that one has now to consider representation by singular
matrices too.

For this purpose, we need to carry over Siegel’s ‘generalized Farey
dissection’ [11] to the space 9, of n-rowed complex square matrices Z
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with -1(Z—2') > 0, with the hermitian modular group of degre_e n
acting on $,. This is done in § 5. We follow the pattern set by Siegel
in [11] and also use some important results of H. Braun [2].

The main ideas of the paper may be set forth as follows. Let § be
an m-rowed hermitian matrix of signature (p, q) and having elements
which are integers in k and let H be a ‘majorant’ (see § 3) of ;S'.. Further
let Z;, Z, be two complex matrices such that Z,, —Z, ¢ $,. With §, H,
Z, and Z, we associate a ‘theta-series’ (8, H, Z,, Z,,0) (see §3) and
obtain its behaviour when Z,, Z, are subjected to & general hermitian
modular transformation of degree n (Theorem 1). We then specialize Z,
to be Zi. In case 8 = 0, we see that f(§, H, Z,, Z1, 0) is complex analytic
in Z, and actually a hermitian modular form_ (8, Z,) of degree n and
dimension —p. If pg >0, then f(8,H, %, Z1) is no longer complex
analytic in Z,. However, in each case, we associate with (8, H, Z,, Z;, 0),
for r = p-+q > 2n, another function ¢(§, Z,) (a generalized Eisenstein
geries) which ‘mimics’ f(§, H, Z,, Zi,0) under a clags of hermitian
modular transformations on Z,. The Fourier coefficients of this Hisen-
stein series are the so-called ‘singular series’. Further on, we split our
discussion into two parts, according as 8 > 0 or § is indefinite.

For 8 >0, making use of the Farey dissection in $H,, we obtain,
for the Fourier coefficients ¢(T) of f(8, Z,)—e(S, Z,), for T >0 and
|T| > (a constant), the estimate

|o(Z)] < const- {(min 7)™~ 4|~ (min 1))

where minR for B = B’ > 0 denotes the ‘minimum’ of R (see § 2). Such
an estimate, as it stands, is not useful, since as |7'] tends to infinity,
min T may remain fixed. Thus, ag in [8], in order to make it worthwhile,
we impose on T the condition “min7 > ¢|T|"™” for a fixed constant
¢>0; for ‘reduced’ 7' this means that |7|™"7T belongs to a compact
set in the space of positive hermitian matrices of determinant 1. Our
estimates will therefore involve this compact set. Writing f(§, Z,)
=8, 2)+f(8, Z,)—¢(8, Z,), we obtain under this condition on 7T
the required ‘asymptotic’ formula for 4 (8, T), the number of ‘reduced’
representations of 7' by §, in Theorem 5. ‘

If 8 is indefinite, employing Farey dissection in a cube of ‘height’
& (> 0) in $Hy, we prove Theorem 6 which, in particular, implies that under
the stated conditions, § represents 7' ‘in the large’, if and only if § rep-
resents ' ‘locally’ for every prime p. To obtain a quantitative refinement
of this fact, we have to carry out an integration over a fundamental
region in the ‘majorant-space’ of 8, for the ‘reduced unit-group’ of §.
The necessary preliminaries are given in § 6. We then define, after Sie-
gel [11] and Ramanathan [9] the measure u(8) of the ‘reduced unit group’
of § and the measure 4(8, @) of a ‘reduced’ representation @ of T' = S[G]
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by § and obtain formulae (93) and (96) connecting them with integrals

over certain fundamental regions in the ‘majorant-space’ of §. Defining

M (8, T), the ‘measure of representation of T by 8’ by M (8, T) = 2us, 6)
@

(G running over a complete set of ‘reduced’ representations of 7' by 8,
of rank n and not associated on the left with respect to the ‘reduced
unit group’ of 8) and proceeding as in [11], we obtain for p, g >n and
P+ ¢ > 2n, the formula

M8, T)
= —];]aﬂ(s, ).

The right-hand side is the infinite product of the p-adic densities a,(8, 17
of representation of 7' by 8, over all rational primes p (see (54), for de-
finition of an(S, T)).

In § 7, we go back to our ‘asymptotic’ formula for 4 (S, Tyfor S>=0
and prove an analogue of a theorem of Tartakowsky’s [14].

In § 8, we show that the considerations in §§ 3-5 may be generalized
taking hermitian modular forms of degree n instead of the special theta-
series. Finally using the Siegel operator @ on hermitian modular forms [3],
we obtain an asymptotic formula for A(8, T), for § >0, T> 0 and T
not necessarily non-singular (Theorem 11).

The author is extremely grateful to Professor K. Chandrasekharan
and Professor K. G. Ramanathan for generous encouragement, valuable
guidance and advice in connection with this work.

§ 2. Notation and generalities. By A™" we mean a complex matrix
of m rows and n columns or briefly, an (m, n) matrix. If m = n, then
A™™ i5 denoted, for brevity, as A™. The m-rowed identity matrix is
always denoted by E™ and a zero matrix by 0. For a given A = (ax),
A is the conjugate (@), A’ is the transpose of A and A is the conjugate
transpose of A. By r(4) and 6(4), we mean respectively the rank and
the discriminant of A. If B is a square matrix, then the frace, the deter-
minant and the absolute value of the determinant of B are denoted respecti-
vely by o(B), |B| and ||B|}. For a given square matrix C, 5(C) is an ab-
breviation for @, where ¢ =) —1. If 4 = 4, then 4 is called her-
mitian. We abbreviate BAB as A[B].

In the following, % will denote a fixed imaginary quadratic field
of discriminant d < 0 over I', the field of rational numbers. By an integer
we shall always mean an algebraic integer in %; the ring of integers in %
is represented by O. If ACk, then (A}, denotes the set of all (m, n)
mairices with elements in 9. If % is an ideal in O, then 4™, B™™ gare
said to be congruent modulo % (in symbols, A = B(modN)),if A —B ¢ Almn-
It 4 ¢ {Ohmn, we say A is integral. T8 A™ = (azg) and if gz, Vam e O
for 1<%k 1<, then 4 is said to be semi-integral. ITf A" = B+ @GC
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with @ ¢ {O}maq, then A is said to be congruent to B modulo O. An integral
matrix U is unimodular, if it has an integral inverse. We denote the group
of (n,n) unimodular matrices by 2n(%) or £, briefly.

If A= A then we denote A being positive-definite or non- -negative
definite, in symbols, by A>0 or 430 respectively. It 4 = A has P
positive and ¢ negative characteristic roots, we say that the signature
of A is (p,g)- It T™ > 0, then, by minT (the minimum of T) we mean
the smallest non zero real number of the form XTX as X runs over
n-rowed integral columns.

For an (n, n) matrix Z, we denote %(Z—[—E) by R(Z) and %(Z—Z)

by I(Z). By $n, we mean the space of (n,n) complex matrices with
I(Z)> 0. The space of all (n, n) hermitian matrices H is denoted by #,.
Now any X e H, can be written as X, 44X, with real X, = («{y) and real

X, = («f). By X, we mean the volume element [] daf} [] dazf
IiSi<n I<k<isn
in H.

For ¢ ek, N(a) and Tr(a) denote the norm and the frace of a over I

respectively. For an ideal % in &, N () stands for its norm over I". For O,
we know (1, o), where o = (d-+1/d)/2, is an integral bagis.

A pair (0D) of matrices in {k}sn is said to be a hermitian pair if
0D =D0. I, in eddition, there exist X, Y e {O}nn such that 0X+
+DY = E‘"’ then it is called a coprime pair.

I Pis the space of (n, n) complex matrices P > 0, then for U e Q2,,
the mapping P-»P[U] is a mapping of P onto itself. If we agree to iden-
tify U and oU for any root of unity ¢ in %, this gives a faithful repre-
sentation of Q, as a discontinuous group of mappings of P onto itself.
Humbert [6] constructed for £, a fundamental region T™ congisting
of all the so-called ‘reduced’ matrices in 9. Further there exist finitely
many (w, %) non-singular integral matrices 4,, ..., 4, (» depending only
on k and n) such that for P «I™, there emsts an A4; among these for
which P[4;] = P, = (i) satisfies the conditions
1) O<pa<ePum, |Ptm] < 6 Pmin @< M),

PrreePrn < 01| Py

where ¢, i3 a constant depending only on % and %n. We call the get of all
matrices in P for which (1) is satisfied, the Humbert domain and denote

it by T{". The matrices Ayy ...y 4, may be called the Humbert matrices
of order n.

From (1), it is trlvml to deduce that for P e 9P,
(2) 0 <minP < pu|P["™

where again u, is a constant depending only on % and n.
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The congruence hermitian modular group Mu(s) of degree n and stufe s

A B
(relative to %) is defined as the group of M = ( 0 D) € {O)onon such that

0 E(n)

MI 1= (—-E("’ 5 ) y M =E® (mod(s))

s being a positive rational integer and 4, B, ¢, D € {D}pn. For s =1,
Mn(1) = My is the hermitian modular group of degree n.

A B
For each M = (G D) € My, the mapping Z—+M<{Z) =(4Z+B)x

X(0Z+D)™" is an analytic homeomorphism of $, onto itself. This gives
a representation of M,(s) as a discontinuous group of mappings of Hn
onto itself. From [2, III], one can see the following set §, is.a fundamental
region for My, in Hn. Fn is the set of Z ¢ §H, for which
‘) I0Z +D|>1 for every n-rowed coprime pair (0D),
) I(Z) is reduced in the sense of Humbert,
) if X=R(Z)=2X4o0X with real X = (d;) and real ¥ —
then 0 < dy, du<l for IKi<j<nand 1<k<I<n
It may be verified without difficulty that §, has the following two
important properties, viz.
a) any compact set in §, is intersected at most by finitely many
images of ¥, under hermitian modular transformations, and
b) there exists a constant yy depending only on % and n such that
for Z ¢ §n, we have I(Z) > y,E™ and moreover minI(Z) > y, for a con-
stant y, depending only on % and n.
A complex-valued function f(Z) defined on $, is a hermitian modular
form of degree m, stufe s, dimension —r, belonging to a multiplier-system
M)|M e Ma(s)} (in symbols, f(Z) e {n,s, —r, v}) if
i) f(Z) is regular in $, in the n? variables 2y constituting Z ¢ §, and

A B L
( 0 D) € Mau(s), f(Z) satisties

(#m)

ii) for every M =

H2)|M = {(M{Z))|CZ+D|”" =v(M)f(Z).

For n =1, we require in addition that

iii) for all M e M,, F(Z)/M is bounded in Fn.

We shall suppose that the multipliers »(M) satisfy the 'condition
|v(M)] =1 for all M e M,(s) and furthermore, that for M = P"l( )P €

€ My(s) with arbitrary P ¢ M,, we have v(M) = 1. It is easily seen that
under these conditions again, Satz 1 and 2 of H. Braun ([3], p. 138)
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continue to be valid. Thus, for f(Z) ¢ {n, s, —7, v} and M ¢ My, we have

the Fourier expansion

D) a(T, M)n(s T Z)

>0

HZ) M =

the summation being over all (n,n) semi-integral 7' > 0

A B
We say f(Z) e {n,s, —r, v} is & cusp form if, for every R = (0 D)
= 0o "™
with 4, B, 0, D e {kln and RIE =1 = (—E‘”’ 0 ) we have
i3 0 i1 0 - MO) -
i D =0
(AR AR B AR

for Z, € $un_1 (see [3]). For k =T, this process is just the well-known
Siegel operator @ taking modular forms of degree » into modular forms
of degree n—1([13]). I f(Z) € {n, s, —r, v} is a cusp form, then for I e My,
we have the Fourier expansion
HOIM = D a(T, Myn(s™T'Z)

>0
where T runs over all semi-integral positive-definite (n, n) matrices.

Two matrices F, G € {k}ma (m < n) are said to lie in a class, if there
exists a non-singular K e {k}ym such that F =K@ Using a lemma of
Siegel ([10], Lemma 5, p. 219) it is easy to prove that given I e {k}mn
of rank m, there exists ¢ € {O}n,» in the class of F such that J(G) belongs
to a fixved finite set of integral ideals in % and there exists a rational in-
teger ¢, (depending only on % and ») such that

(3) Np@) <

(if m = n, this is quite trivial, since & may be chosen to be E™). Further
itis easy to show that there exists a rational integer ¢; (depending only on %
and n) such that G can be completed to a non-singular matrix H e {Olyn
for which

(4) H| < ¢

Given any C ¢ {k}s» of rank 7, there exists by [10] (Lemma 9, . 228),
a matrix 0 e {D},, which is again of rank 7, iy idempotent (i.e. 00 =0)
and further satisfies 00 = . Such a matrix O is known as a right unit
(Rechtseinheit) of O or briefly a r-unit of ¢ and is referred to as a right-
idem by Braun [2, I]. If r = n, necessarily O = E™. Left-units or briefly
l-units are similarly defined.

v
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Using (3) and (4), it is easy to prove the following, viz. for a given

C ¢ {k}nn of rank r and with a r-unit 0, there exists a non-singular
Q € {Olyn such that

o e=(4"), eoer=("Y),

Now, from €0 = C, we have
®
(6) 0™ = (01 g)

o) <o, IQI<e

*

For r =n, @ may be taken to be BH™.
Let (CD) be an n-rowed coprime pair. We need, in the sequel
a ‘canonical decomposition’ depending on ¢ = r(() for the pair (0D),
similar to what Siegel has obtained in the case of the rational number
field (see [13], (12), p. 624). If { =0, then (CD) = (0U) with U eQ,,
and we need nothing more. Let then ¢>1. Then, by (6), there exists
Q € {Ohum, 0 < |||l < ¢; such that €Q™' = (C?0). Further we can find
U ¢ Q, such that the first column of |Q|UCQ " is of the form (2f0...0)
with a, f € O. Let %A be the ideal (a, §) generated by o, 8 in O. In each
of the h idgal classes of %, let us choose a fixed integral ideal U; (say, of
minimum norm) with integral basis (ai, f;) (1 <4< h). Corresponding
8 —pi
to U;, define P; = (_ ﬂ{- :) where y;, ;€ O; such that |P;| = N ().
Now U= (u)% for some ¢ and pek. Then the first column of
P, 0 '
|Q] (0‘ E(n_g)) U0Q™" is {(uN (%) 0...0)". Applying induction on ¢, one can
show that there exists a rational integer ¢, depending on % and » and
P ¢ {O}yn with 0 < [|P|| < ¢, such thatb

pog = (0 oo 0] 0
= o o0’ 1€ {Ohey l1l¢

and further such that ¢,P7%, 6,07, olQ|™
~ (D, D,

PDQ = (1)1 D“’), D, = D, we see that D, = 0; further |D,| # 0 and D,,
3 4

(B —1
117;_134 )P instead of P, we obtain
4

LevmA 1. For any m-rowed coprime pair (CD) with »(C)=1>1,
there exist P e {k}nn and Q € {Olnn with |P| 5 0 such that

are integral. Now writing

c: D' are integral. Choosing (](;J

c® o0 DP o

(1) P(0@”1D§)=(0 00 FD

)1 01 € {Ohuts 101| #0
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and, further there exists a rational integer ¢ depending only on & and n such

[(X0)
that ¢; P, csp_l and 059_1 € {Olnn. Further, if @ = (Gi )1 then N(a(Go))

<6, ond c6(G,)" 1 C .
This is a sharper version of a lemma of H. Braun ([2, I], p. 830).
Let Z ¢ $Hn. Using the form (7) of (CD), define

_ (07D, 0 _ 109 0

Then |CZ+D| = |P,||§7"||6(Z +L)G,|. Now, since L =TI, L could be
written as A~ B with (4B) being an n-rowed coprime pair and |4 s 0.
Further (4.B) can be chosen such that [4] is real and positive. We call 4,

a denominator of I and [A|is denoted d(L). It is easy to verify that d(I)
iz uniquely defined. From [2, I] (Lemma 7, p. 844), we have

(9) : |P4[§73 (8(64)) = ed(L)
where ¢ is a root of unity in %. Thus we have
(9%) |0Z +D| = ed(L)N (8(Go)) | Go(Z + L) G| .
A B oo
Let now M=(C D) eMy. If t=7r(0)=0, then M = (TOJ gﬁ)
with Uef, and 8§ =8¢ {Olyn. Such M form a subgroup U, of M.

We denote by @, the set of 4,(Z) for Z ¢F, and 4, ¢ W,. From property
b) of s, it is trivial to see that for Z ¢ Gn, minI(Z) > 4.

A B
Suppose M = (O D) €My with ¢ =r(0) > 1. Using the form (7)
of (CD), we see that

P(4Q7'BY) = (Ag) 0y B
4, B™ B, BJ’

Now, if ¢, = ¢, then clearly 04y, ¢z Ay and ¢, B, are all integral. Let

(EB% o 20
Q* = ( )Q and P* = (0"(1;7 0

tedy 6B )P. Then it iy easy to verify that

6 'E,

Dy o —Br —B

(10) M'1=( D "‘13) =(Q"’_l 3) 430t B By —Bp| (Bt 0
-0 I o ¢I\_¢ o dr o OP*)’

0 0 0 &

V;"hel'e A§*= 0;2:14-1: §f =03_2B1’ ot =0§017 Dt =0:D17 Af = ¢y 4y, B}

_G,B,z, B} = ¢ (Bﬂia—i—Bz) and B} = cg(B3A3+B4). We shall use the

reduction (10) of M " later, when we study the ‘transformation formulae’
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of ‘generalized theta-series’ in § 3. The following lemma whose proof,
being completely similar to a lemma of Siegel ([11], Lemma 8, p. 585),.
we shall omit, shall also be needed in the same connection.

LEMMA 2. For Ze $ny, MWy and Z* = MZY, lot Z[P* ]

® -
= (gﬂ g;), Zy = Zo— CF A} using the form (10) of M ™', Then
c
iL _‘ﬁ;'éf—l ——E;‘ Gf‘1 —1, Ng~1
11 Z*[0*] = s\ il A
(1) B e A B R P

Two n-rowed coprime pairs (OD), (C,D,) are said to be in the same
class, if (CD) = U(0,D,) for U eQ,. We denote the class of (CD) by
{C, D}. ’

Let 4™ (t <mn) denote a complete set of (f, n) integral matrices
of rank t such that for no two elements Gy, G5 ¢ 2%, we have G; = RG;
with R e {klnn, |B| £ 0. In view of (3), we may suppose G, <2*” to
have been so chosen that N (3(G,)) < ¢, and to each Gy e 2™ we assign

@
a fixed complement G§ so that Q@ = ( Gﬂ) € {O¥n and 0<[Qll < 6.
(1]

In the form (7) of (CD), we may thus suppose G e 2% and @ to be the
non-singular matrix associated with &, as above.

. )
With the notation as in Lemma 1, let O, =Q‘1(E 0

0 0) @. Then,
for any r-unit 0 of 0, we have 0,0 = 0, and 00, = 0. Although 0,
is not necessarily integral, we may look upon 0, a8 a ‘generalized r-unit’
of C, viz. satisfying €0, = C, r(0,) =1 and 0,0, = 0,. In the notation
of H. Braun [2, I], both 0 and O, determine the same “type” of right
idems. By Lemma 5 of H. Braun ([2, I], p. 843), the classes {C, D} with
r(C) =t stand in one-one correspondence with the ‘“types” of right
idems 0, of rank t and the matrices L defined by (8) and satisfying
0,L = L. On the other hand, it is easy to prove that the ‘“types” of right
idems O of rank ¢ are in one-one correspondence with Go(te) 24" under
the correspondence that to the ‘‘type” of 0=q" (F;) g) Q with

tm) .
Q= Zﬁ , we associate Gye£®”. Thus we have, as an analogue of

0
a lemma of Siegel ([11], Lemma 5, p. 584),
LA 3. The classes {0, DD} of n-rowed coprime pairs (CD) with
t=7(C)>1 are in one-one correspondence with G, € 24 and L =1 ¢ {Fnn

0] G
for which Q_l(lf) g) QL =L, where @ = ( G:) is associated with G « 8.
[}

For t =n, %" is taken to consist just of E™ and then the as-
sociated Q is equal to E™.
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In symbols, we denote the correspondence referred to in Lemma 3,
by {0, D}e~[G, L].

We note finally that the classes {4, B} of n-rowed coprime pairs
with 7(4) =n are in one-one correspondence with hermitian matrices
in {k},, under the assignment {4, B}—~A~'B ([2, I]).

_ § 3. Generalized theta-series and transformation-formulae. Tet § = §
be an m-rowed integral matrix of signature (p,¢) with p,¢ >0 and
p+q=r=r(8). We say that § represents T™ = T integrally if there
exists @ € {O}m, such that S[G] = T; @ is called an integral representa-
tion of T by §. Hereafter, we shall mean by a ‘representation’, an inte-
gral representation always. In order to make a quantitative study of
the representations of 7' by 8, we have to consider a go-called ‘gener-
alized theta-series associated with §°. In the case when 8 is definite
and 7 =m, for example, the number of representations of 7T by § is
finite and the theta-series is merely a ‘generating function’ for the
number of representations of 7' by 8.

Let By be a fiwed r-unit of 8. If r = m, then By = B™. By a lemma
of Siegel ([10], Lemma 30, p. 232), there exists @ ¢ {O}nm With @] #0

such that

o [E” 0
12 T =
(12) QBsQ (O, 0) :
From 8By =& =g, it follows that

(r) .
(13) s1=(% ), 1swo.

o AL

Writing @ = ( e ) , we have
(14) 8 =81[4], ABs=4.
Now, by [10], there exists a unique inverse 4~ of 4 satisfying
(15) A7A =By, A4 =x"
and then
(16) 8y =8[47].

_ A representation @ of T' by § is called Hg-reduced (or briefly, reduced)
if Bs@G = @G.

We rem?.rk, in passing, that if § > 0 and § [(] =T, Bs@G = @, then
for any r-unit By, of T, we have necessarily GEp = G; for, S[GBr—G] =0
and Hs@ = G together imply that GEr— G =0.

Let P(8) denote the set of all m-rowed complex H = satisfying

1mn HY'H =8, HE;=H>0,

e ©
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where 87! is the unique inverse of § determined by
878 =By, K8 =1Fs.
It is easy to verify that the definition (17) of P(S) is independent of the
choice of the r-unit Fg of S.
From HEg = H, we have gimilar to (13)

= 0) =
2

(18) mre1=(% ), m=t>o

and again similar to (14), (16) we have

(19) H =H[4], H =H[AT],

where A™* satisfies (15). Furthermore, H, satisties

(17 HS7H =8, H;>0.

The space of H, for which (17') is true is merely the space P (8,) attached
to 8, and is known as the majorant-space of 8, or the symmeiric Riemannian
space associated with Sy (see [9], §9). When 8, is definite, then P(S;)
consists just of §, or —8;. The space PB(8) and the majorant-space P(S;)
are homeomorphic under the correspondence (19). .
Let now Z,, —Z, ¢ Ha. Corresponding to 8, H ¢ B(8) and V™7,
an arbitrary complex matrix, we define the generalized theta-series
f(8,H,2%,,2,V) by
(20) 18, H 2y, Z,, 7)

= > gRHE+HVIE— L)+ 186+ V(4,4 2) .
EgG=G€{Olm,n

When G runs over all (m,n) integral matrices with EsG = @, we see
that @, = AG covers a lattice 9t of rank 2rn over the field of real numbers.
Writing V, = AV, we obtain

f(Sy H’ Z17 Zz: V)
= Ggiﬂ(lz‘Hl[Gri‘Vd(Zl_Zz) + %*91[61+V1](Z1+Z3)) .

(20

There exists a complex non-singular matrix € such that H,[C] = B
and 8,[C] is a diagonal matrix, with dy, ..., d, as diagonal elements. In
view of (17'), d; = +1, necessarily and we may suppose d, = ... =dyp
= +1, without loss of generality. It is easy to prove that, for I(Z;)
> uB™, —I(Z) > uB™ (u>0), the series (20') is majorized by

Zmn(i,qu[Gl-i-Vl]) which is clearly absolutely convergent. Thus the
Ghe
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series (20") converges absolutely and uniformly over compact sets in
$n to which Z;,—Z, belong. Therefore, f(8, H, Z;, Z,, V) represents
an analytic function of 7, and Z, for Z,, —Z, € $Hn.

Our object now will be to study the behaviour of /(8, H, Z,, Z,, 0)
under the simultaneous ftransformations Z,—~M<Z.>, Z,—~M<{Z,> for
M e M, With a view to get certain inequalities concerning (8, H, Z,, Z,,0)
necessary in § 5. As a first step in this direction, we have the theta-

0 E(n)
transformation formule (viz. when M = (__ 7 0 )) i.e.

@) (8, H,—Zi" —Z5, V) = [8(8)"|d| ™ |—iZ, " |iZ,|* x

x D g ET6)(Z— 2+ 387 G4+ ) + GV + T6)
o0V mn

the summation on the right-hand side being over all G (V@) ™) tor
which Bs@ = @ and further H™" is the unique inverse of H for which
HH™ = Hg, H'H = Eg. Formula (21) is a direct consequence of the
well-known Poisson summation formula in several variables. Since T
is a lattice of (maximal) rank « = 2rn over the reals, there exist generators
Cy, Oy ..y Oy of M such that Gy e N if and only if @y =g, 01+ ...+, 0y
with rational integers ¢;. Writing V,; = v, 0, + ... + 9, U, with real numbers
Vyy oey Uy, We See that

(22) f(8,H,~Z', 2", V)

u

= D n(~1m] Y g+ ofJ(zruz;‘)—«}sl[ﬁg,w)of](z;l-rzﬁ).

g=—c0 7=1 =

-

Applying the Poisson summation formula to (22) and noticing that the
lattice N* ‘complementary’ to N is the set of G e {k}., for which
T,(a(GfGl)) is' a rational integer for évery @ ¢ R, we obtain

H8, By =27 =27, V) = [8(8)] ™| a] ™| —iZ,[P|iZ,|* x

x 2 il A6 Z 2+ 187 A6 2+ 22 + G4V + P T6s).
et .

Now it is easily seen that Gf e R* if and only if G* = AG* < {(V&)“I}M
and further Eg@* = @* Thus (21) is an immediate consequence.
A B
Let now M = (C D) €Mp. If t=7(C) =0, then M U, and it

11,8651‘}5;1;11 :;Zeniy that f(8, H, M<Z1>7‘M<Zz>1 0) = (8, H, Z,, Z,, 0).

e ©
lm On representation by hermitian forms 45

Referring to the decomposition (10) of M7, let us assume that
I(Z,[P*]) = B, 1(Z,[P*"]) = —F. More explicitly, let

Z8 Zy (zéii zzb)
ZP ] =1 ~ Z,[P¥ ] =~
J[F (be z) 215\, 7,

28 () =BO = —I(Zw), I(Zw) =B =—1(Zy),

Zye = Zyg— E{—IE{ ’ Ziog = Z2a_ 6f_1£;f .

Let R = (R™YR{™ ") run through a complete set of modulo (1)
incongruent (m, n) matrices of the form GO*™ with @ € {O)mn satisfying
Hq@ = @. This set of R is finite, in view of the fact that GGQ*™" is
integral for all & e {O)mq. Splitting up ¢ as (6™ G£""%) we have,
for Zf = M2, Zt = M~'(Z) that

(24) f(8,H,Z4,2%,0)
_ Z n(§(8+ H)[G+ Ry Go+ Ryl ZT[Q*] +
EgG=G=(G1G2) €{O)m,n
R=(RyRy)

+ 38— H)[Gy+ By 6o+ R Z5[QY)

where & = (G,G,) runs over all elements of {Olmn with B @ =@ a.nd
R = (R,R,) over the system described above. In view of Lemma 2, with

(11) applied to Z:[Q*] and Z#[Q*], the summand in (24) is precisely

(25)  n(S[G+ Ry Go+RIF)X
X (4 (8 -+ H)[Gy+ Byl Zao+ 3 (8 — H)[Gy + Byl Zac) X
X (—(8+H)[(G,+B) 077 + (Go+Ba) Tu) Zic' —
— 38— H)[(Gy+ Ry O+ (Ga+ Ba) Z) Z2) »

~Drlr* —B}
—B} —B: .
= 8+H, (§+H)S(8— H) =0, Wwe may rewrite the last factor in (25)

-1 —1
as 7 (—3(8+H)[(6G+By) 0+ Ul Zig — §(8—H)[(6:+B) OF +U]Z2'e)
where U = 3878+ H)(Gy+ Ro) Z +387(8—H) (G + Ro) Zp. We write
now G, = P,+G10Y; clearly, if P, runs over a full system of ma,tneef
in {O}n: incongruent modulo Of and satisfying HgP, = P; and G1
covers all elements of {O)}my with BsGi = Gf, then G, eoversn exactly
once all matrices in {O}pms With Hg@G = G;. Since C?, D¥ e {(¢s)}ee and

where I = ( ) Using the relations }(8+H)8(S+H)
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further ¢ R, and FF SR, B¥ are integral, we see that 5(S[P,--GI0f+
+R,G,+ R,]F) is independent of G¥. As a consequence, we have

(26) (8, H, 25, Z3,0) = N(S[Py+ By Gy - By]F) %
R=(Ry,Rp), BgGa= Gy € {Ohn,nt
BSP=P{™mod OF

X (3 (8 + H)[Gy+ By Zoo+ 3 (S— H)[62+ Ba] Za) X
x Y (—HS+E) G+ (P Ry OF 4 U125 —
EgG=G1€{Olm,t

—$(8—H)[G+ (P +By) 01" + U1 2.
Applying (21) to the inner sum in (26), we see that it is equal to

1) ST iz PliZal ) (6 (e Zae) +
EgGh=Gy 5{(1/&)-1}mm

+ 387 ] (Zre + Zoo) + G B, + T ()

where F; = (P, +R)CF "+ U.

Let QY""’ run over a full system of modulo ~(1) incongruent matrices
of the form (Yd'87@, with G, ¢ {O}my and HeG = G;. Clearly Hy@,
= Q,. Moreover, when Gf runs over all elements in {D},; with HgG%
=@} and @, over the above-mentioned system, then G¥-+@, runs over
all matrices of the form (/d@)7'8~'@, with @ ¢ {D}m; and BsGy = @,.
Noting that H™'[¢,] = H[(d)87'Va6G,] and 87'[6,] = S[Va@) 8~ Vaa,
we find that (27) iy exactly

187 al ™| —iZudP|iZeel* Y m(AH[G+Qu](Zre— Zae)+

Eg61=G {0,z
[

+ 38062+ Q1) (Bro + Zoo) + (61 T Qo) ST, +F, 8 (G, + Q1))

where G runs over all elements of {O},; with Bs@, = @, and @, over
the system. described above. It is easy to see that

|2 = |—ilZa— G AP = ™0 05| 4 2| ~ 82, + A | P,

Referring to the decomposition (7) of (CD) and the definition (8) of L,
we have from: (9)

99 [P G4 1Q17 2 (5(Gh) = ed (L)
¢ being a root of unity in k. But

(28) [P @+ o8| = PG o)
Qherefore

\=iZul” = PR OH TN (8(64) P | - 02, + AP

e ©
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and in a similar way, we have

|| = &%~ | OF N (3(G) (L) — 02, + AP
Thus

(20)  f(8, H, 2}, 7%, 0)| — 02, + A || — 07, + A
_ ere(nitlz)(zp—r) Ié (S) I—t[ dl—rl/Z”Oi‘.”—-zrd(L)rN(a (Go))—-r x

, :
x > 7((S+H)[G,+Q, Gt RIZLP ]+
EgG=G=(hGr)
EgQ1=Q;, EgR=R=(R;R,)

+38—H)[G+Q, Ga"I‘Rz]Zz[P*—I])»X
XD (SO QB (6T ) 8T+ FuS(6,4+-Q)) x

EgPy=Pymod CF
Xn(S[Py+ R, G+ R,]F),
where I, = (P, + By) 0 ™. Now (G4 @y G +Ry) P~ = 576" for G* ¢ {D}nr
with FBsG* = G*, where y = ¢4|6(8)||d]" is a rational integer which is
clearly independent of Gy, Gy, @y, R,, P* and depends only on %, # and S.

For such G*, we define the generalized ‘Gauss sum’ A(G*, M) correspond-
ing to M~ e M, by

(80)  A(G*, M) = &¢I 5(8) [~ @03 T ALY N (5(G)) " x
XD (- RI6 QU AR + (G Q) 8T, FuS (G + Q) X

EgP,=P;mod C¥
EgRy=R,

X n(8[Py+ B, Gy +R,]1F),
where

. DGR B
F,=(P+R)0i, F= Bt _B~r

and further, in the summation in (30), P, runs over a complete set of
elements in {O}n,; with EgP, = P, and incongruent modulo ¢} and R,
rung over a set of (m,?) matrices for which there is an R = (R, R,) in
the system described in (24).

We have proved (29) only under the assumptions (23). Now both
sides of (29) represent analytic functions of Z, and %, for Z,, —Z, ¢ Hn.
Bubt Z, —Zye $Hn it and only i# W, = (wl)=Z[P*] and —W,
=—Z,[P*"] = (w)) are in $.. Since both sides of (29) which are
analytic in wﬁ}), wd for 1< 4,9, %, < m, coincide on the domain
o =wl, Wl =w§, RwY)and Rwf) arbitrary, i £, k £1,

Twd) =Iwd) =1, Rwf) and R(w)) arbitrary,

they coincide, by analytic continuation, for all w{,w{§ for which

Wi, —We € Hn. Thus (29) is valid for all Z,, —Z, ¢ $» and we have
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TEROREM 1. Under the tramsformation Z,—>Z7F = M‘1<Zl>, Zy—> 7%
A B ~
= M (%>, where M = (0 D) My, t=7(C)=1 and M~ has the
decomposition (10), the behaviour of f(S, H, Zy, Z,, 0) is given by

18, H, Z¢, 23, 0) = |- 02, + AP| - 0Z,+ A |"x

x ) e A (G 84 EEZ + 5 (S EGNZ)
Gh, Gy, Qu By Y

where, in the summation, Gy and G, run over all matrices in {O)y, and
{Obmnt respectively with EsG =06 and EsGy = Gy, @1, Ry run ovelr
the finite systems described earlier, @ = (Gy+@Q, Gy-- Ry) P* " and A(G*, M)
is defined by (30).

Before we proceed further, we ought to know more about A(G*, M™").
The sum in (30) is nothing but

|]0r”+2ra—2rtx

X n(—SIG+ Q0 A 4 (6T Qu) BT, + B8 (61 +y) X
EgP;=Pymod (a), Ry
X n(S[P1+ R, Gy+ R,)F)

where > 0 is a rational integer divisible by d|d['|4(8)*|C}t| and now
P, runs over a complete system of modulo (a) incongruent integral
(m, t) matrices with EgP, = P, and R, runs over the system described
earlier. This is a consequence of applying a lemma of Siegel ([10], Lemma 7,
p. 220). Now proceeding by the usual methods ([11], p. 593, Lemma 16;
[2, IT], (28), p. 98), we can prove that the sum in (30) is majorized
by [ICH18(8)['|d["cy™. We thus obtain

[4(6*, M) < (O] (LY N (8(6) ™"

From (9') and (28), |OF|7'&(L) N (8(6))™" = [P+ 7*||@*". Since @+,
s P*™ are integral, it follows that for a constant e, depending only on k&
and n, we have |P*'|[@*|™" < ¢,. This leads to

Levma 4. For a constant ¢y depending only on k,r and n
(31) 46 M) < 6.
This is the analogue of Lemma 16 of Siegel in [11].
The sums A(0, M~*) are simple in nature and can be identified with

certain other sums oceurring in the work of H. Braun [2,II]. We have
in this direction

icm
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LeMMA 5.
(32) A0, M7 =TI () [Ty Y p(—8[61T) .
Gmod N
Eg¥=G=G0

4 B
(Note. In (32), M = (0, D) eMp, t=r(0)>1, M has the de-

composition (10), L, @, ¢ are defined relative to (CD) by (7), (8) and (9),
O is a r-unit of 0, N is a denominator of I in the sense described on
D. 40, d(L) = |N| and & runs over a complete set of (m,n) integral
matrices incongruent modulo ¥ and satisfying EyG = & — G0.)

Proof of Lemma 5. It is obvious that (32) is independent of the
particular r-unit 0 of ¢ chosen. For, if O, is any other (generalized)
r-unit of ¢, and if G0 = @ then G0, = GO0, =me = @. For our sub-
sequent discussion, we may take O to be 9_1(1;7) g) @, without loss of

®
generality. Define @, = (lf) COE) Q. Then, with our earlier notation
(]

E 0 Cf'DF 0\ ~_ .
(p- 40) we have Q* = (csAa E) Qa L=( o 0) [¢:'] and Q005

0]
= (L;) g) Since ¢4, is integral, we have GQ* = (R,0) (mod (1)) if

and only if GQ;" = (R,0) (mod(1)). Now

(33) A0, M) =a(8, M) D y(—S[P,-+RICIDY),
Ry, Pymod CF
where (8, M) = &5 (8) |~ a| A (LY LTV (5(Gy) " and

where P, runs over a complete set of modulo € incongruent (m, 1)
integral matrices with BgP, = P, and R™" over a full set of modulo
D incongruent matrices for which there exists @ e {Olmn Wwith GQ;*
. 0]
= (B,0) (mod D) and HsG = G. From §,00;" = (EO g), it is clear that
GQ;" = (R,0) (modD) if and only it G0 = @ Further, obviously the

summations over P, and R, in (33) can be welded into the single sum-
ke

0

01 0) @, incongruent matrices
@ in {D}ms for which GO = @ = EsG and (P1+ R, 0) may be replaced
by GQ;" for G in this system. Moreover, o(S[P,+ R,]CF D¥) = o(S[G]L).
On the other hand, we can show that

—2 §
a ré

EgG=G0=G(mod (a))

mation over a complete set of modulo (

(34) 2(—-S[AL) =a@y™ )

Eg@=G0=Gmod N

7(—8[G]1L)

Acta Arithmetica VIII 4
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i tional integer divisible by
2, I1], (21), p. 97) where o 18 & I% e 4
gﬁclfdlgl 5’ ( S):[L, [éﬂ. ,For proving formula (34), one has (Sbst?ontmlly to Obsef}’le
f;rst that there exist 7y, V, ¢ 2y such that GV, = (61" 0) (mod (@)),L[V:1]
K 0 . .

0 . bor’
= (Vg 0 {mod (1)) and VNV, =(0 E) where K .1s a denomina, or’
of W e {k}; and then use Lemma 6 of [10]. By wusing the same lemma
again, it could be shown that

> n(~S8[61L)
EgG=G0=Gmod (“:f Z) @

= V(@) llct|a

(35)

2

BgG=60=a(mod (@)

n(—8[F]L).

Now (34) and (35) together give (32).

Remark. In the case when § >0, we have .H=S and then
§77A(0, M) coincides with the quantity »(H, C, D) dejfmed by H. Bliaﬂm
([2, 1], p. 104). The con?erned root of unity ¢ in % is equal to

Q7Y 0| N (8(Go) (L)

o Ilgilz ;S[' Il)le (geéinoi)ge (ax)ld, in fact, of signature (¥, 0) without loss of
generality. (Else, we could take —§8, instead!). Then H =8, and for

Z € $n,
p)

(36) n(S[612) = D) A8, T)n(TZ)
ESG=G‘€{D}M,,;

T=T20

H8,H,%,%,0)=

where, for a given T = f, A(S,T) denotes the numi..‘re'r of Eg-reduced
representations of T by 8. Since we know that the series (36) converges
absolutely, uniformly over compact sets in $x, the function f(§, H v Z,Z ,.0)
which we shall be justified in denoting as f(8, Z), is regular in $Hn, in-
volving as it does no Z.

A B ,
Let M = (0 D) € My, 7(0) = n. From (29), replacing P*, @* by E™
D: ——J§§") ( D ~§) ' .
o~ ~| b ~ ~J, We obtain
and (_o; a) Vi\le a)

H8, M7¢2Y) |~ 02+ A = ™™*(5(8)) ™ [a|"™"* |T|" x
x ) qB64Q1Z) Y n(—SIPACTID+(EF Q) 8P 0 +

Eg@=Ge{Ohn,n Pymod 0
EgQi=Q: BgP,=P,

+P8(G+Q) T — 816 +¢,1407) .

Let now O = 0 (mod(|@|4(8))). Then in the inner sum over P;, we can
replace P, by Pi+(/d) '8 6,C with arbitrary Gye{O}mn since

icm
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B/ 87 6,0 = (/@) 87640 ¢ {D}mn. But then this replacement brings
1
Vi
multiplied. If @, is not integral, we can always find @ € {O}pn such
that 0,64 ¢ {O)mn and therefore this extra factor is different from 1.
Thus the inner sum over P, is zero, unless @, =0, provided thas
C =0 (mod | @]8(8))). When @, = 0, the inner sum may be easily identi-
fied with G(8, —0™'D) = 7(—S8[PJC'D).

EgP1=Pymod ¢

4 B
Thus in particalar, for M = (0 D) sﬂ]&n(jdfé(S)) with 7(0) =,

we have

18, M7KZ5) = ™3(5(8)) ™ |a|™™ 0| " |- 02 + A[ &(S, — CD)(8, Z).

in an extra factor % (wl—/%gﬁl—{— 67'1@1) with which the inner sum gets

For such M, define

‘I)(M_l) - em'mlzé(s)—n Idl—mﬂ[al—rG(S, _ G_I.D) .
Then we have

(87) 108, )M = o(M)}(8, Z) .

From [2, II] (see p. 94), we know that [o(M™Y)] < 1. Taking M instead
of M, the same arguments give [v(M)| < 1. But from (37), we have
o(M o (M) =1 since #(8, 2) % 0. Thus for M = (g D) « Du([d]6(8))
with [C] £ 0, we have
(38) o(ar)] = 1.

A B
Let us now take M = (0 D) € Da(|d|8(8)) with ¢ =r(0) < n. Then

clearly D s 0™, since 7(CD) = n. Hence |C+2D| as a polynomial in
does not vanish identically. We can thus find a rational integer » with
|@|8(8)/» such that |C'+»D| # 0. Let now .

B 0

i, = (7, E™ g™

|1 2]

01 'Dl

Then [0y # 0. Thus M = M,M;" and both M, and M;* are of the type
mentioned above so that )
1(8, Z)M = (1(8, Z) M) M7 = o( M) (8, Z)| M7 = v(My)v (MTY)(8, Z).
Let us now define
(39) (M) = o(My)o (M) .

4%
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Then from (38), |v(M)| =1 and further
(40) (8, Z)| M = o(M)f(8, Z)
for all M e Ma(d|5(8)). That o(M) is uniquely defined by (39) is a con-

0.
ence of (40) and the fact that (8, Z) =£ .
se(m:E[owever, it does not necessarily follow from the foregoing that

"«
(M AM) =1 for all M e My and A =>( 0 E(")) € My(|d]8(8)). From
the form (29) of f(8, Z)/M ™", we notice that

18, Z+V) U™ =f(8, B M

B o«
for ¥ =V =0 (mod(y?). In other words, for 4,= (0 E‘"’) € Mu(r?)
we have
(41) o(M74,M) =1, forall MeMy.

From (40), (38) and (41) we obtain

THEOREM 2. For § > 0, the generalized theta-series (8, Z) is a hermi-
tian modular form of degree m, dimension —r(8S), stufe y* and belonging
to the maliiplier-system {v(M)} defined by (39).

We may now relax the condition that the signature of § be (r, 0)
and go back to consider the function f(S, H, Zi, Z,,0). Let Z; = Z ¢ §n

B
] )
and Z, = Z. Further let N;(Z> ¢ ®, where N; = o, Di) ¢ My. Then,
from Theorem 1, :
18, 2,2, Z,0)
— 032+ D, |02 + D D)

BgG*=G*=y(Gh+Q; Go+Ry) Pt
X7 (51‘;,2 ((8+H)[G*IN(Z>+ (8— H)[G*] V. y<§>)) .
If Y; =I1(Ni«Zy), then by Lemma 4,
(42) |/(8,H, Z,7,0)
<aloz+D" Y

EgG*=G"* & {Oln,n

A(G*, N7 x

exp(— (2n/y*) o (H[G*] X)) -

The constant ¢, and the constants ¢y, ¢y, ..., to follow depend only
on %, r, and #, unless otherwise stated. Now we have
(43) exp(— (2n/y%) o (H[G*] ¥;))
EgG*=G"* € {On,n
o
= D em(-Fomery) <
46%=Gyen v

2 e (- Lomayy).
Ge{Or,n

icm
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In (43), we may replace G by UGV with suitable U €2, Ve, so that
we could suppose H, and ¥; to be reduced in the sense of Humbert, Now
there exist Humbert matrices Ay, By such that ¥, {4,]eT™ and
H[B,] eX{". Since Y[4,]eT™, we have for a constant e > 0, T,[4,]
> ¢y (min ¥;) E™. This is easily deduced by proving an analogue of a lemma,
of Siegel ([11], Lemma 12). Thus ¥; > ¢, 5, B"™, where y; =minY s
in view of the fact that 4, belongs to the finite set of Humbert matrices
in {O}sns . Thus

(44)

EgG*=G"* €{O}pm,n

oxp (- 2o T) < Y exponpio(EICY) .

Ge{Olrn

Let Ry, ..., b, be the diagonal elements of H,[B,] in T{’. Now there
exists a constant ¢, > 0 depending only on %k and » such that Hy[B,]
2 o, HY where HY is a diagonal matrix with the diagonal elements Py veny Bipe
The proof of this fact again is exactly similar to the proof of Lemma 12
in [11]. Thus we have

(45) ) exp(-ouyso(HLGD)
Ge{Olr,n
<(JT( 3 exp(~cutsyslap)))" < ( 3 exp (= cutagylaf)™
k=1 a€d aeD

using, again, the fact that B, belongs to the fixed finite set of Humbert
matrices in {O},,. It is easy to verify that the last series in (45) is ma-

jorized by eis [T (1 +exs(hueys) ™).

Let usk=;u)w consider f(8, H, Z, Z, 0)— A0, Ni'")|C;Z + D;|®x
X !C’ﬁ +D;["% We have to estimate the series aem,zc'; qéOexp(— %; U(Hﬂ:G]Y,)).
We can easily prove that, for G ¢ {O}pn, G 70,

o(Hi[G1Y;) = o(H{B,][B; G4, 1Y;[4,])

> 050 (HE (B GAL'Y) = ehyy; -
Thus we have

|18, H, 2,2, 0)— (0, N7)|CsZ + Dy| * |C% + Dy

< owexp(— ey )0+ D7 D] exp(——;%a(Hl[Gm))
0#G € {Dly,n

< owexp(~emy) 107+ D" [ [ {1+ (hey)™)
k=1

< 03 0Xp(— 0h ) 1052 -+ DL+ (Ryy)™™) -
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We have therefore proved ‘
A; Bj
TaEOREM 3. For Z e N7(®,), N; = (O; D,-) e My and for y; =

= min I(¥;{Z>),

r

[F(8, B, Z, %, 0)| < el G2+ Dyl [ [ (1 +eultey)™) ,

k=1

4 |18, 7, 2, 2,00~ (0, N7 |0:Z +D4{ |/ + Dy

< 0l|04Z + D" (1 + (hyy) ™) €xp (— eishyyy) -

We shall use the estimates (46) in § 5 in connection with phe ‘gen-~
eralized Farey dissection’. )

§ 4. Eisenstein series. With f(8,H,Z,Z,0), we shall associate
for » > 2n, a function ¢(Z) = ¢(S, Z) which ‘behaves similarly’ under
B .
the transformations Z->M<Z) for M = o D) e My, with »(C) =mn;
more precisely, @(Z) has the property that

(1(8, H, iAB, — i1, 0)— g (iAE))| M

tends to zero as A->oo, for all such M ¢ M,. The function ¢(Z) iz de-
fined, for » > 2n, by

(47) (P(Z) — em'n(zp-—r)/216 (S)I—n ld[—nrlz %
x > OIS, — 07 Dy)| 0% + Dif P |0 + Dy

(CiDy), 1(Ci)y=n

where (0;D;) runs over a complete set of representatives of classes of
n-Towed coprime pairs (OD) with |0] # 0. In the first place, p(Z) is well-
defined by (47); for, if we take U(C:D;) with arbitrary U ¢ ,, instead
of (C:Dy), then |0;|™"6(S, — 052 D)|CiZ + D[ |C:Z + Dy| rzm%ins -
i By
0 )<
with |Cif # 0, we see that (47) is majorized by 3 [|C;Z+Dy|™" which
converges by [2, IJ, for # > 2n. Thus the series (47) %ﬁ)ch is a non-analytic
Eisenstein series for pg £ 0 converges absolutely, uniformly when Z lies
in a compact subset of Hu. If ¢ = 0, then indeed ®(Z) is regular in $Hy.
Using the one-one correspondence between the clagses of n-rowed
coprime pairs (D) with ||+ 0 and hermitian matrices in {kYam we

may rewrite (47) as .

(48)

changed. In view of the fact that |4(0, Ni')| <1 for N; = (

(p(Z) = enin(zp-—r)lz'a(s)[—n Idl—mlzx
x D ABTES, - R)\Z+ R Z+E[.

R=Re{lnan

e ©
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On representation by hermitian forms 55

The summation in (48) is over all hermitian matrices R in {k}nn and
further if B = 07D with (0D) being a coprime pair, then (8, —R)
= G'TS': 71(— S8[G,1R) where now @, runs over a full system of modulo U in-

congruent elements of {O}nn, satisfying HsGy =6, If R =0"'D,
R, = 07D, with (CD), (0.D;) being coprime pairs, and if R—R, is semi-
integral, then we have

(49) d(R)™"G(8, —R) = d(B)™" (8, — Ry

as may be verified from (34), taking a = §|@|" |6 (8)[ ||C|*[|C, 7, for example.
Thus ‘we obtain

(80)  @(Z) = PRI (8)[ ™
x Dl AR)T @S, Ry

R;=R,mod ©

p)

R=§ER1(mod D)

where the inner sum over all R = B ¢ {k}nn with R = R, (modD) for
afixed B, = R, ¢ {k}n,» and the outer sum is over a complete set of hermi-
tian matrices B, in {k}s» incongruent modulo O.

In view of (49), ¢(Z+T) = ¢(Z) for every semi-integral T'e {k}nn.
By the usual arguments (cf. [2, I], pp. 845-849), it could be shown that
@(Z) has the Fourier expansion ’

(61)  @(Z) = &R 5(8) ™ (a7 x
[ Y a® TS, —B) X Y + B[ |X*—i¥ + B[ x
T € R=Re(lnn
X (—TX*){dX*}

where X = R(Z), ¥ =I(Z), T runs over all semi-integral matrices in
{O}na, and the volume element {dX*} in H, and the domain of inte-
gration € are defined as follows. Namely, writing X* e H, as X} +wX3
with real X} =(2{}) and X} = (2f)), then {(dX*}= [] daf) [] do

1<i<i<n 1<k<I<n
and € is the ‘eube’ consisting of X* ¢ K, for which 0 < Ly, T <1 for

I1<i<ji<n and 1 <k <l<n Itis clear that if dX* is the volume
element in H, defined in § 2, then
92 \nn-1)/z
dx% = (m:_) ax*
Vid]
In view of the uniform convergence over € of the series inside the sign of
integration in (51), we have ’

[Z+E[®|Z+R[

() = R g gy g N (TX) x
T'=T'semi-integral
X Q) ARY TGS, —Ry) [| XY R —iT 4 Ry

Ry=R;mod © Hy

X n(— TX*) {dX*}
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where now R, runs through the same set of matrices as B, in (50). It
follows that

(52)  (Z) = P 3 (1)
. I=1T
x> g(TR)ABY ™S, —By) [|X*+i¥[?[X*—i¥| %
Hn

R1=.'Z\€1modD

X g(—TX*) {dX*} .

Again, in view of (49),

(53) D amy™

R1=§,mod£)

(8, —B)n(TRy)

— ;d l'n(n—- /2 2

R=RmodD

a(R)™ @8, — R)n(TR)

where, on the right-hand side, R runs over a complete set of hermitian
matrices in {k}nn such that no two elements of the set differ by a semi-
- integral matrix.

For every rational prime p, let us define after Siegel [11],
the p-adic density of representation of T by 8, by

(54) ap(8, T) =limpetn=2) A,q(8, T)
aA->00

ap(8, 1),

where A,(8, T') is the number of modulo (p*) incongruent @ e {O}ma
for which S[@] = Tmod(p*) and Fs¢G = Gmod(p®). The definition (54)
may be verified to be independent of the choice of Fg. Using the absolute
convergence of the series (53) (since r > 2n, [2, I]) and proceeding as
in Lemma 25 of [11] (cf. [2, IT], p. 97, Lemma 1; [1], p. 140, Hilfssatz 51)
it could be seen without difficulty that the densities a,(8, T) exist and
further uniformly in 7, the infinite series on the right-hand side of (53)
is nothing but the infinite product H ap(8, T') of the p-adic densities (54)

extended over all rational primes p As a consequence
(85)  ¢(Z) = e™MReP-1|53) X

X 2,1 a3 [T oS, 1) VT

Ivn Id'n(n—l),..-—-rn/2
TX*) {dX*)}

where T runs over all n- rowed semi-integral hermitian matrices. The
infinite series on the right-hand side of (53) is the “singular series of Siegel”’
associated with § and 7.

If §> 0, then using the summation-formula (see [2, I], p. 847,
Lemma 8),
| dl—n(n—lm P ( 2n)m—n(n—1)/2

Z |2+ B[ = T(NT(r—1)..Ir—n+1)

R=E§R1(mnd D)
<

T-T>0,T semi-integral

X

|T7""n (T (Z + Ry))

icm
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one could, in this case, directly obtain the Fourier expansion of ¢(Z) viz.

el S o [Tests, mntza.

T=F>0

(86) @(2) =

—r—n-l—l

In (56), T runs over all positive semi-integral matrices; the coefficients
corresponding to T > 0 drop out thus when ¢ = 0.

‘We now proceed to obtfain estimates for ¢(Z) analogous to (46).
These estimates will be needed in § 5 in connection with the ‘generalized
Farey dissection’. Moreover, these in particular, will enable us to verify
the property of @(Z) in relation to j(S8, H, Z, Z, 0) asserted at the be-
ginning of this section.

A; By
THEOREM 4. For Z*=NiKZ)e®, with N;= (07 D]) e My and
i L
y; = minI(Z*), we have
57 |9(2)| < eallC;Z+ Dyl ™",
|9(2)— 200, N7)|C;Z + Ds| ™™ |0/Z+ Ds| ™| < 0ti "I10:Z + Dyl
(104 = 0).

Proof. Since, by (31), |40, N ") < ¢, we have clearly [p(Z)]
<6 ICZ+D||™", where the summatlon is over all classes of n-rowed
€0

coprime pairs. This gives

(88) |p(2)| <05 D N0(DZ*—By)+D(— iz + A" |- Gz + A,

{C,.D}

< Gl0Z+D4™ D)z + D
{C,D}

since (0.D;— DC; — OB;+DA4,) again runs over a complete system of
representatives of classes of n-rowed coprime pairs when (CD) does so.
Similarly, for |C;| # 0, we have

(59) | @(2)—4(0, N7H|01Z+ D7 |02+ Dy

<alCZ+D D 0z +D|”"
{C,D}+{0,E}

where {C', D} runs over all classes of n-rowed coprime pairs except {0, E}.
Let us define now, for 1 <t < n,

D lcze+D|~
{C.D},r(C)=t

(60)

Gt =
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where the summation is over all classes {C, D} of n-rowed coprime pairs
-with #(0) = . From (9*) and Lemma 3, we have

(61) o< ) (L) N(8(G) 16y Z* + L) &,

G, eStim)
)

Ga ~ Et) o
Q= (G:)’ L=L=Q‘1( o 0) QLe{k}p,n

= ¥ ADTHBG) Y 6z L+ 88,

Gy € 8(tm) =8
N o € 20 o SEﬁ)CéD}n,n
L=LmodD,Q o 0) QL=L Q1 ( 0 0) QS=8

Using an argument of H. Braun ((2, I, p. 850, (81)), we have

(62) D G2+ L4+8) 8,
=3 ¢ (Oln,n
E®) o
Q-l( 0 o) 08=5
= N(5(6,)™ ) & E G (7 1 L) @, + 8]
8=8 ¢ (D}y,s

R=Emod 0, &Ry semi-integral
Where‘\,,.on the right-hand side of (62), § runs over all {-rowed integral
herm.ma,n majtrices and B = (r;) runs over a set of {-rowed hermitian
matrices such that ydry, v (1<i< F<t, 1<) cover a full set
of numbers in % incongruent modulo D, subject to the condition that
G RG, is semi-integral. On the other hand, it can be shown ag in [11]
(see p. 596, (60); cf. [2, I], p- 837, (29)) that

2 Gz +L) &+ 8

8=F €Oyt
< exp (oua((HZ*[éo]))‘l)) [ 164 2* + 1) 8, + B am .
Hy
Since & ¢ 8, N(5(6,) < ¢, and it would then follow that
©3) D' @2+ L)+ 8

8=F € (ks
< oxp (o (I (2°(8,0) )l T (29 &l [ |4 E"a;
e
< 0w (owo (T (206D ) (270G -

where 6, = Hf B+ H|"GH < oo since r > 24 ([2, TJ). Thus from (61), (62)
and (63), we have

0t < Gy 2 . d(L)"‘exp (0250((I(Z*[5£0])) -—1)) ”I(Z*) [@0] ”l—r .

Goeflm) LT moqp

e ©
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Again, since 3 d(L)™" < oo for > 2n ([2, T], Lemma 4), we get
L=L'mod O

(64) 0 < o 4\; D (0230((I(Z*[§0]))“1)) G, T(Z*) Gl .
"y € (27

In the summation in (64), we can replace &, by UG,V with suitable

U ey, Ve 8o that I(Z*) and G,I(Z*)@, are both reduced in ‘the sense

of Humbert. Further, for a Humbert matrix A4, € {O¥;, I(2%)[G;4,] ¢ TP
H

and i G4, = (h..k), then [I{Z*)[Gods]] > 0x l_]jl_z(z*)[@,] and as

#
a consequence, |7 (Z*)[(N}o]i}>c”[_] I(Z*)[k]. On the other hand, if we
=1
write ¥, = I(Z*)[G,], then ¥i[4.]> ¢y(min Y[A,)E and since
min ¥[4,] = min ¥, > minI(Z*) in view of &, and A, being both in-
tegral, we have Yi[4,]> ¢5(minI(Z*)E®. Thus, if y; = minI(Z*),
then the characteristic roots of ¥, are > ey %; and hence
o ((L(ZED) ) = o(FT) < enyr ™ .

By the above arguments, (64) now gives
t

. - fr
(65) o1 < 0 2) exp (e ™) ([ ] T(2%) (1)
Gy € 2ltn) 1=1
Godo=(hs )

where @, runs over %" and we have assumed I (Z*[@‘(,]) i3 reduced and
further I (Z*[@'OA*]) eI for a Humbert matrix A, e {OY,;. Again,
there exists a Humbert matrix B, € {Olns such that I(Z*)[B,] I
and further

(66)  I(Z9[l]=>I(Z[B:])[B, bl > 055y BB, bl > eoey; Bl h] -

From (65) and (66), we have
£

- . f—r
(67) a<om > explewyi)y ([ ] k)
Gy € 2(tm) =1
Goda=(h1chd)

— _ _r\t
< tmexp (euy )y (D) (@A)
h#0

where b runs over all non-zero integral n-rowed columns. Using the ine-
n

quality B[h] > n([] BOF™, for B = (A..5") and the fact that
i=1
Y N(a)*< oo for A>1, we see that 3, (B[N < co since
0#a€D 054k € {O}n,1
7 > 2n. Thus, from (67), we obtain, for 1 <t < n,

(68) oy <omexplomyi Ny, Lle. 0 i< exp(onyi )Y -
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Now, for Z* € @y, y; = min(I(Z*) > y;, and therefore (58), (59) and (68)
give us the required inequalities (57). Theorem 4 is thus proved.
From Theorem 3, taking Z = iuE™, we have

108, By 4pB®, —inB®, 0)/N7 = 1(0, N7*) =0
as p->oo since for u large, (uE™ ¢ B,. From (57), we obtain for Ny =

4; Bj N
=\¢, € My, with |0;] # 0 that, for u—>co,

(B N7 ~A(0, N7")>0.

Thus, for such Ny, we have (/(8, H, iuB™, —iuB™, 0)— g (iuB))|N;' >0
a8 u—oo and this was what was asserted at the beginning of this section.

§ 5. Generalized Farey dissection. The theta-series j(§, H ,Z,7,0)
has the Fourier expansion

J(8,H,2,7,0) = D A(8, T; H, Y)n(TX)
T

where X = R(Z), ¥ = I(Z), T runs over all hermitian matrices in {Ol.n
and further ' '

AS, T H, Yy = > g(H[GT).
EyG=G.8[G=T
G {Ohm,n
II8=o0, then_A(;g, T, H,Y) =9(iTY)A(8, T) (see (36)).
The associated ¢(S8, Z) has the Fourgsr expansion (55) and using
@(8 ,‘Z_) as an approxxmatich to f(8, H, Z, Z,0), we estimate the Fourier
coefficients of /(8, H, Z, 7, 0)—¢(8, Z). In other words, writing

18, H,2,7,0) = (8, 2)+1(8, H, 7, %, 0)—p(8, Z)
we have

(69) xf(sf(s’ H, X44iY,X—iY, 0)n(—TIX){dx)

= [ o8, X+i¥)y(—Tx) x4+

XeE

+ J (18, B, X447, X—i¥, 0)— (8, X +4Y))y(— TX) {dX}

XeG

yvhere € is ﬂu'a generalized ‘unit cube’ in F, and {dX} the volume element
in ¥, a8 defined on p. 55. Our object is to estimate the second integral
on the ng.ht hand side of (69). To this end, we first carry over to $

the technique of Siegel’s “generalized Farey dissection’. v

icm°®
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For fixed ¥ = ¥ > 0, let G*(¥) be the set of Z ¢ $, with I(Z) = ¥
and R(Z) «€. Now, it is clear that the sets N;'(Gn) = (N7 (2> |Z ¢ Gn}
cover $, without gaps and overlaps, when N; runs over a complete set R
of representatives of the right cosets of M, modulo Wx, in view of the
fact that §» is a fundamental region for M, in $Hu. Therefore E*(¥)
=E{T)~ (U NGB, =NU (€(X) A Ni'¢Gn)). Denoting G*X)

NieR i€R
j—1
~ Ni®,)> by & and setting G = 5D,--—L!¢D;, we see that the sets &,
=1

©=1,2,.. give a non-overlapping covering of €*Y). By property b)
of Fu (pE 3;7 ), all but finitely many of the sets € are empty. We now choose
N, = E®",

Let G ={R(Z)|Z ¢C}}. Tf Z G}, then Z* = N(Z> ¢ G,. Further,
for a suitable U eQ,, I(Z*)[U] is reduced in the sense of Humbert.

Our subsequent diseussion is split into two parts according as §
is definite or indefinite.

We proceed with the case when S is non-negative-definite first i.e.
p =r. Further let T = T™ > 0. In this case, we consider the ‘dissection’
of the cube G*(77") ag defined above. From (69) and (56), we obtain

—\7
o) [ [eats, mizr-+

70) A8, T) =6(8)"" A
( ) ( ) () P(])[dl”‘ »

F=r-n+1 (

+e2""f (f(8, X4iT™") = p(X +iT™")) 5(— TX) (X} .
¢
Denoting by ¢(T) the second-term on the right-hand side of (70), we have

o(T) = ™ D) [ (18, X+iT™)—g(X+iT™)n(— TX){dX} .
i G
Now, sinee we know that minT < u,|T[™, we choose T such that
|T| > (ynpm' )™ = 6 80 that minT" < 9,. Thus EHT ) ~ G, = F Le.
@, is empty. To estimate ¢(T), we use the inequalities (46) and (57). We
obtain

(M) Jo(D] < S I8, THT)—p(X+iT )X = o0 2 T

NjeR, i1 G
where, for 1 <t<n,
L= > I8, X i) —p(X T e .

Nf:(’(&‘;r);) en®
r(Cp=t
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If now {C;D;}«[G,, L] then we denote €; by E(Gy, L). With this
notation, for 1 <¢< n, we have from (9*), (46) and (57),

L<oeq P ALY [ NG X +iT L) Gy ax .
Gye E(‘-")t G(Go. L)

- ) o
LeBetnm 01y o) QLeL

For any X eG(Gy, L) (for fixed L, and I =L, (mod(c)) we can
Go(L—Ly) G‘No *

* *

determine uniquely 8, = J, = ( ) ¢ {Oln such that X[{]+

G Lo, 0
+( Jao 2
with 0 <y, 6 < c;. Of course, 8, depends on X, Q and L. But sinco the
number of non-empty (G, L) is finite and the sets (G, L) are bounded,
S, belongs to a finite set. The images of G(G,, L) (for fixed L, and L=
Ly(mod(cs)) under the transformation

)—I-SL, hag elements in the last #—3 rows of the form y-do

(72) -2V O 15,

are all disjoint and lie in the subspace F;' of the space of n-rowed com-
plex hermitian matrices with elements in the last #—% rows of the form
746w with 0 <y, § <c;. Applying the transformation (72) to G(G,, L)
and denoting the top ¢-rowed principal minor of X by X;, we obtain

Li<ow D 4Dy Y [ir(@]+ X rax

Z=Lmod (c}) Goegtm) P

where now I runs over a complete set of modulo (¢5) incongruent matrices

In {Klus. Since Y (L) < oo for # > 2n, we have
L=Lmod (¢3)

Li<eys ) [T @)+H| " am

Goefitn) g,

Sow ) |TTE)TC,
Gyefitn)
gince g{ |E+iH|™"dH < oo, [2,1]. By applying the same arguments
a8 on p. 59, we may deduce that
i< o (min T N gpter)

03:h € {D)y,1

‘ . < O (mm T—l)—t(r-t)
Le,

(73) I < o (min 771~ 0ntde=n (g oy o n—1).

icm°®
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A; By

We now proceed to estimate I,. For Z ¢ & (with N; = o. D)€ R,
i s

7(0;) =n and Z* = NKZ)), we may derive, from (46) and](57), the
inequality
(8, 2)—p(2)| <|#(8, 2)~ 40, N;") 032+ D] +
+[@(2)= 10, N7) |62+ Dy || < ey (minI (24)"" |02 + Dyl ™" -
Now

Li<os D L) [ |X+iT 4Ly "dx

L=Le{)nn G(Em,L)
<o D ATy ) [ 1X i Iy ax
Ly=Tymod © L=L=Iy(mod D) G(EM,L)

where y =minI(Z¥) = min ((T[X+L]+T7)7'[07"]), L =0C7'D; and
Ly = C;'D,. Since L = Iy(mod D) it may be shown that C; = UQ, for
U €0, and hence y = min ((T[X+ L]+ T7)[(5]). We now apply to
each (¥, L), the transformation X -»>X-+L and then the sets G(E,L)
corresponding to different L = L (modD) for a fixed L, go over into
non-overlapping sets of finite euclidean volume (in the space Hy) and
80 we have

(74) Li<es D Q)™ [IX4ir 7y "ax .
Lo=Lymod © FHy,
Applying the transformation X +X [0 "] where 7" = 0, we get from (74)
(75) Ln<eaZ[™ D L) [IB+X "y ax
Lo='icmnd.0 FHp

where now, y = min ((E+ X% ¢57]).

We may write X ¢ H{, as W[U '] with W being a diagonal matrix
with diagonal elements 4oy, ..., w, satisfying w, > w,> ... > w, and U
being unitary. Then from XU =UW, we get XdU+dXU =dUW +
+UdW ie. U'dXU =SUW—WSU+dW, where 6U = U *dU. But
now 8U = (8uy) is skew-hermitian and [] duz; introduces a volume ele-

%]
ment du in the space of left cosets of the n-rowed unitary group modulo
the subgroup of diagonal unitary matrices. It may then be seen that

k)

aX = [](w;—w;)? [] dwidu. From the theory of classical groups, we know
i] i=1

that [du extended over the coset space is finite. On the other hand, we
have
(76)  y =min ((B+ W) [T0C5"]) > min (1 wd) " T[05])

> (1+w) ALy "
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where y; =minT and d(L,) = [|Cy)l. Moreover,

n

@) [ < [[a+ud) @+ = [ [ @ +ufy.

Rl Bl =1
From (75), (76), (77), we deduce that
(78)

In < 0T 2 a(Ly)™"
L;r——f{, mod O -

8%—3g
i
ol—)

|

(1 +w?)n~1—7‘/2y1—1‘dw1 .

(1 +w;zc)”"l""‘lzyl"rdwl...dwnf du
i

83

SelT™ D Ay

L,,=Zn mod O -

Setting v = (/)P 3(Ly) ™ and g, = 4}, max (1, o"(1+w})™"), we have
Y =Y, since y >y, already. Further it can be shown without difficulty
that

o0

(79) f (1+w?)n—1—r/2y;—rdw1 < 051mi11 (1, ,y{zn—l——r)lzd(Lo)r—zn+1) .

—o0

Thus from (78) and (79), we have

(80) L<eT (™" 3 a@)y iy 3 amy).

S

Ly=Tymod Lo=Lomod D
ULo)<y!'2}yy ULV py

We now use the following

LevmaA 6.
-8 —2n+1 —8—
B) W > a@ymy D) amy < 055(2+_1_ w-e
Z=Lmod © L=Imod © s—1
d(L)<u a(L)=u

where u =31y, > 0 and s = r—2n+1>1.
Proof. The proof is on the same lines as Lemma 11 of [11]. One

has now to consider the Dirichlet series y (s) = D ALy o g al™®
. L=Tmod ) l=1

‘which converges absolutely for real s > 1. Now let {(s) be the Riemann

zeta function and let us write (E(s+1)™ "¢ (s) as a Dirichlet series

e .
zg: bil™ (real s > 1). Then using some results of H. Braun ([2, 11, p. 840)

it can be shown that @ < o5d; for 1 <1 < co and further that Da< Css
u

for a consffa;nt ¢ independent of 4. The proot of the lemma isl;hen com-
pleted as in Lemma 11 of [11].
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From (80) and (81) we obtain
(82) - In < 05| T ™ (min T2
Finally then, for 7' = T = 0 and |T| > ¢4, we have from (71), (73) and (82),
(83) 6(T)| < 65 ((min 71 r-Da=r-0 |7~ (min T)(2n~r)/2) .

This estimate is of no use, unless we relate the growth of min7 to that
of |T'| as |T] tends to infinity. We know, of course, that min T < u|T[*"
but min 7' may remain fixed, even as |T|— co. But as ||+ co, min 7™ -0.
If therefore we require that as |T|— co, min Tmin 7" should be bounded
away from zero, the situation considered above cannot happen.

‘We may now impose the restriction on 7T that

(84) - minT > o|T["™ for a fixed ¢>0, as |T|->oco.

This condition implies that minZ7™" > ¢'7" V" for a constant ¢’ depending
only on %, n and ¢. The proof of this is similar to that of Lemma 2
of [8]. This condition (84) for T reduced in the sense of Humbert, merely
means that | 7™ T lies in a compact set in the space of n-rowed positive
hermitian matrices of determinant 1.

Thus for [T'| > ¢ and under the condition (84), we have for # > 2n,

(85) [G(T)l csa(lTI(n—l)(r—n+l)/n+ IT[r—n+(2n-r)/2n)

<
< cssITrAn-Hzn»r)IZn

the constant ¢;, depending only on 8, &, n and ¢ but not on 7. We have
thus proved

THEOREM 5. If 8™, T™ are non-negative integral hermitian matrices
of rank r < m and rank n respectively, then for r > 2n, we have

(86) A(8,T)

r 71q]~72
= prro®) [ | ELEL [ [ as, o+ oqzp-r-e-mm)
j=r-n+1 k4

provided that |T| > ¢y and minT > ¢|T[". (The constants in the O-term
in (86) involve ¢.)

Remark. From the working above, it is clear that if we replace
¢(Z) by another function ¢,(Z) which is, say, & hermitian modular form

B
of degree n and stufe y? and if further, for all ¥ = ) € MWy with 7(C) = n,

¢ D

Acta Arithmetica VIIT 5
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the constant term in the Fourier expansion of ¢(Z)/N~' is the same
as 1(0, N7%), then, for the Fourier coefficients ¢,(T) of f(9, Z)—q\(Z)
with T > 0 again, we have the estimate (85). The constants in the estimate
now depend also on ¢,(Z) in general. Thus obtaining an estimate of the
type (85) depends only on the fact that ¢(Z) ‘“mimics” f(S8, Z) under
such hermitian modular transformations. However, for arithmetical
applications, it is necessary to know the precise Fourier expansion of
e Z).

We now take up the case when § is indefinite ie. pg > 0.
Carrying through the Farey dissection of the cube G*(sE™) in Hn (0< ¢
< yn) exactly as above, with f(§, H, Z, 2,0) and ¢(8,Z) we obtain
for fixed T = T ¢ {D}nn, the formula

A (IS’, T; H, SE) = enin(ip—r)ﬂ[a (S) I—n ]dln(n—l)lz—mlz X
 [] a8, T) [1X 4B | X —ieB| % (— TX) {dX} + o (s~ .
kg FHan

(87)

The o-sign refers to the passage to the limit ¢—0 and holds uniformly
when minH, =minH[A™"] =k, >k, (any given positive number) (for
definition of H,, see (19)). Now

88)  [|X 4B | X —ieB| % (— TX) {(dX)
Hn
= TR [ B X[ B X[ (— o TX) {4} .
Iy

The integral on the right-hand side of (88) converges absolutely since
7 >2n ([2,I]) and the value of the integral with the integrand replaced
by its absolute value is independent of e. Thus this integral converges

uniformly with regard to s as e >0 and its limit is equal to [ |B—iX|™"x
9(7‘

X|E+4X|"?{@X}. The value of this lasb infergal may be computed as
in [11] (Lemma 24) to be

2
(VW
where, for (rational integral) u > 0, we have set
ol & :
Qn = [ ] 1“%0‘) y G =1.
=1

Multiplying both sides of (87 )
obtain

2n(n+1—r)

O00Qq0r—2n

)n(n-—l)/2
Qp~n8q~nQr—n

(89)

by er-m and letting ¢ tend to Zero, we

icm°®
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TeEOREM 6. If § =X 4s an m-'rog;ed integral mairiz of signature
(p,q) and rank v (=p~+q) and if T =T is an n-rowed integral matriz,
then for p,q>=n and r > 2n, we have

2

SIG1=T
EgG=G€{Otm,n

|8(8) [ gnenti-me) g min-i—znys “‘an%(s’ )
b4

(90)  limgntr=m 7 (ieH[G])

€p—n @g—n Or—n

uniformly for minH, > hy > 0, where Eg is a fizved r-unit of 8 and H , Hy
satisfy (17), (19).

Remark. If |T| # 0, then we know from [1] (Hilfssatz 51, p. 140)
that the absolutely convergent infinite product []an(S,7T) (r> 2n!)

vanishes if and only if at least one a,(8, T) =0. Again,p by [1] (Hilfssatz 11,
p- 83), we know that a,(S, T') # 0 if and only if there exists G™" with
elements in the ring E, of p-adic integers over % such that S[6¢] =T,
EsG = @. On the other hand, the left-hand side of (90) vanishes if there
is no Bg-reduced @ € {O}mn with 8[G] =T and then []ay(S, T) = 0,
implying that ay(8, 7)) = 0 for at least one p. We have thlfs the following

CorOLLARY. Under the conditions of Theorem 6 together with the con-
dition |T| + 0, there exists an Hg-reduced G € {O}my for which S[G] = T
if and only if for every rational prime p, S[G] =T for an E,-reduced
G with elements in Ry.

§ 6. Measure of representation by indefinite forms. Throughout this
section, we shall assume that § is an m-rowed indefinite integral hermi-
tian matrix of signature (p,q) and I an n-rowed integral hermitian
matrix of signature (p’, ¢') with p,g>n. If S[G] =T for G e {Olmn,
then we shall define, after Siegel, the “measure of the representation
@, First we need a few preliminaries.

By the (reduced) orthogonal group 2(8) of S, we mean the group
of all m-rowed complex square matrices U satisfying

(91) S[U] =8, EsUBs=TU,

where Hg is a fixed 7-unit of 8. The inverse U™ of U is uniquely de-
termined by the conditions
UU'=Es, U'U=2F%;.

The set of U e2(8) with Ue{Olnm is a subgroup I'(S), called the

(reduced) wnit group of 8. The group 2(8) is a locally compact topological

group and I'(8) is a discrete subgroup of 2(8). The group 2(8) as defined

by (91) may be seen to be independent of the particular choice of Hg,

for, if 2*(8) is the orthogonal group defined with respect to the r-unit
5*
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L%, then under the mapping Ue2(8)>BFU « 2%(8), the groups 2(8)
and £2%8) may be seen to be isomorphic and in a similar sense, I'(8)
is independent of the choice of Hy.

The space PB(S) (see § 3) associated with § admits of a parametri-
zation as follows.) In fact, let ¢ be a complex non-singular matrix sueh

5?9

that §,[C] =( 0 @

fying B—ZZ > 0 and if

). I 29 iy an arbitrary complex matrix satis-

_( (B-Z%7 —(B-2%)'Z
Y \-Z@m-22) Zw-z%z)’

then H, = 2K,[0"']— 8, ¢ B(8,) and H = 2K, [CT'A]— 8 € P(8) (see [12],
for the case of quadratic forms over I').

In the space B(8,), there is a metric ds* = o(HdH, Hy *dH,) induced
from the space of r-rowed positive hermitian matrices and this is in-
variant under the transformations H,~H,[L] for arbitrary #-rowed
complex non-singular L. The corresponding volume element in P(S,)
in terms of the parameter Z is

W =B 22" [] dwadya
1<k<p

: 1<I<q
?;vhfare Z = (), % =@g+iy. This volume element taken in ‘B(S)
i3 Invariant under the transformations H —H [M] with EgMEy = M,
ffn‘, this is equivalent to the transformation H,—H,[L] for suitable non-
singular L. Further it may be seen to be independent of the special choice
of 4 or Eg.

_ For U<I'(8) the mapping H->H[ U] for H < P(8) is a homeomor-
phism of PB(8) onto itself and in this way, we have a representation of
I'(8) as a discontinuous group of mappings of P(S) onto itself. This
representation is indeed faithful, if we agree to identity U and oU in
F(ASj') for every root of unity ¢ in k. We ghall construct a fundamental
region for I'(8) in P(§) and define, after Siegel ([11], [9]) a ‘measure
of the unit group I(8)y.

Let W be an m-rowed complex
again and having Hg as a r-unit.
of complex (m, m)

hermitian matrix of signature »,9

] We define 2(8, W) to be the space
matrices, X for which '

S[X]=W, EsXEy=2X.

For 8 =W, (8, W) is the same as £2(8). The unit group I'(8) acts dis-

continuously on Q(8 W) as the group of ;
onto itselt (for U e I'(§)). group of mappings X >UX of 2(8, W)

e ©

icm
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forms

Let now 8, = S[A™"] (see (16)) and Wy = W[4A™"]. Then 2(8, W)
and Q(8,, W,) are homeomorphic under the mapping X e 2(8, W)= X,
=AXA e Q(8,W,).

Writing X, = X9 +4X® with real X, X® and similarly W,
=W 4+iW®, we have in the space Q(S,, W,) the volume element
ax) _ ax®yax®)
@wy  @wOaw®)
this volume element to 2(8, W), with an extra factor N(3(4™%)"
The reason for putting in this extra factor is clear since N(5(4™")"x
5 Xy}

@y oo .
unique upto multiplication on the right by a non-singular L e {k}., and
therefore, if A~ AL, then S, —+8,[L], Wy—=W,[L], X;~>L'X,L and

r —1yr {4X1} —1\r r —r {dX3}
then N(3(47) W»N(B(A )" N(8(L))" N(8(L)) any

The group AI'(S) 4" acts discontinuously on 2(8,, W,) as the group
of mappings X; > UX, for X, e 2(8;, W,) and U e AT'(8)A™. Tt contains
a subgroup G of finite index, which is also of finite index in the unit
group I'(8,) of 8,. One can construct a fundamental region F for I'(S,)
and hence for AI'(8)A™" in Q(8;, W,) and using the homeomorphism
between Q(8;, W,) and Q(S, W), one can get a fundamental set for
I'(S) in (8, W).

We now define u(8), the measure of the unit group I'(S) (cf. [9]) by

after Siegel ([12]; § 6, Chapter IV). We carry over

is independent of the special choice of 4. In fact, A~ is

(T(8,): @)
(AT(8)A™": 64

, ({dXy}

N(54™) ,
g AWy}

2 \rr+D2
(92) )

#(8) = (__

vid|

where ¥ is a fundamental set for I'(8,) in £(8,, W). The right-hand side

of (92) is seen to be independent of the special choice of 4. Further, let

(I'(8): G4 f{dxl}

(AT(8)A™": GA)F {dW3}
damental set for AT'(S)A™" in Q(8y, Wy).

It is known from [9] that there exists a fundamental region F in

P (8,) for I'(S,) modulo the subgroup of units of §; of the form oE® with

@, a root of unity in ¥ and further for r >1, Ffd'v < oo (Lemma 7, [9]).

Proceeding exactly as in ([12]; § 6, Chapter IV) one can connect F with
the fundamental set # by applying now an analogue of a lemma of Siegel’s
(viz. Lemma 9, [9]) and prove the formula

is exactly the volume of a fun-

us observe that

9 \rr+f2
(93) )

wu(S) = (———

= (I'(Sl): GA)
V,m—l I(’(S)] @qu(

AT(8)A™: G4) Ff
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In (93), w denotes the number of roots of unity in % and gy, g are defined
by (89). Thus, for r >1, u(8) < co.

1 (I(8y): &
If § is definite, —'—(—(-1)-_1—'4)* f dv is just o(8)™" where o(8) is
w (AT(S)A™": Ga) 5
the order of the reduced unit group of § and therefore

(94) () ( 2 )'““”2
'u = |-

Vid|

Let now T =T be n-rowed, integral, of rank ¢ and of signature
(p'yq') and let > 2n and p,q > n. Further let G be an Eg-reduced
representation of T by §, of rank & > 0; clearly ¢ < % < n. Before we
define the “measure of the representation G, we need the following

®

LEmMA 7. G = O(F:) %) Q* where C =0™" =Hg0, r(0)=h,
D =D""0 r(@*) =n and further, there ewists a rational integer cy
depending only on & and n such that ceC, ¢uD, 06,Q* " and Q* are integral
and N(8(D)) < ¢e. If h =n, we take D = E™" and if t =n, we take
Q* =E” and & = C.

(Note. The constants cg, Cq, ..., ¢4y ocCcurring in the course of the
proof below are positive rational integers depending only on % and n.)

™ Proof. Let, first, b < n. Then & has a 7-unit O of rank % and using
(6) and (6), we have

epé(ﬂ)”r9(8)4~

G=0B, r(C)=h, Be{Ohn,
BO=B, 040 c{Ohi, N((B)<on

for constants ¢, ¢q,. By Hilfssatz 24 of [10], upto a left sided unimodular
factor, there can be at most finitely many integral B™™ with r-unit O
am'i.N(a (B)) < ¢4y Lot s = 7(8[04]). Again using (5) and (6), there exists
an integral non-singular @, with ¢;Q " € {O}xa (for a suitable constant

_ % 0
¢es) such that S[C,Q5"] =( 6 0). We may assume by replacing ¢,, B

- ©
by 0.@:", QB respectively that S[C,] = (T(; g) already. If b = n, we

choose 0, =@ and B = F™,

I'Jet now t_f n. There exist then non-singular integral Q* and a constant
e With 6,Q*™" integral such that

V]
\ o ome=( ).
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(s.)
Let @* = GQ* ™" and B* = BQ* ' = (Bl 5 . From
B; B,
T 0 (Bl Bz) B (LS*’ 0
‘S[G*J”(o o/ L\B, BJI =10 o

T, 0
we obtain {<s and 7T,[(B,B,)] = ( 02 o) But (B,B,) has n columns

and rank s. Sinee |Ty| # 0, [Ty} % 0, this means s < ¢ Thus s =1 and

B, 0
| By| 5 0. Further B, = 0 necessarily. Now replacing C; by O (Bl E(h_[))
3

B* 0
and B* by (_ B:Bl‘l E(h~t)) B*, we may conclude that
- BY 0
* . *—1
G =G0 =0 ( 0 D)

where D = D% ? apnd ¢ = 0™ = By0 are of rank h—it and &
respectively and furthermore, there exists a rational integer c¢g such
that ¢ 0, ceD are integral and N(5(D)) < 5.

If % = n, then we may choose D =E™? and ¢ =6GQ*". I t =,
we take Q* =E™ and since h =mn necessarily, we take ¢ = (@. Our
lemma is proved.

We proceed to define after Siegel, the measure of the Fg-reduced
representation G of T by S, as follows. Let I'(S, &) be the group of
Eg-reduced units U of 8 for which U@ = @. Invoking the form of @
in Lemma 7, we see that I'(S, &) is the same as I'(S8, U), the group of
U ¢ I'(8) for which UC = C.

NILURY

Let Wy =( 6 R
signature (p, g). Consider the space Q(S, Wy; €) of complex matrices
Y™ M for which

be an r-rowed complex hermitian matrix of

EsY=Y, SHCY)]=W,.

Writing S[(C Y)] = W, as §,[(40 AY)] = W,, we see that 2(8, Wy; 0)
is homeomorphic with the space Q(S;, W;; AC) of complex matrices
Y, = Y™ for which S.[(AC ¥,)]=W,. The group AI'(S,0)A™"
contains a subgroup G.c of finite index, which is also of finite index
in I'(8;, AC). One can construct a fundamental set ﬁ(AO) for I'(8;, AC)
in Q(8,, W3 AC) and hence, for AI'(S, C)4A™". Pulling this back to
Q(8, W,; C) we get a fundamental set for I'(S, C) in 2(8, Wy; 0). Let

(F(S17 A0): GA,C’)

= . Now, on Q(8,, Wy; AC), we have after Siegel
a (AI‘(S, oA GA,C') s (81, Wy )

@Y} @Yy
(@™ {aQ®y aR®} @R}’

([12]; § 6, Chapter IV), the volume element
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where we have written ¥, = Y& 4+4i¥®, Q= Q¥ +iQ®, R = RO 4ig®
with real ¥{, ¥, ¥, @®, ¥ and R®. Denoting this briefly by

. - —1yr—n {4Y; .
f%%—} we see, in the first place, that N(5(47) 7@%}—{—‘%} is

independent of the special choice of A. For, if 47" > AL with |I| o,
then {dY,} N (|L)~"" 1Y} and {dQ}{dR} is unchanged. Again, it W,
) 7 x

with arbitrary non-singular P gang

0 P
B I* . 4y,
(011)»(0171)(0 P), then again fdé}}{zz}R}

may assume W; to be in the form

: S[C] @ @,
W, =

is replaced by W,

is unchanged. Thus we

510 Q.

3, To)’ Ty>0 and |W,| #0.

[ Qa) with WD =(
Q: @y Qo
(A
Then @ = (Q,Q,) and R = (Q 0 ) Since Ty >0, W, has the signature
3 4
(@, B).
The measure u(8, @) of the representation @ is defined by

(95)  au(S, @) = @™ <i)(¢—h)(r-h+1)/2N sS4y vy
o Afc) @) tak)

Vidl
(referring to the notation of Lemma . 7). Proceeding as in [12] (§ 6,

Chap. IV) and applying Lemma 9 of [9] repeatedly, we can prove that

Ty Qs

(96) a,“('g, G) { IL__ S[O]]q—hlLlp-—hg(L)dL
Lfo,L>S[o1
* = 0p_1n00_n| S (Y- TOHRC-D [_2 (r=h)(r—h-+1)2
eo-100-1/8(8) 719 (V—W[) [ s+ micya

F(40)
where, on the left-hand side, the integration is over the space of all
Y] . T(l
h-towed positive I with I > §[0] — : g and further F(A0) is
a fm}damentajl region for I'(8;; AC) in PB(8,). Moreover, in (96), the
function g{.) is so chosen asg to make all the concerned integrals converge.
Let 0 < r(@)

ek 0 - =h <mn. With the notation of Lemma 7, we define
for I =T and £>0,

910) =exp (- 5 o(21201— )
0
0 D)‘ For b = n, we define for L™ =1,

9(T) =m(~§a(2L[Q*]—T)) :

icm°
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Then, for 0 <h <n, we have
e
§(L) = exp (_ ™ o((H -+ 8)[0PQ*] T)) — exp (— ol + 16— 1))
= exp(— 5 o116

and further

T, 0
(97) 9(=~L) = exp(—fzi a(zL[PQ*]~e( oo [Qﬂ))

- T, 0
=exp|——50 (2L[P]—s(0 0))13*
where R* =E[@*]. For h =n, we have

T ()]

With ¢(Z) chosen in this way, we replace L by ¢*L on the left-hand
side of (96) and obtain, in view of (97), that

(98)

- T, O\J--*
(99) " Mau(s, &) J IL-—-S( 02 0) |LP~*x
L=I)(M>0,L>e(a: 3)
[ T, 0
Xexp<—%a((2L[P]—£(O 0))1%.*))@
2 \—Rr—h+D2 hr sery [ e
= Qp—h0g-h | 7= (ST exp|—+ o(H[G]}]dv
Op—h Og h(l/ri[) ’ I f F(JC) ( 2 )
for 0 <h <n and further, if (@) =n, then .
: T, O\
(100) =™ au(S, @) J lL—e( 02 0) [LP™x
L=LM>0,L>t (1;’ 2) ’
T, 0
Xexp(—ga((ZL—s(O 0))13*))&1}
= oo tun ( 2 )(r—n)(r—n+l)l2]6( ST f exp(___‘f_f; a(H[G])) .
Vid| P k
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We shall investigate the right-hand side of (99) and (100) more closely.,
Since, for U eI'(8,0), we know that oU¢I'(8, 0) for a root of unity
o#1 in &, we can choose left coset representatives of I'(S) modulo
I'8,0) as Uy, oUy,y ...y Uy, 0Uy, .., where ¢ runs over the w—1 roots
of unity in % different from 1. For AI'(S)A™" modulo AI'(8, )47,
the left cosef representatives may therefore be chosen as AU, 47,
QAT AT, .., AU, A7, oAU, A7, ... Now, since for U, in AI'(S, )4~
or I'(8;, AC), we have U, AG =A@, we can easily verify that

e—mea(HIGN2 dpy
F(Ar3,004-1)

(101) % f o-meoHIEE Jp = 10

F(40)

(102) =
G F(AD(S)4-1)

e~ eo(HIG*DI2 iy

IN

where, in (102), G* runs over all distinct matrices in {O}m,n which are
associated with & on the left with respect to I'(8), F(AF(S)A‘I) denotes
& fundamental region for AI'(8)A™" in PB(8,) (identitying U e AI(8) 4™
and oU, for every root of unity ¢ in %) and further F(AD(8, 0)47
denotes 2 fundamental region for AI'(S, C)A™" in B8, If r(@) =mn,
then again, formulae (101) and (102) are valid with (4C€) in (101) and
replaced by F(AG).

- We still do not know if the measures z(S, @) defined above are
finite or not. To this end, we proceed as follows. Summing over all

Bg-reduced representations @ 0 of T by S, we h fr
ot (109) y 5, ave, from (99), (100)

(103)  gntr-n ) e @Ry = J,(5) + Jy(e)
Bym Gk, G (D T AT
where
(104)  Jy(s) = w 2SN IO (*-'/rd—l R
Op—n Qg—n 2
' T, 0\|e=n
X 2 u(8, Gy) L—B( ’ [Z[P™" %
S[G]=T L=LiM>0 00
r(Gy)=n T 0
L>a( 0 D)

xexp (_ga(.(zz_s(ga g))R*DM

e _®
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and
(105)  Jy(e)=
B ' r—h | Axn2B—7) (/TN P—RE=h+D)]2 ’
= sn(r—n)—h(r—h)w| 5(’9)‘ “Q H (] !;”) /L(S, Gz) X
SiGal=T Op—h La—h
0<h=r(Ga)<n
T, 0\|le—h ) T, 0
X L—e¢ ( 02 0)1 | LP~"exp (-—g o'((zl'f[P]—s ( 02 0))12*)) ar.
L=LiM>0
Tg 0
L>e(o o

In (104) and (105), G4, G, run through a complete set of Hg-reduced
representations of 7' by 8 not mutually associated on the left with respect
to I'(8), with 7(G;) = n and (@) =h (0 <k < n), respectively.

We now obtain an estimate for

gnlr—m) A(,g, T; H, i. E) — gnlr—m) e~reo(EIGDI2 |

SI]=T
EgG=Ge{Dnn

which is valid uniformly for H; in $(S;). We know that

A(S, T;H,ZE) = {f(S,H,X—l—iZ-E,X—i%E,O)W(—TX){dX}.
Xe€
Hence
(s, 7;m,58)< [ 1718, 8,2,7,01ax.
e (; %)
We now proceed exactly as we did for the proof of (87) but use the full

4
force of inequality (46), viz. for N; = (O; DJ) e M, and Z e N7 (Gnp,
7

#(8, H,2,%,0)| < 6llC Z+ D3 [ [ (1+ ey ™)

k=1
where By, ..., b, are the diagonal elements of the matrix in the Humbert
domain I°, corresponding to H, = H[4™']. We then obtain as in § 5
that

A(S, T; H,%E)

l

T n
<o [arewin [ |afx+isnen)d) ax
k=1 1=1 €(EoD)
Gp e 8
L=T.e{RKnn

E® 0
Q—l( 0 0) QL=L
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and finally that

.
(106) g 3 et @ <o T4
EgG=¢ k=1
SA=7

wniformly for %, = minH [A"l] > Ny > 0. The constant ¢, depends only
on r,n and |6(8). Now, analogous to a lemma of Siegel (Lemma 29,
[11]; of. Lemma 6, [9]), it can be proved that for r > 2m, .

r
[T]a+m™ a0 < oo
F 5=1
F being a fundamental region for I'(S,) in P(8,). In view of the com-
mensurability of I'(S;) and AI'(8)A4A™", it follows that

N
(107) [ J]a+m™aw =cp < co.
F(Ar(S)4-1) k=1

By (106) and (107), it turns out that the left-hand side of (103) and there-
fore Jy(e)+dJy(¢) i finite. Let us assume for the moment that all the
integrals occurring in (104) and (105) are finite; as a matter of fact, we
would presently see that these integrals exist and even converge uniformly
with regard to e, for 0 <& < 1. Since all terms involved in Ji(e) and
Jy(¢) are non-negative, it follows, in particular, that the measures u(8, G
are all finite.

For the case of indefinite quadratic forms over an arbitrary algebraic
‘number field the analogous notions of ‘“measure of the (reduced) unit

group” and ““measure of (reduced) representation” ete. have been studied
in [7].

In (90), we replace & by &/4, multiply both sides by the volume

element dv in PB(S,) and integrate over F(AF(S)A’I). In view of (106)
and (107), we are also justified in interchanging the integration over
F(AT(8)A™") and passage of ¢ to the limit 0. We then obtain

(108)  Iim gnt—m Z o-resEIGDE Gy
=0

S[AI=T  F(AI(S)d-1
ESGJg]C(D)m,ﬂ ( ® )

= [d(s)J—ﬂz"b@f—ﬂ"’l)ﬂldl"(’”’"l“m')/‘i_ggﬁg"_"znh l I ap(;s', T) dv.
Co-nle-nlr-n F(AI(S)4-1)
But the left-hand side of (108) is Drecisely lim (Jy(s) +J,(¢)), since even
>0

if‘ G=0 oce.urs on the left-hand side of (108), under the limit s-0, it
disappears, in view of > 2n and the fact that [ dv < co. We
F(AD(5)4-1)
shall now proceed to determine lim (Ta(e) +ofe)).
. >0
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(0] &)
Writing L® = (L(; ng—”) [(‘Z g})] , let us observe that the con-
TP
0
L, >eTy, Ly,>0 and I8 garbitrary complex”. Further if dI,, dL,,
dL, are products of differentials defined analogously to dL, we have dL
= |L,dL, AL,dL,. Moreover, |L| = |Ly|| Ly|, o(L[P]) = o(Ly) + o (Ly[Ls]) +
+0(L,[D]). For 0 <h <n, we have,

ditions “L >0, L > s( g)” are equivalent to the conditions “L, > 0,

(109) ‘ .
el o el fatro o) o
o7
< I—s (1;;‘ g) IH e exp<_nza (L[P]Jz- (1(;2 g))>dL
s

since, for a constant 1 > 0 depending only on % and h and‘hence, only
on % and n, we have R*> AE®. The integral (109) is precisely

(110) Qr—oh+i s(h—t)(h—r—1) |D _511»—7 f e’"”(LI’E T’) 1Ly — 8Tzlq_h{ Lllp—hdLl

Gr=n LP>0, Ly>eTy
since [ e ™EIlgr, — 3711~ (the integration being over the

LBt
space of all complex matrices L, of h—? rows and ¢ columns) and

) —t){(h— N h— —2h+t
e—ﬂla(LgD.D) l Lz [r—2h+t dl:g ;»(h £)(h—1) ] D .D[ 7‘%_ .
Lg" h>0

We now claim that the integral (110) converges uniformly with respect
to & for 0 < e < 1. For, suppose first that ¢ > p. Then ¢—h >0 and
we have
(111) | Ly — e T < g7
and the integral (110) is majorized by
o [ IEPex (-—T:la(Ll—%Tg) + la(L,-—-sTa)) iz, .
Ly>0, Ly>sT5
If p > ¢, then in the integral (110), we effect the transformation I, L, +
+&T, and use, instead of (111) the inequality
| Ly +eT 211"71 i

-
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Thus, as ¢—0, the limit of the integral (110) exists and is, in fact, equal

to [ , 6™ | L, 4L, which converges since 7 > 2n > 2h. Thus we
{

Li=L; >0
may conclude that
(112) lim Jy(s) = 0.
. &=+0
Again .
T, 0\ |a—n T, 0
L~e( )1 |L[""exp —fa((n—e( : ))1?* ar
L=LJ)‘>0 ¢ 0 2 00
T 0
L>e 0 D)

=@ f |L—eT|"™ |LP™exp (— mo (L% T)) dL .

L>0,L>sT

By the same arguments as before, the integral on the right-hand side
converges uniformly with regard to ¢ for 0 < s < 1 and its limit, ag ¢—0
?
is [|Lf2e ™ PgL = &= Thyg
L>0 e

r—n

. SN~ e (VIO
(113) HmJ = |—__...__2_" L b
) lim ) = 50t (V) ;fm&am

We define M (8, I') the measure of representation of T by 8 by

M8, 1) = Y u(8, &

yhefre the summation is over a complete set of Hg-reduced representa-
tions G of T' by § with 7(@) =n and not mutually associated on the
left with respect to I'(8). When § > 0, M (S, T) just corresponds to the

number A(S8, T) of Eg-reduced representation of T g
8>0and T>0, P by §; in fact, for

M8, T) = (i)(r—n)(r—n-ﬂ)'ﬂgr_n (|5(S)|)H_TA(S, T

o ) T

where ¢(8) is the order of the reduced unit group of §.
From (103), (108), (112) and (113) we have

w|S(8) " or_sm (VW

€p—nQg—n Qr—n

(r—n){r-n+1)/2
) M8, T)

2

= |§(8)| " moner-—ntDi| gmin—1-2nj2 _ Qp Qg Or—2n
l8(9)] |al PR Sy [[eis, o .
»

F(AI(S)4-1)
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But from (93), we know that

(T(8) : G w
dv = 8
Ff u(

” 1 ’/W)r(r—{rl)/z
F(AT(8)A1) (AT (8 )A_li GA) 0p Qg

o |

2

We are thus finally led to Siegel’s main theorem for indefinite hermitian
forms, viz.

THEOREM 7. If 8 is an integral hermitian matriz of signature (p, q)
and T an n-rowed integral hermitian matriz, then for p-+q > 2n, p >n,
q =0, we have

(8, T) = pu(S) [ [ a8, T)

[

1 running over all the rational primes.

§ 7. Analogue of a theorem of Tartakowsky. In this section, we shall
give two applications of formula (86) for A(8, T). The first application
will concern an analogue of a well-known theorem of Tartakowsky ([14])
for the case of representation of 2-rowed positive definite integral ma-
trices T' by a given m-rowed integral positive definite matrix § with
m > 4. The second application will be to get a ‘truly asymptotic’ for-
mula (in a sense to be made precise presently) for the number of repre-
sentations of a positive hermitian form in 2 variables with coetficients
in © as sum of m (> 4) squares of absolute values of linear forms with
coefticients in O. This formula is an analogue of the ‘truly asymptotic
formula’ of Hardy-Ramanujan for the number of representations of
a rational integer as sum of squares of integers (see [5]). These two appli-
cations carry over to the hermitian case, results obtained earlier in [8]
for integral quadratic forms over I

We shall suppose, throughout this section, that § = 8™ > 0 and
T = T® > 0 are integral hermitian matrices and m > 4. In formula (86)
for A(8, T), although it is true that the power of | 7| occurring in the
error term is strictly less than the power of | 7] explicitly occurring in
the principal term, we can not say that the formula is ‘“truly asymptotic”,
i.e. as | 7| tends to infinity the order of the error term in | 7| is strictly
less than that of the principal term. For, it could happen, for example,
that the infinite product []a,(S, I) tends to zero like a negative power
of |T| as |T| tends to inﬁgi‘by and diminishes the order of the prineipal
term. But, if we know that [Jay(S, T) is bounded away from zero as |T|
tends to infinity, then the fgrmula. will be truly asymptotic.

With the help of the lemmas to follow, we will see that for integral
§=8§™>0, T=T>0 and m>4, we have either [[ay(8,T) =0
’J .
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or []ap(8, T) = ¢ > 0 for a constant ¢ independent of 7', when 7' tends
to infinity under the condition “min > o|T[H 7.
Let, for a rational prime p, a rational integer ¢ with p+o and for
n>=1,
Gl ) = D) eien”
amod (p")
where o runs through a complete set of representatives of © modulo (pn).
We then have
LevmA 8.
Pn (dfp) = £1, p odd or even ,
pm,  (dfp) =0, p odd,
pr, (dfp) =0, for p=2, 4|4,
Lgmee,  (dlp) =0, for p=2, 8|d.
. (By (d/p), we mean the Legendre-Jacobi-Kronecker symbol.)

The proof is given as usual, by multiplying G(e; p) and G(g; ),
writing o = fp"~'+y with § running modulo (p) and y modulo (pn1)
and successive reduction of n. One wuses repeatedly the formula
Tl = 0 or N(b) according as bta or bla, where (y)

[G(e; ™| <

D2Bmodb
=a(6(/@)™ and (a,5) = 0.

Remark. It is useful to note that G(g; 4) = 0, G(e;2) =0 for o
odd and 8[| and G(g; 2) = 0 for ¢ odd and 4||d. :

Levma 9. Let 8 be an m-rowed non-singular integral hermitian matrin
with m>>5 and p a rational prime.not dividing |@||8|. Then, for every
2-rowed integral hermitian T, the p-adic density op(8, T') satisfies

—m—98
%(S’T)>{1 3)/, podd,
R p=2.

Proof. We shall sketch the proof for odd p with (dfp) = +1. The
proof in the case p =2, (4/2) = +1 is similar. For the cage (dlp) =—1,
the proof is much simpler and follows the same pattern as in [8], Lemma 3.
We could suppose that § is diagonal with diagonal elements ay, ..., dn
(pta;) in view of Hilfssatz 9 of [1]. Now, for a large positive integer 2,
we know from [1] that

PHm-Da (8, T) = A8, T)

-l 3, )

ie.

(114) poma,(g, T) =

C=(C1 Cy) mod (ph)
e,%,7 mod (pA)

where Ql_, 0, run independently through a full gystem of m-rowed integral
'columns Incongruent module (p%), ¢, v through a complete set of rational

5
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integers incongruent modulo p* and x through a Eomplete set of rep-
e —Wd)

Wyd T

3 qip~" O8SCB) by 6”(B), we observe that 6”(p'B) = p™ *~*(B).

¢mod (p")

We now split up, in (114), the residue systen.a _(g,%,r).mod(pz) as
P01y %1, Tr) With @1y %1, 7 running throu.gh. a similar residue system
modulo (p*~?) with the additional restriction that I’“-”(ﬁu %, 7y), and
further, with g running from 0 to 1. We may thus rewrite (114) as

resentatives of O modulo (p*). For B = ( , denoting the sum

r

R D Pk |2

A=1 ;v mod pf, xmod (pB)

— i 6
o —=lV d)) —emp ®
— =BT - = P Cy
><?7( P (%/l/d z ﬂ;l‘ ;
where

/ —ulyd _ o —FVd
#= G“”((x/f/zz‘ ! ))"(—P oz 7).
ermod pB, xmod (pF) ) ‘
indicating that e, v run over rational integers modulo p?
;];?1&20(:)]‘171;1? ‘;i;r%sﬁli;ﬁ?zesg of Dg;nodulo (p?), satisfying the additional
conditions:
i=1: pte, », v arbitrary,
i=2: plg, ptr, » arbitrary,
i=3:P]Q;P[T;(%:P)=D, _
i=4: plo, plr, (x,p?) =p or § (where (p) =pP),
i=5: ple, plv, (%, pf) =p* or P, 2<a b<p-1,
i=6: pl@yplfy (”7Pﬁ)=pﬂ or }#, g=2.
By definition, we have 0f =0, 0 =0, €Y =0. Let

A
—amio® . 1<k <6.
Iy = P 4 Gp 3 Sy A
k 52 |
We now use the estimates given by .L.emma 8, as al'so the following
easily obtained estimates (for p not dividing |d |8]), viz.

exp <&°ﬁ (QQ»S’QJ +Tr (i @ng) +?_QzSQz)>

{ pwm  for (dfp) = +1, D%, ple, PlT)

pentim  for (dfp) = +1, ple,plz, p or Pli=.
6

€4, Comod (p™)

Acta Arithmetica VIII P
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Proceeding now as in Lemma 3 of [8], we can prove that

2

1) ppm-1 _1 1

TARS 2 pimb [pﬁ(zmﬂ) (p—1p = Ppm g P (p— - )] < p-h,
B=1

E-Dm-1) _ 1
<22 0 Py —— et
B=2
2
2p—1y
T 2 e < p
)
2
Bl < (=194 Y pimspsomso < j2 p-em-s,

=1

PAPS 11’) 1) +2Z pemepBEmE At m(p 1 )p=5 < p-(m-9)

ll’sl 2p~(5m—2)[p2 p— 1 s{pﬁm __|_pm(p — 1)} -+ p3m+9+2m—2(p — 1)2p—(4m+4)] +

ﬁ_
+gzp-smﬁﬂmwz[pom-x-s)ﬁ-m—s—a(p_l) (a—1) (pm—1) p=1(pm-1_1)-1—
i= a2

— Pt (p 1 )i (i — 1) (pm-t — 1)
+p(m+4)ﬂ(p__1)2p(m—2)np—(4m+5)] < 2p8(p—1)2p—tm 4
+ Z_p—s(m—s)—IIZ(pm—z__ —1+ %,7 p—4(m—2)(pm—1_p)—1 < p_(sm_s) ,

| L] < (2p—2) p-2m-—s 4 EP“‘mﬂIC“’)I

< (2p 2)p—2(m 3)—38 + 2p (5m—4) p —_ 1) (p2m+1 +p2m +pm+1 __pm) +

b
+ > pme| o]

B=t

< (2p — 2)p—2(m—3)—3 + 2p—(5m-4)(p 1) (p2m+1 +p2m _]_pm—i 1 __pm) +

+ 2 2p-Gm-Dptimii(py 1) [ 2 PEmFrpi-y-3(p _ 1) %

y=0
p—y—-3
{pzm(ﬁ—z—w):p(m-ﬂ)(ﬂ y=8) 2 Pl —k(p 1)}+p(2m-i 1)(49-")]
< p—(2m—912)+ p- (sm—7)+p (4m—21/2) - p= (2m-—5)

It is now easy to conclude that for odd with (4, 1 a||8
T o ? (@lp) = +1, ptld]|8],

(8, T) > 1—p-s,

a
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In a similar way, we can also prove

Lemua 10. For pld and m > 5, we have for any 2-rowed integral
hermitian matriz T,

’ 1/6, for p odd,
1/5, for p=2, Sﬂd:
l 17/26 , for p = 2, 4|/d.

Levma 11. If 8 ds an m-rowed non-singular integral hermitian mairiz,
T a 2-rowed integral hermitian matriz and if S represenis T primitively
modulo p*+t where f = A for odd p and f = A+1 for p = 2|d with p* being
the highest power of p dividing |S|, then, for m > b, we have
(115) ay(, T) > p-ersdum—o.

Proof. The proof may be carried out in exactly the same way as
in Hilfssatz 11 of [1] provided one notes the following facts implicitly
contained in Lemma 37 of [11]. Let x> 2f+1 and 8[0,] = T {mod(p+))
with O, primitive modulo (p#). One compares A(C;; u), the number of
modulo (p#) incongruent integml solutions of the form O, +p+7X sat-
isfying S[C,+p*1X] = (mod(p”)l with A(Cy; p+1) the number of
primitive ' incongruent (modulo (p»*+)) satistying S[C] = T’ (mod(p+1))
and 0 = C; (mod "‘f)). For this purpose, one finds unimodular matrices

w(B™, T) >

DO
U,, U, for which U,8C,U,= ( 0 ) (mod(ppﬂ)) with diagonal D. Now one

observes here that in view of C; being primitive, (3(SC,), (p+)) divides

(6(8), (p#*)) and therefore (D[, (p#*+1)) = (8(8Cy), (pr+1)) divides (p*).

The rest of the proof goes through exactly as in [1] and one has
A(C; pt1) = p*m=tA(Cy; p)

leading finally to (115).

Remark. In [8], while proving a similar lemma (Lemma 5, p.470)
for a quadratic form over the rational number field, we had imposed
on it the restriction that it be a diagonal form in the ring of 2-adic in-
tegers over the rational number field. If we adopt the method of Lemma 11
above, it is clear that the said condition is unnecessary even there.

Before we consider representations of T by § modulo (p#) which
are not primitive, we shall state the following

Lemma 12, If 8 is an integral m-rowed hermitian matriz and if S

a 0
represents a primitively modulo (p*) (with u > 1), then S represents T® = ( 0 0)
primitively modulo (pH), provided that m > 5.
The proof goes through word for word as in Lemma 6 of [8], except
that we have to fill a lacuna by demonstrating the validity of the fol-
lowing

6*
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THEOREM 8. Any m-rowed non-singular integral hermitian matriz rep-
resents 0 primatively modulo (p*) for every prime p and p>1, provided
that m > 3.

Proof. It suffices clearly to prove the assertion of the theorem for
m=3. If § =489 iy indefinite hermitian, one can show that § repre-
sents 0 non-trivially in %, by going over to the 6-rowed rational symmetric

9 B\ [0 8\ (B o
- indefinite matrix A:%(M wE)(S 0) EwE) Let then S[X]=0

with X 5 0 in {D},,. By multiplying X by a suitable number in k, it is
possible to find ¥ e {D};, with the greatest common divisor of elements
of Y coprime to p such that S[¥] = 0. Now §[¥] =0 (mod(p")) (v =1)
gives the required primitive representation of 0 modulo PpH.

Let 8® be not indefinite. If at least two of its characteristic roots
are different, then taking a§ (with large enough integral a > 0, pta)
instead of §, we can find a rational integer A such that 8, = a8 — AprE®
is indefinite. By the foregoing, §, represents 0 primitively modulo (p#) and
since af = 8, (mod(p”)), we see that aS and therefore 8 represents 0
primitively modulo (p#).

Finally, let 8@ be definite (in fact, positive-definite, without logs
of generality) and let all its characteristic roots be equal. Then 8 = bE®
with rational integral b. To complete the proof of the theorem, it suffices
to show that E® represents 0 primitively modulo (p,), for x> 1. First,
let (dJp) = +1 and (p) = pp. Let « <O divisible just by p and not by 7.

Fi4ad
Then E®|| 7 || = 0 (mod(p)) gives a primitive representation of 0 mo-
dulo (p#). Now, let (dfp) = —1 or 0. In the latter case, let (p) — p? and
7¢O divisible by p but not by p% Now we know that the rational symmetric

) E® E\[0 E®\|E oE®
matrix 4 = %(EE wE) (E‘S) 0 )(E B ) represents 0 non-trivially in

the ring of p-adic integers over the rational number field. Therefore E®
represents 0 mon-trivially in thering Ry of p-adic integers over % (every
element of R, is of the form a+of where a and g are p-adic integers
over the rational number field). Let then E®[X] =0 with elements
of X in R,. Since X + 0, we can write X — »X, or X, with primitive X,
according as (dfp) =—1 or 0. In any case E[X,] = 0 with X, primitive.
Hence E® represents 0 primitively modulo (p#) for every u>=1. Our
theorem is therefore completely proved.
We prove finally

LevmA 13. If 8 is a non-singular m-rowed integral hermitian matris
and T is a 2-rowed integral hermitian matriz and if S represents T mo-
dulo (p*) where v = 6147, 64T or 61--8 according as (dfp) = +1, -1,
or 0 and pH||8|, then (8, I) = p=*um=9 provided that m = b,

icm°®
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Proof. Let S[@]= T (mod(p’). If & is primitive modulo () or
it T'= 0 (mod(p”)), we see that the lemma is true, in view of Lemmas 11
and 12 and Theorem 8. Let us therefore assume that @ is not primitive
modulo (p*) and 7' =£ 0 (mod(p)).

Let (d/p) = +1, (p) = pF, p £, (w) = pq for = ¢ and (()s q) = 0.
There exist unimodular matrices U, ¥V such that -

an e 0
UQv = ( 0 bnﬂxﬁﬁs) (mod(p")) with  (a,p) =90 = (b, p)
V 0

and at least one of ay, a,, By, py is different from zero. By changing from 7'
to T'[V] (which certainly does not affect ay(S, T)) we may assume there-

fa]
fore that @ = C’( 0

We have now to consider various cases.

0
nﬁﬁﬁz) {mod(p”) with primitive (¢ modulo (p*).

Case 1. ay, 0y, By, Ba < 20+ 2. Setting T, =17

we have a primitive representation of T, by 8 viz. 8[C]= T, (modp¥+3).

Applying Lemma 11, we see that there are at least pr#m-9 primitive

representations C; of T; by § incongruent modulo (p2+3+7). Corresponding
e O

to each such Cy, 0 = C, ( 0 PR

modulo (p*+3+7). If 7 > 4144, at least pr-4-94m—9 of these (s are in-

congruent modulo (p*+3+7). Hence it follows that a,(8, T') > p—E+Dim—4,

Case 2. If a, f, > 24+3, then T = 0 (mod(p*+3)). By using Lem-
mas 11 and 12 and Theorem 8, we see that a,(S, T) > p—@i+dum—e,

Case 3. Not both of o, §, are < 2442 i.e. without loss of generality,

We may assume a; < 24+ 2, f, > 24+ 3. Furtherlet ; > 24+ 3, o, < 2442,

a—ag=ae ( Ty O
Then, if we set 7, =T 0 J1=10 o

ez 0
—Br7g—be

) provides a representation of T by §

) (mod(p*+)), we have

8 [0(1 0_ )} =T, (mod(pﬂ“)). Hence § represents ¥, primitively mo-
0 afrinhe

1 0 L
dulo (p*+%) and by Lemma 12, also 00 = T, primitively modulo
(p*+3). Hence, by the same arguments as above, for r > 4144, there
are at least p(r—#-9Um—4) incongruent modulo (p**+3+7) representations of T
by 8. Thus we obtain «, (8, I') > p-(®++m—a),

Case 4. Let a, < 24+2, B3 >21+3, o >24+3, f>21+3. We
are now again in the old sitmation 7' = 0 {mod(p>+3)) and therefore
%(S’ T) >p—(2).+8)(4m-4)_
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Case 5. Let a, <2142, B = 20+3, o= 2043, B <2143, Let
— aj 0
T, = T[(”‘Oae Oﬁ )], then ,g[o (nol ﬁﬂg)] = T, (mod (p*+9)). Observe that
yz— 'L
0 7
e 0

(mod (p)) With g = 2243, for some a €O of the form n¢.b with ¢ >0

10 T o* .
and b ¢ O and (b, p) = O. Consider T, =T, [(1 1)] = (: *> equivalent

T, is not necessarily congruent to 0 modulo (p2+2). In fact, Ts= (

a0\ [10
to T,. Then th = »# +7+a. Further, if 0 = (C,0y), then ¢ ( 0 E””) (1 1)

= (0 wP () where 0F =m0, +7” 0, is of the form rar0, -+ s Cy with
r,8¢D coprime to p. It is clear that Cf is primitive modulo (p), for
if p divides all elements of Of, then p must divide all elements of Cj,
which is not true, sinee 0, is primitive modulo (p). Thus p and similarly p,
'H] %“a

w5 0 ) We can find

y O such that #h7*y = 7#a (mod(p#); in fact, y may be taken to be

cannot divide all elements of Cf. Now T, =(

1 —ary

a solution of @y = 7 (mod(p~). Consider now T; =1, [(0 1 )]

0 s

(i)l O) (mod(p#)). We know that § represents ¢ primitively modulo
(p#) and hence, by Lemma 12, also Ty primitively modulo (p*). Since
T; is equivalent to T modulo (p#), we have at least p*m—4 representations
of T, by 8, incongruent modulo (p#+r). It is now easy to deduce that
ap(8, T) > p~h+sem—s),

Case 6. Let o, <2142, o= 2043, oy <2142, pr< 244+ 2. Now
10 amam— 0
we have S[G (O 552)] =T(=T [( 0 n:*ﬂl)]) (mod(p®+3)). Then T

ty wa . _ _
=,z o (mod(p+)) with p=2A-+38. If ptih =ty +7*a+nrG, then
1 0\ (1 —t*7ra it 0 ”
T =Te|\4 4 0o 1 = (0 0> (mod(p#)) where f*i = 1 (modp*).

1
Now S[O (ﬁz)] =1} (mod(p*)) and since ptif, this is a primitive

representation modulo (p#). By Lemma 12, 8§ represents 7', and hence

T, primitively modulo (p#). We may now easily conclude that a,(S, T)
> p-(ﬂl+7)(4m—4)‘

Suppose now ¥ty (% > 0) and pl|t,. We may assume that & < u,

. 0 7=

U<p (for, # 1= p, then T is itselt of the form | - "
\TTH

Oa) modulo (p*)
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10
and if k¥ = p, then T, [(1 1)] is of the same form modulo (p#) and there-

fore, we are in the same situation as in case 5 above and we could conclude

that ay(8, T) > p=@+num—9). Now, since p*[|th; we have t,; = — 7#a (mod p*).
1 — 7=
Thus ((a), p¥) = ((ta), p¥). I 1<, then we can consider Ty= T, [(0 ;z y)]

0
where y satisties #,9 = a (mod(p#)). Then Ty = (t‘l; 0\ (mod(pw). Since §

represents f,, primitively modulo (p#), § represents T and hence 7'y pri-
mitively modulo (p#). We may now conclude, as before, that a,(S, T
S p-Grnum—o, Tf 1>% then we take T, =T [(1 0)] ~(ﬁ‘1 W“)
=P : d we take Lo=Zs|\1 1/] T\wa o /-
We claim that ((#f),p¥) =p* is the same as {(a), p#). For, if p*+l|q,
then, since !> %, and p**!|,, we should necessarily have p*+1|t};, which
is a contradiction. Thus ((th),p#) = ((a),p¥) and therefore, we can
find y ¢ D such that thy = a (modp#) ie. Zihy = e (mod(p+). Now
) 1 — Ty 0\ .
taking Ty = T”[(O 1 )], we have T, = ( 0 0) (mod (p=). Consider
the column Of = O+ 7P 0,, where O = (0, (0,). It is clear that p cannot
divide all the elements of Cf for otherwise, p will have to divide all the
elements of the primitive column ;. We observe now that p too cannot

0 7/ \1 1
=(0f @0, then, from the form of @, we see that (8(Gy), (p¥) =¥
whereas, if p|Cf, then we would be having pp# dividing (3(G:), (p#)),
from the form (Cf #f:C,) of G;. Thus CF gives a primitive representation
of #}; by S modulo (p#). Hence § represents 7, and therefore I's primi-
tively modulo (p#). We can conclude once again that ay(S, T') = p—(@4+nlem—4a),
as before.

' 1 0Y\/10
divide all the elements of Of. For, if we set Gy = 0( )( )

™ 0) = T\, (mod (p#+9))

Case 7. oy, 5 < 22 +2. First we have S[O( 0 wh

—a () .
where Ty, =T [(t 0 E—ﬂs)]' ‘We may first suppose that o; <, without loss

of generality. If oy > 24+3, then g, > 2443 too and ¢, = 0 (mod (p>*+9)).
By an easy argument, we can show that ap(S, T) > p-#+om=—9, Tf ¢
10
<2142, p=24+3, then S[C’ (0 mﬁl)] = T, (modp*+3) where T,
n-aza 0

1] B i
above with = instead of 7. We could conclude as above that oy(S, T)
> p-®+nUm—9_ The case o < 21+2, f < 24+2 may now be ruled out,
having been already subsumed under Case 1.

. We are now in the same situation as in case 6
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Thus, when (dfp) = +1, our lemma is completely proved. If (dfp)
@

=1, then, for unimodular matrices U,V we have Uav == ¢ 1(9) pﬁ)
(mod(p7)) with primitive C. Proceeding exactly as in Lemma 7 of [8],
we can show that ay(8, T)> p—(®+nUm—4) The restriction on S to be
in the diagonal form in R, is seen to be unnecessary, since we have avoided
it in the proof of Lemma 11 above.

Finally, let (@/p) =0, (p) =p% (@) =pq with (q, (p)) =O. There

a0

exist unimodular U and V such that UGV = O ( 0 naz) (mod(p*) with
primitive €. We might suppose that o; < a, without loss of generality.
We have now to consider three cases.

(i) Let ay, a, < 44+5. We have then a primitive representation of

7 0
T[( 0 n_uz)] by 8 modulo (p*+3) and proceeding as in Lemma 7 of

[8], we obtain (8, T) > p-0r+ekm—,

(i) If o > 4446, then T'=0 (mod (p#+)} and hence S represents
T primitively modulo (p**%) and we may conclude as above that «,(8, T
> po(‘_’HvB)(«im—i)_

o () ty O
(it) I o <4445, ay>>41-+6, then T1=T[( 0 1)15(51 0)

(mod (p®+3)). Sinee § represents t, primitively modulo (p¥+3), we see
that § represents 7, primitively modulo (p%+%), in view of Lemma 12.
Proceeding as above, we obtain a,(S, 7') > p—(@+8wn-1), Our lemma iy
thus completely proved.

We might finally prove the following analogue, for hermitian forms,
of a theorem of Tartakowsky’s (see [8]).

TemoreM 9. Let 8 be an m-rowed positive integral matriz and T
a 2-rowed integral hermitian matriz with min T > o|T[M2 for a fiwed constant
¢ > 0. Then, for m = B, there exists a constant Crp >0 depending only on §,
k and ¢ such that for |T| > ¢y, 8 represents T wntegrally if and only if 8
;ijme‘;rms T modulo (p**+8) for every rational prime p dividing [dHS[ with

Proof. If § represents T' integrally, then it is trivial to see that §
reprosents T modulo ((p®*+%)) for p|]d]|S [- We shall now prove the suffi-
ciency of/sthe conditions. For p+|d||S], by Lemma 9, we have (8, T
>1—p=% for odd p and &S, T) >} for 2¢|d||8|. For p“dHS|, we
have, by Lemma 13, that (8, T') > p~64+8m—4), Thugy there exists
a constant ¢ >0 depending only on |d| and |8] such that the infinite
product [[ay(8,T)> e>0 (p running over all rational primes) wuni-

. p
formly for all 7 satistying the conditions of the theorem. We now see,
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in formula (86) for 4 (8, T), that the principal term is of a strictly higher
order in |7'| than the error term. Therefore there exists a constant ¢, > 0
(depending on S, k¥ and ¢) such that if |T'| > ¢,, then the error term is
strictly less than the prinecipal term. Thus A (S, T) s 0 which means
that 8 represents 7' integrally.

Tor integral 8™ >0, T >0 and m > 5, we may deduce from
Theorem 9 that either [Ja,(§, T) =0 or [[oy(8, T) > e3> 0. For, if

» »

[1oy(8, T) # 0, then by the absolute convergence of the infinite product

(zéee [1], Hilissatz 51), no factor a,(§, T) can be zero. In particular, §
represents 7 modulo (p®+8) for every rational prime p with p‘mdnsl

and from the working of the proof of Theorem 9, we conclude [] ay(S, T)
»
> 0ry. Now, if []ay(8, T) # 0, then for every S* in the genus of § ([1]),
2
we have also []ay(S% T) % 0. Thus, for |T|> ¢, and minT > o T2,
we may concluﬁe that every matrix in the genus of § or none at all
represents T integrally and under these conditions on 7', the matrices T
which are representable by S are precisely those belonging to certain

congruence classes modulo (([@||8})*) (say), which are completely de-
termined by £.

Let us now take § =E(’”), m>5 and n = 2 in (86). From Lemma 9,
[T 0(E™, T)> [] (1—p~*®) and from Lemma 10, we have [] an(E™, T)
ptlal ot |d| | 1dl

>t [l (h)>o.
2#p]1dl »

uniformly in 7T, for m > 5. We have hence, for 4 (E™, T), a truly asymptotic
formula as |T|—>o0, viz.

() _ jqm—2 (2W)2m_1[dl%—m (m) (3m—4)/4
4B, T) = | TP T H Al E™, T)+ O(|T[*™ %
provided minT > ¢|T|2 for a fixed constant ¢ > 0. This is an interesting
analogue of a well-known asymptotic formula of Hardy-Ramanujan [5]
for the number of representations of a rational integeras sum of m (> 4)
squares of rational integers.

Thus []ay(B™, T) is bounded away from zero

§ 8. Concluding remarks. The main purpose of this section is to
remark that the considerations of §§ 3-5 can be gereralized to hermitian
modular forms of degree m, analogous to the treatment given in [8].

Let {(Z) be a hermitian modular form of degree n, dimension —7,
stufe s and belonging to a multiplier-system {o(M)/M e My(s)}. With
1(Z), we associate for 7> 2n, the function ¢(Z; f) defined by

o(Z; ) = O al0, N CiZ+Di\™,  Ze$n,
NieR ‘
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here . (Ai Bj
‘where = ¢; D

of the right cosets of M, modulo A, and a(0, Ni") is the constant term
in the Fourier expansion /(Z)/N;" = 3 a(T, Ni')p(s™'TZ). In the first

) runs over a complete system of representatives

. T'=T20
place, we see that the definition of @(Z;f) is independent of the choice
-t
0 I*I) < ¥,
then writing f(Z)/N; 47" as (f(2)/N7Y)/47" and comparing Fouvier co-
efficients, we obtain a(0, Ny'45") = |U[a(0, N;') and therefor
s, ) fore
a(0, Ny A7) | U7 O Z+Di|™" = a(0, N7')| CiZ + Dy
Further for M e W(s), writing [(Z)/MN;" as (f(Z)/M)/N7" and
comparing the Fourier coefficients, we have

of the representatives N; in each coset. For, if 4, =(

(116) a(0, MN;*) =o(M)a(0, N7Y.

Since Ivl(M)[ =1 and (Mu: Ma(s)) < oo, it follows from (116) that
]a(p, N gcﬂ. for a constant ¢, depending only on f(Z) in general.
This together with the fact that the full Eisenstein gerieg > [0:Z 4 D"
converges absolutely and uniformly for Z belonging to eb{%c?r%pact subset
of §n, for 7 > 2n, shows that p(Z; f) is regular in $,,. TFurther, from (116)
e(Z;f) e {n, s, —r, v},

We now claim that for (Z) we can obtain estimates similar to (46)

. i By -
viz. for N; = (07‘ Di) €Mu, ZeN7H®,) and y; = min I (N KZ>),

’

[1(2)] < oxllC; 2+ Dy,

(117)
[12)=a(0, N7 6,2+ Dy| ™| < 1)l ;2 4+ Dy "o~

1y
g(O, 1\2,1 ) being the constant term in F(Z)N7* and oy, Crgy Cpp ATO CONStants

epe;l ng only on %, n and f(Z) in general and nof on % or N 1. For the
proof, we may proceed as follows. Since N;(Z) e G, we know that there

. U «x
exists Ao=( 0 U"l) €W, such that ALNKZYY €y and further by
property b) of . (see § 2), AN KZ5Y) > ya B™. On the other hand,
1@ =10T71CZ 4D, 3] a(T, Ny 45"y (s™ LAV (25)

T=T>0
and

1) = a(0, N6 24D = 1(2)~a(0, N7 45| U["| 0,2+ D,

- 3

03 T'=T20

a(T, N7 AT n (s TALN K2D) .
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Therefore, we have, for Z ¢ N7 '(Gu),
(118) [H(B)] <1052+ Dyl |fAKN <2)3) N7 A5

Further, since I (A0<N ,(Z))) is reduced in the sense of Humbert, we
know that there exists a constant ¢, depending only on % and n such that
I(ALNKZ5Y) > ouminI{ALN K ZOY) B = ony; B .

Hence .
(119)

|#(Z)—a(0, N7)[C; 2+ Dy
<ot ST a(r, N7 (3 T AN -

0£T=T20
Now, in view of Satz 2 of [3] which continues to be valid even under
our assumptions on the multiplier-system, we know that HZ)|M is
bounded for all MeM, and Z, ¢ $n with ITmZ, > 3y, EB™. Since
(931,,: S).Ttn(s)) < oo, there are only finitely many distinet functions in
the set {|f(Zy)/M|/M e SUE,,} Thus from (118) and (119), we see that the

estimates (117) follow immediately.
Proceeding exactly as in the proof of Theorem 4, we have, similar

to (57), estimates for @(Z; ) too, viz. for Z e N7 (Bu),
: l¢(Z; )] <ewll 0 Z+Dili™,
|9(Z; )—a(0, N7)| 012+ Dif 7| < ewyi "G Z+Dyll”"

(120)

the constants ¢, ¢,, depending only on %k, n and f(Z) in general.

Let, for fixed complex ¥ = ¥ > 0, (s, Y) denote the set of Z € Ha
satisfying the following conditions, viz. I(Z) = Y and if B(Z) = X+oX
with real X = (&) and X = (&), then, for 1 <i<j<n, 1<k <I< 0,
we have 0 < &, #u < . Now referring to the Remark on p. 65 we observe
that for the Farey dissection the essential things were the estimates (46)
and (57) and we have indeed analogous estimates (117) and (120) for
f(Z) and ¢(Z; f). In order to obtain an estimate similar to (83) for the
Fourier coefficients ¢(T) (T > 0) of f(Z)—¢(Z; f), we have only to carry
out (with suitable modifications as in [8]), the ‘generalized Farey dissection’
of the ‘cube’ G*(s, T™) with f(Z) and ¢(Z;f). We then get

6(T)| < go{(rmin 771" ="=D | 7 (min T)*F) .
If we impose on 7' the restriction (84), then we have
G(T) — O(ITlr—n+(2n——r)]2n)

the constants in the O-estimate depending only on %, n and f(Z) in general.
Thus we have
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TrEorEM 10. With f(Z) = Z a(T)n(s7TZ) e {n, s, —r, v}, we can

I=T>0

associate for v > 2n, a function p(Z; f)= Z' b(T)n(s*TZ) e {n, s, —r, )
T=T20
such that for T >0, we have the formula

(121) a(T) =b(T)+O(|T e

provided that | T| > ¢y and minT > o[ T1", the constants in the O-estimate
depending only on &k, n, ¢ and f(Z) in general.

I p(Z) = 3 o(T)n(s*TZ)e{n,s,—r, v} is a cusp form, then we

can obtain an sfnaﬁggue of Hecke’s estimate for coefficients of cusp formsg
(w=1) viz. ¢(T) = O(|T"). The proof is similar to that of The-
orem 1 of [8]. If in Theorem 10, f(Z)—¢(Z;f) is a cusp form, then
this gives us an estimate for a(T)—b(T) which is far sharper than (121).
But for » > 1, {(Z)—¢(Z; {) may not be a cusp form, in general.

We know from [3] that the space {n, s, —r, v} is a finite dimensional
vector-space over the field of complex numbers. The forms ¢(Z;f) cor-
responding to f(Z)e {n,s,—r,v} constitute a subspace of {n,s, —r, v}
which is generated by the so-called generalized Eisenstein series for My(s),
defined as follows.

Let M; be a let coset representative of M, modulo Ma(s). We say
M; iy admissible with respect to {v (M)} if, for every 4, = (g U*'l) € Mu(s),
we have v(M; 4,M;) = |U[. It can be shown as in [8] that this defi-
nition is independent of the choice of M; in its coset and further M; is
in fact admissible, if there exists at least one f(Z) € {n, s, —, v} for which
the constant term a(0, M;") in the Fourier expansion of j(Z)/Mi* is
different from zero.

4; B; :
Let M; = 0, Dﬁ €My be an admissible left coset representative

of M, modulo My(s). Then, corresponding to M; we define, for Z e s
the generalized Eisenstein geries

)

vl(Z) = o(N)|0Z+ D"
M=M¢N=( oD
NeMy(s)

the summation bging over a complete set of elements in MM, (s) which
are not left-associated with regpect to A,. In view of the adnissibility
of M;, one sees that ¢,(Z) is well-defined and belongs to {n, s, —r, v}.
In the special case when o(M) =1 for all M ¢ Mu(s) and |U[ =1 for
all U in the group Qu(s) of U e 2, with U = B™ (mod(s)), we can verify
as In [8] that the number of linearly independent v,(Z) is precisely

(r > 2n)
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(Dt : Ma(s))/{s™(2n: Lu(s))}. We can obtain explicitly the Fourier ex-
pansion of the Eisenstein series y;(2) by using the correspondence {CD}
«[Gy, L] given by Lemma 3 and & summation formula of H. Braun
(formula (78), p. 849, [2, I]). For the Fourier coefficients b;(T) of y(Z),
we have the estimate Bb(T) = 0((6(T))’_t) where ¢ =7(T). Now it is
simple to verify that @(Z;f) is a linear combination of the Eisenstein
series 1;(Z). Hence for the Fourier coefficients o(T) of ¢(Z; f), we have
the estimate b(T) = 0(5(T)"t) where ¢ = r(TI). For T' > 0, in particular,

(T) = 0(|T[™).

Let now f(Z) be the theta-series f(8, Z) associated with an m-rowed
integral matrix § > 0, of rank . Then we know from Theorem 2 that
(8, Z) e {n,y? —r,v}. In view of Lemma 5 and the remark on p. 50,
it follows that ¢(Z;f) coincides with the ‘analytic genus-invariant’ as-
sociated with § ([2, IT]) and has the Fourier expansion Z B(8,TYyn(1TZ)

I'=7>0
where
(@m)
r)af™

(122) B8, T) =

J=r—i+1

sry o (8 | [ ants, ).
»

In (122), t =r(T) and [ley(8, T) is the infinite product extended over

all the rational primes p,p of oy(8, T), the p-adic density of representation
of T by 8, in the sense of [1] (see p. 139; see also Lemma 1, p. 97, [2, IT]).

Tet now T =T >0 and t =r(T) <n. We wish to obtain, for the
number A (S, T') of Hg-reduced representations of T by 8, an asymptotic
formula similar to (86). By () and (6), there exists @ € {Ol}nn, with

A(t_.n)
},

*

- T 0
T[Q™"] = ( o

N(3(4)) < 6,

), >0, Q:(

0<]@l<e.

(123)

Further, as remarked earlier, if By is any -unit of T and G an Hs-reduced
representation of T' by &, then necessarily GEr = G.

-1 0
Let 4, = (QO a) Then A (S, 7T) is precisely the Fourier coefficient

of %(T,Z,) in the Fourier expansion of

~ Z. 0
1*(2,) = EESIQIH]‘ (S7 (01 ME("_‘)))/AO’ Z e H.

the limit-process can be performed term-wise and if
Z. 0

h‘m'n(S[GQ‘l]( 0‘ 'ME("“”)) were to be different from zero, then nec-

A—>00

For,
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essarily S[GQ™'] should have its last n—i diagonal elements equal to
‘ 0
-zero and since S[GQ™] > 0, it should then be of the form ‘z 0‘”*")'
-1 0 -1 T, 0\ |
Thus, it Jm | S[6Q 1% o i1p)| = 7(T2), then S[GQ™1=( 0)
8[G] = T By a similar argument, B(S, T) defined by (122) is the
coefficient of %(7,Z;) in the Fourier expansion of
Z,
+7
) =m0 )0

It is clear that f(S Z)]A, and @(Z: ,//A0 are in {n, »*|Q|&, —r, v}
where v,{M) = v(4,MA;") for I « Ma(IQI) (see [4]). )- Again, from [4],
the functions f¥(Z;) and ¢*(Z,) obtained from the above by applying

* %
the Siegel operator, belong to {Z, y*Q|?, —, v*} where, for M* = <;1* ; *)

e My(»%|Q12), we define v*(M*) = v,(M) where

A* 0 B* 0
un 0 HO0 0
“lo*0 pro
0 00 F
If we can show that f*(Z,)[Ni™" and ¢*(Z,)|N}™" for every N}

A} B}
(0* D*‘ ¢ have the same constant term in their Fourier ex-

pansions, then we can apply the working of Theorem 10 to *(Z,) and
#*(Z,) and obtain an asymptotie formula for A(8, T') which is the Fourier
coefficient of #(7,Z,) in f%(Z,) with 7', > 0. This is very easy to prove,

since by [4] (formula (1.8), p. 13), there exists M;e My, and P = (O " ":1) €
€ {k}gn.gn such that 0 c

(124) AN =M,
‘where
Af 0 B¥ 0
. 0 E0 0
Vi=\cr mpro |
0 00 E

Now, the constant term in the Fourier expansion of f*(Z,)/N™" is precigely
U (i) 52 = Limf(8, i2B™)/ 4, N7
=£2f(S,ME("))/M¢P (by (124))

= (limf (8, sAB®)/ 21| O .

icm°®

On representation by hermitian forms 95

Similarly the constant term in the Fourier expansion of *(Z,)[NF ™' is

just | lime@AE™; )/ M;. But we know that
A—>00
limf(8; (AB™) M; =lime(iAB™; f)[M;
A—>00 A—-o0

since both are just the constant terms in the Fourier expansions of
18, Z)|M; and ¢(Z;f)|M; respectively. Thus our assertion above is
proved and we have the asymptotic formula

(125) A(S,T)

) s py-ts gyt

r@lap* ap(8, T)+ O (| Ty~ =)

J=r—i+1 D

provided r > 2n, |Ty| > ¢ (depending only on % and f) and further that

(126) min T, > ¢ | T, [

where ¢’ is a fixed positive constant. The constants in the O-estimate
in (125) depend only on ¢/, k, and f(Z) in general. (They also depend on
19| but we know that I]QH < ¢ by (123).) But now 8(T) =| Ty | N(8(4),
by (123) again. Let, for integral T' = T>o0, min T (the reduced minimaum
of 7T) denote the smallest non zero ratlona,l integer represented by 7.
Then, it is easy to see that

(127) min T, > Q| *min T > ¢; *min 7' > ¢; *min 7, ,
T4 < 8{T) < 6] T4 -
In view of (127), condition (126) may be rewritten in an equivalent form

minT > o"8(T)

for a fixed constant ¢’ > 0. We have thus

TeEorEM 11. Tet 8§ =8 > 0 be an m-rowed integral mairic of rank
v, By a fized r-unit of § and T =T =0 an n-rowed inlegral matriz
of rank t > 0. Then, for A(8, T'), the number of Eg-reduced represeniations
of T by 8, we have the asympiotic formula

¢
A8, T) = H (27') ld|“ﬂ°)é(_’l’)"'6(;3’)_t ap(S,T)_l_o(a(T)f—t—l‘(?.i—r)/it)

j=r—t-+1
provided r>2n, 6(T) > ¢, and minT}o(é(T))”‘ for a constant cg
depending only on k and n and ¢ (a fized positive constant).

Remark. If 8™ >0 and 7™ >0 are symmetric matrices with
elements in I and 7 (T) =t < m, there exists a rational unimodular matrix
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T(t) 0 . -
U such that T[U] = ( 0‘ o) Then the number of (rational) integral

representations of T by 8 is the same as of T, by 8 and so the corresponding
formula in [8] (Theorem 5) was easier to prove. For &, we can not always
reduce T to this form by a unimodular matrix over %, since the clags
number of % is greater than 1, in general. :
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Contributions to the theory of the distribution
of prime numbers in arithmetical progressions III

by
8. KNAPOWSKI (Poznan)

1. Continuing the research of [1] and [2] I shall prove in this paper
some results concerning the distribution of primes = [, (mod%) in com-
parison with those =1, (mod%). Once more I shall need the conjecture

(1.1)  In the rectangle 0 < o < 1, [t] < max (¢, k), s = o+ it, all L-func-
tions modk may vanish only at poinis of the line o =% (*).

Writing, as usually,

(2, k, 1) = 2 1, p primes,
p=l{modk)
P<T

we shall establish the following
THEOREM. Let 523, 0 <1y, <k, I, £, (I, k) =1, k) =1 and
suppose (1.1) to be satisfied. Then

T
(1.2) f 7@, by b)) —=(m, &, Zz)\dm> Tizexp (_7 logT )
p-q

@ loglog T
with .

X = Texp(—(log T)*)
for
(1.3) T > max (e, ¢) (2).

Remark. In the particular case of I, =1 one might prove a similar
inequality without assuming (1.1). However, for general 1,1, I have
not been able to supply any lower bound (e.g. TU4, as it used to be in
the investigation of (=, &, ,)—w(», k, I;) performed in [2]) for

fmln(m; k) ll);”(my k!k)‘dm
X

() e, and further c,, ¢;, ... stand for positive numerical constants throughout.
(*) Compare the similar, though weaker, Theorem 3 of [2].

Acta Arithmetica VIII . 7


GUEST




