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A REMARE ON THE CURVATURE OF NON-PLANE CURVES.
BY

3. GOLAB anp A, PLIS (CRACOW)

Tntroduction. It is well known that assuming the existence of tan-
gent ¢ to a given curve I' (I'C R n > 2) at all ity points P except its
end point P, and convergence of ¢ to a straight line 4, as P tends to P,
the straight line ¢, is (one-sided) tangent to I' at P,. The problem arises
whether the analogue for a curvature is true. (If P, is not an end point
of I' the answer is trivially negative. Consider the curve = a?sgna,
consisting of two semi-parabolas, at the point a =0, =0 which has
no curvature but there exists the limit of the curvature at a = 0.) The
angwer to the problem is positive for n = 2. It was proved in [2], p. 98,
under additional assumptions imposed on the curve I A proof under
weaker assumptions will be published later.

In this note we shall give an example showing that for n >3 the
answer is negative. We ghall cohstruct a curve I' (' C R®) having no
(Menger or even Alt [1], [3]) curvature at its end point P, and such that
there exists the limit of the curvature at P as P tends to P,.

1. Consider the surface X obtained by rotation of the parabola
ay = o} around the axis 4, in the three-dimensional space R? with the
coordinates a,, ¢y, 4. In the complex notation the equation of surface X' is

§h) o = a(a, ) = d’é?,

where «, § are real and a is complex, a = a;, & = a,+id,. Obviously the
point Py:a, = 0, a; = 0, a; = 0 i§ a singular point of 2Z.

Putting § = f(a), where 8(«a) is a continuous funetion for positive «
and defined arbitrarily for a = 0 (the value B(0) is irrelevant) we obtain
on the surface X a curve I" with the end point P, having an equation of
the form

(2) a = a(a) = a6,

We shall choose the function B(a) for an example.-
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We have by (1) the equality |a(a, 8)/a| = a, therefore a(a, f)ja - 0
ag a — 0, and it follows that the surface X and consequently the curve I"
(for any function f(a)) is tangent to axis @, at the point P,.

2, To compute the curvature x(a) of the curve I" for a > 0, assume
that f(a) is of class 0% for « > 0. Equation (2) can be rewritten in real
form a, = a,(a), a; = a;(a), a5 = as(a), Where a;(a) = q, a(a) = a(a)--
+ ity (a). We have for « >0

x(a) = (a5 — ' a3)*+ (4301 — a3’ a1)*+

+ (o0~ g PG 0t o)

or, in complex notation,
3) #(@) = (|a"['+ 0 (a”a ' (14 |a' )",
where O(f(a)) denotes such a function g(a) that |g(a)/f(a)| is bounded for
small positive a. We have by (2)
(4) = (2a-+ia’f')6”,
(5) = (2+4diap — o’ B+ i f) 6"
Hence
(6) la”|* = (2—

@B+ (4ap + o)

Let us now take
(7) Bla) = —ilna

where 1 is a positive number. We obtain f'(a) =
and consequently

for a >0 (8(0) arbitrary},

—hja, B (a) =

Aa~?

8y af’ = —4, ap’ = 1.
In virtue of (4), (5), (8) we get
|a'|? = O(a?), O(a'2a""%) = 0(a?),

and in virtue of (6), (8) we have |a''|* = (2— 12)24 042 = 4+ 5% A4
and therefore by (3) we obtain x(a) = (4524 A - O(a?). It follows
the property

(9) wla) = (A+BRF I g

For any number ¢ greater than two we can choose constant A in (7)
that »(a) - o a8 a - 0.

Wg can also choose f(a) in such a manner that »(a) > 2 a8 a - 0
and:f(e) - oo as « - 0. It is enough to put f(a) = |Ine*®. Then we
obtain af’ - 0, a?f"” - 0 as « » 0 and by easy computatlons we get
the desu'ed property.

a—+ 0.
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3. We will show now that (for any positive 4) the curve I" has no
curvature at the point P,.

On the curve [ consider the points 4, corresponding t0 a = ¢
the points B, corresponding to « = ¢~*"@+V/* and the points ¢, corres-
ponding to a = ¢~™*"*+V?  Points A,, B,,C, lie on the plane ay; = 0.

Points P,, 4,, B, lie on the parabola a, = a:, consequently the
limit (n — oo) of the radius of the circumference passing through points
Py, 4., B, (n = 1) equals the reciprocal of the curvature of the para-
bola at P, and therefore equals . It follows from (9) that the Menger
curvature does not exist at P,. We will.show that the same applies to
the Alt curvature.

For this purpose consider the circumference passing through the
points Py, 4, C,. We compute its radius from the formula

(10) R = Enf(&+n+0) P (&+n— 0P+ L—n) g+ i— 57,
where & = {4, —P,|, 7 = |{Ca—P,|, ¢ = |0,—4,|. We have
£ = |4n| = (LTI
Similarly

—2nnja
H

_ 3“2"”“(1—}—0_4“”/")”2.

7 = |Cy = g~ @n+D A (1__}_6_.21:(21:,4.1)/1)1/2,

£ = 3—27"”/*((1_(;“”/’1)2-»}— 1+ 6—-27:[}.)28-41:11.[1)1/2.

Denote for conciseness y =.e ", g, = ¢4 Notice that
(11) 0<y<1,
(12) on =0 a8 % — oo,

Using these notations we get by (12)
£ = 0a(1+ai)'" = oatieat0(ch),
7 = ven(1+7" )" = yeat+1/ n+0(dh),
E= o=yl + @+ ) = 1= et 31+ L—y) " e+ 0(ed),

where O(u,) denotes any sequence #, where |u,/u,| is bounded. Henee
by (12) we have

E-aF =20, +0(gh), &+n—0=2ye.+0{a)),
E+l—n=2(1—9)en+0(0n),
1 -1)2
'q+c~£=—2-2(li_t)—ei+0(ei), £l = y(1—p)en+0(en)-

Therefore using formula (10) we obtain B = }(1—7)(1+p)~'+
+0(gl). In virtue of (12), (11) the radius of the circumference passing
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through Py, 4, 0, tends to Ry = $(1—»)/(1+y) <} a8 n— co. We have
proved before that the radius of the circumference passing *through
P,, Ay, B, tends to }. Therefore the radius of the circumference passing
through points Py, Py, Py, where P, el Pyel’y Py # Py, Py # Py, Py % ‘Pg_,
has no limit as P, - Py, Py - P,. This completes the proof that curve I’
does not possess the Alt curvature at Py.

1t is evident from (2), (7) that the curve I" has no oseulatory plane
at Py.
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INFORMATION WITHOUT PROBABILITY
BY

R. 8. INGARDEN axp K. URBANIK (WROCLAW)

1. Introduction. Since the first definition of the notion of informa-
tion given in its full generality by C.E. Shannon in 1948 (1), many
mathematical investigations have been concerned with this notion (2).
The general tendency of these investigations (initiated by Shannon
himself (°)) has been to separate the definition of information, say H,
from the explicit formula

k(3
(1) H=— > pjlogp;,
i=1
adopted by Shannon from statistical physics (Boltzmann’s formula for
entropy). Here p; denotes the probability of the i-th elementary event
(¢ =1,...,n; we consider first a finite, or at any rate discrete, proba-
bility scheme, convergemce of the sum in the case n = co being assu-
med). It was felt from the beginning that such a formula as (1) should
be rather a result than a starting point of the theory. Moreover, some
investigators, as e. g. Rényi(*), considered (1) as too narrow to cover
all possible applications of information theory and tried to generalize
this formula. Of eourse, to gat such a generalization in a natural way,
it is necessary to have an abstract definition of information, i.e. by
means of a set of axioms (this set may be subsequently diminished in
the generalization process). Many such sets of axioms have so far been
proposed (5) and their consequences as well as mutual interrelations have
been investigated. All axiomatic definitions of information known to
the present authors are equivalent to formula (1) (except Rényi’s gene-

(*) Ci. Shannon [11]. The numbers in square brackets refer to the list of lite-
rature given at the end of this paper, p. 149-150.

(®) Cf.,, e.g., Khintchine [8], Feinstein [4], Rényi [10], where further refe-
rences may be found.

() Cf. [11], p. 892, and Appendix 2, p. 419.

(% Cf. Rényi [10].

(%) Cf. Shannon [11], Khintehine [8], Faddeev [3], Rényi [10].
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