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ON PAIRS OF INDEPENDENT RANDOM VARIABLES
WHOSE QUOTIENTS FOLLOW SOME ENOWN DISTRIBUTION

BY

I. KOTLARSKI (WARSAW)

1. Introduction. Some important probability distributions encoun-
tered in mathematical statistics ave defined as probability distributions
of a quotient of two independent random variables. So are the distribu-
tions of Student as well as those of Fisher’s variance ratios. A question
suggests itself if the distributions of nominators and denominators of the
quotients in question are determined uniquely, up to a multiplication by
a constant factor or to a passage to reciprocals of the random variables
involved by the distribution of the guotient. The simplest problem is
connected with the Oauchy distribution, the probability density of
which is -

1 1
© 1422

(—oo < & < 00).

It turns out to be the distribution of a quotient of two independent
random variables having the same normal distribution symmetrical
about zero, or, in other words, to be Student’s distribution with one
degree of freedom. This problem has been studied by Mauldon [7], Laha
[4, B, 61, Steck [8], Kotlarski [3] to the effect that there is no such uni-
queness — there are many non-normal distributions symmetrical about
zero such that a quotient of two independent random variables having .
such distribution has Cauchy distribution. Another case — where nomi-
nators and denominators have gamma distributions — has been con-
sidered by Mauldon [7]. He has shown that also in this case there is no
uniqueness of the above mentioned kind and thus has shown the ambi-
guity phenomenon for Fisher’s, or, as some say, Snedecor’s F distribu-
tions.

In this paper we are considering the more general case of quotients
U = X%:X®, where X; and X, are independent random -variables
having gamma distributions and ¢,, ¢, are real numbers not equal to 0.
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Our aim is to show that, whatever be ¢;, ¢, and the parameters of the dis-
tributions of X, and X,,there exist independent positive random variableg
Y, and Y, with distributions intringically other than those of X% and X%
such that the quotient Y,:Y, has the same distribution ag U. Our 1‘08111{},
eventually with evident changes consisting in replacement of positive
random variables by those which are distributed symmetrically about
zero, show the ambiguity phenomenon spoken of not only in the case of
Cauchy distribution or of F' distributions, but also for Student digtri-
butions.

T am greatly indebted to professor C. Ryll-Narvdzewski and docent
8. Zubrzycki for their suggestions and remarks.

2. Formulating the problem. Let us have two independent random
variables X,, X, having gamma distributions with densities

0 for <0,
— , =
(l) f,.(ar') @ mp‘_._l P for 2> 0’ ('r - 17 2)
I'(p,)
where p, > 0, @, > 0. Write
(2) Zy=XF  (r=1,2),
where ¢, # 0, and
Z
(3) U o=,

2

Let V be a positive random variable. Denote by ¥7* the symmetri-
cal random variable, for which |V* has the same distribution as V.
In this paper we shall mark positive random variables by capital let-
ters without asterisks, and the corresponding symmetrized random
variables by capital letters with asterisks. It is eagy to see that their
digtribution functions F(w) and F*(x) are connected by the formula

(4) ™ (2) = H1-F (2] for w<o,
}14+F(ao))] for @>0.

If one of the random variables V, 7* has a density function, so does
the other, and they are connected by the formula

(8) @) =3f(2l)  (—o0 <0< fo0).

.We denote by O/ the set of pairs of independent positive random
variables 3?1» Y., whose quotients follow the same distribution ag U ==
= Z,:Z, given by (3). If, moreover, ¥, and ¥, have the same distribu-
tion, we shall mark their set by Y, .
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We denote by 9/* the set of pairs of independent random variables
Y§, ¥,, where Y7 is symmetrical about the origin and Y, is positive,
whose quotients follow the same distribution as U* = Z7:Z,.

‘We denote by ** the set of pairs of independent random variables
Yf, Y5, both symmetrical, whose quotients follow the same distribu-
tion as U** = Z}:Z5. If, moreover, ¥Y; and Y; have the same distri-
bution, we shall mark their set by Y2*.

The question arises whether it is possible to obtain a characteri-
sation of the set <Y of pairs of random variables by the distribution of
their quotients. This problem can be more precisely formulated as fol-
lows: Let ¥,, ¥, be two independent positive random variables. Let the
quotient Y,:Y, have the same distribution as U = Z,:Z, given
by (3). Have ¥, and Y, the same distributions as Z, and Z, respec-
tively? ’

The same question ecan be formulated about the sets U, , U*, Y™, U,

This inverse problem is not true, because of

Z, aZy 1/Z, alZ,

Ly _ 6% 1%, 0
7, ag, 17, aiz, "7
. ¥ % %
(6) Zi_ef oz
Z, aZ, 1/Z; alZ,
s Z* 1 Z* Z*
Zy _on 1)z alZy

ZF T e T 1z ezt

Hence we see, that if (Z,,Z,)e%, then (1/Z;,1/Z,)¢Y also; if
(Z3; Z,)eY*, then (1/2%,1/2,)<Y*; i (2%;Z%)<Y™, then (1/2%,1/7%)
cUY**; if ZY,, then 1/ZeY,; if Z* Y™™, then 1/Z*Y**.

In this paper we shall give two theorems about the sets Y, Y, U*,
U, Y and a way to obtain pairs of random variables belonging to
these sets. The problem ig solved in the same way as in [3] by uging the
Mellin transforms of random variables.

3. The Mellin transform of a positive random variable. We define-
the Mellin transform of a positive random variable ¥ by the formula
(see [2, 97)

) Me) = BLV'] = [ ofdF (o).

where s is a complex variable. The function h(s) is given in a strip S:
¢; < Re s < ¢, containing the imaginary axis and being parallel to it.
The Mellin transform h(s) defines the distribution of a random varia-
ble uniquely.
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" If the positive random variable V has a density B'(p) == fw)
(o]
satisfying the condition [4°f(#)dw < oo, where ¢ is an arbitrary num-

1)
ber safisfying the condition ¢, <e¢ <C¢,, then it is given in every
point of its continuity by the formula

et

f‘ 2 h(s)ds.

c—iT'

1
= e i
210 7o

(8) @

It ghould be noted, that if h(s) is the Mellin transform of a pogitive
random variable V, then the function k(i) is the characterigtic function
®(t) of the variable InV, because
® - B(it) = BLVY] = BLe*™V] = gy, (0).

So we see that the function h(s) satisfies the following conditions:

(10) (it} is continuous along the whole axis i,
h(0) =1, h(—dt) = h(it).

The moment m, of order r of the positive random variable V is given
by its Mellin transform by the formula
(11) My = B[V"] = h(r):

The moments of such random variables exist only for these r which lie
in the strip 8.

If we have n independent positive random variables X,, X,, ..., X,
with their Mellin transforms %, (s), hy(s), ..., hu(s), then the Mellin
transgform of the variable

(12a) ‘O'Xgl‘ng'...'Xg”,
where ¢ > 0, ¢y, 0a, ..., g # 0,15

(12b) 0" Py (q18) Pa(€28) s Pn(gn8).

4. The functional equation for Mellin transforms of any pair of ran-
dom variables Y., ¥, belonging to ¢/. The Mellin transform of the ran-
dom variables given by (1) is

(13) a;-s r(pr+32 ’
I'(p,)
The Mellin transforms of the random variables Z,, Z, given by (2) are

(Res > —p,; r =1, 2).

(145 a=® T'(p,+ ¢.8)

r P(Z)r) (pr+ ¢--Res > 0; r=1,2). ‘

icm

INDEPENDENT RANDOM VARIABLES 155

Taking into account formulae (12) we see that the Mellin transform
of the variable U given by (3) is

(p1+¢,'Res > 0,

gl Pt 08) e T'(02—a8)
' ?a"‘Qa'R‘?'? > 0).

15 .
() Ty “ T

Hence we see that for a pair of independent positive random variables
to belong to the set ¢/, it is necessary and sufficient that their Mellin
transforms %, (s), hy(s) satisfy the functional equation

(p,+¢.-Bes > 0,
py—qs-Res > 0),

L (P1+¢:8) L(pa—¢9)
I'(p,) I'(py)

(16} hy(8) ho(—s) = b
where b = a32:0f1.
5. Solving equation (16). Let us put

(17) hay(s) - baF(Prf‘ 0:8) O Ry(s) = T'(pa+tg28) g2

T'(py) - T(py)

Putting formula (17) into equation (16) we see that

(18) y1(8)+ya(—3) = 0.

Putting y,(s) = y(s) we obtain y,(s) = —y(—s), and go we may write
(19) hy(8) = b"Meﬂs), Ro(8) = Me—y(—a.

I'(py) I'(p,)

Now we shall put s = it. Presenfing the function y(it) as the sum
of its real part a(t) and its imaginary part A(2),

(20) y (i) = a(t)+1p(1),
we can write

T'(pat ga%) o—olH—18(~1)

TP+ ) 2080
’ T(pa)

I'(p,)

‘It should be noted, that h,(dt) and h,(it) are cha.raetéristie func-
tions (see formula (9)), and so they satisfy the conditions (10). Hence
we gsee, that the functions «(f) and f(t) satisfy the following conditions:

(21) B, (it) = B¥ ha(6t) =

a(t), B(f) are real and continuous along the axis ¢,

(22)
a(0) = 0, .a(—1).= a(®), (—1) = —B ().
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Thus the functions (21) are

, T(py+ @18) o ving . L(pat-gat) o !
23 By (it) = pit AL T 2L palh+iA) hy (i) = et 22 g ()Hﬂ(j’
( ) 1(’L ) F(pl) H 2 l,,(’pe)

where «(t), f(t) satisfy conditions (22).

6. Theorems. The result of parts 4 and 5 may be formulated as
the following two theorems.

THEOREM 1. For a pair of independent positive random variables
Y,, X, to belong to the set J, it is mecessary and sufficient that their M ellin
transforms h,(s) = B[Y;] (r =1,2) should be given on the imaginary
awis in the form (23), where a(t), f(t) satisfy the conditions (22).

Remark 1. Taking Y7 symmetrical instead of positive ¥, and h,(s)
= B[|Y,°] we obtain the conditions necessary and sufficient for belong-
ing to Y*.

Remark 2. Taking Y}, ¥} both symmetrical instead of positive
Y, Y, and % (s) = E[|Y,|"] we obtain the conditions necessary and
sufficient for belonging to Q/**.

In the particular case when Z, and Z, have the same distribution,
and we want ¥, and ¥, to have the same distribution, we put

hi(s) =ha(8) =R(s), Pr=Da=p, G=@Q=4q

into the formula (23) and we obtain b = 1 and «(¢) = 0. So we obtain
the following theorem for belonging to <V/,:

THEOREM 2. For a pair of independent identically distributed positive
random variables Y., Y, to belong to the set U, it is necessary and
sufficient that their common Mellin transform h(s) = B[XZ] should be
given on the imaginary amis in the form

I'(p -+ qit) 00
b

(24) Mit) = =5

where B(1) i3 & real odd fumction continuous along the awis 4.
Remark 3. Taking ¥ symmetrical instead of positive ¥, and

h(s) = E[|¥;]] we obtain the conditions necessary and sufficient for
belonging to U;*

7. The construction of diverse pairs of independent random variables
¥, ¥, belonging to Y, Y*, Y**. The cenditions given in theorems
1 and 2 are to be regarded as a reduction of the question how to
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characterize the classes ¢ and ¢, to the question for what functions
a(t) and B(¢) satisfying condition (22) the right sides of formmulae (23)
or of formula (24) are Mellin transforms of some random variables. Tt is,
however, hard to see by the aid of that reduction that there are in U
and %Y/, other elements than those described in section 2. Therefore we
are going to vizualize this by some examples. In order to do that, we shall
apply the known formula for the function I'(s)

S E—1
(25) Tww) = o5 n r(w+ 7—) (Rew > 0)
k=1 .

in equation (16). We can write this equation in the form

(26) N [1(p1+k“1+413) J,(_Pz"i‘l-l“‘qgs’)

n m
By (8)hy(—8) = b°
n e

Taking into account formulae (1), (2), (12) and (14), we see that the fol-
lowing pair of functions are Mellin transforms of positive random variab-
les satisfying equation (26):

F<p1+ak—1+qls) F(Pz‘i‘ﬁz—l"%s)

h1(8)=(b0)8!:[ ( 1+ak—-l) 1? (p2+ﬁl— ) -

(27) n m
N 1—.(?1+ak““1"Q13) ™ I,(Pﬁ'ﬂl"‘l‘l" 42'9)
n m
hy(8) = ¢* ,
) k-ll p(w) zﬂ-ﬂ p(?ﬁi‘_ﬁ’;l)
n m

where ¢ is an arbitrary positive number; n, m are positive integers; », u
are positive integers satisfying the conditions 0 <» < n, 0 < pu < m;
O1yCay.eny @y A0A By, Bo,..., By are arbitrary permutations of the numbers
1,2,...,m, and 1,2,...,m respectively. It it easy to see that the
Mellin transforms (27) correspond to the quotients

pelra ay” o,
‘ Xy Xy Xy
(28)
] Xﬁuﬂ._Xﬂ‘,P XB"!.,
7
Y“-H—l ' Xﬂv+z Koy
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where X, and X, are independent positive random variables having
densities
n Pkl o onja
f (m) R a1 €0 e )
o 7 u—-,(pri‘ak_l)
11 n
(29)
P3+H—-1 m
m LR e L)
falt) = —— @ @ o

(see formulae (1), (2), (14)).
In the special case when /¢, = m[qy = 1/q, we can use Mayer’s
functions (see [1], p. 207)

1 e JITO—8) [[T(1—a+s)
J=1 feal

Gy eeny B
(30) GZ";,"(w h . ) = 5 5 ds.
1t 2 e Il Px—=b;+s) [] I'(a;—s)
Jetif1 Jmn4-1

It is easy to derive that the densities corresponding to the Mellin
transforms (27) may be expressed by the following formulae (for b =
=0=1):

1
M T a 1| & (pathiol)
m‘ 11( 1 ks ) 11( 2 1 )
. 1_1’2‘}‘51"‘1 ]___1”2+/3y“1
1 |
x =@l at " LA
» Pita—1 Pita—1
- yoens P
(31)
1
falw) =

" ﬁr(m+;k-1) I'—”lp(pa+£,-1) s

Ra=mpl Tl

Jiomten=l o ptem—1

1 i ] ]
x = @y | ot " "
a PatBua—1 PatPfn—1

' m T m

Taking the corresponding symmetrical random variable instead of

T~ iom®
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the positive one in the formula (28a) we obtain pairs of random varia-
bles Y1, ¥, belonging to U*.

Taking the corresponding symmetrical random variables instead
of the positive ones in the formulae (28) we obtain pairs of random
variables Y7, Y; belonging to /**.

8. The construction of pairs of random variables Y,, Y, belonging
to ¥, , 5" Applying formula (25) in the equation

I'(p+gs) I'(p—gs)
I(p) I'(p)

(32) h(s)-h(—s) =

(see equation (16) and the proof of the theorem 2), we obtain the equa-
tion

i P(p+k—1+qs) . F(p+k—1—qs)

) ) — ! n n
@ o= r[ZF] 1 (BT
n n

Then we see that the function

) P(P'l‘ﬂk—l-f-qs) . F(p—l—ak—l——qs)

) n n
34a h(s =c”l I l I ,
Bla) b ;4 p(wc}) K p(zi%:_})
n 13

~where ¢ is an arbitrary positive number, 7 iy a positive integer, » is

a positive integer satisfying the condition 0 <» <n, and a;, a5y ..., @,
is an arbitrary permutation of the numbers 1,2,...,7n, is a Mellin
transform of some positive random variable belonging to </,. But the
Mellin transform (34a) corresponds to the quotient

R D

(34b) s
XX,

where X, are independent positive random variables having densities

1 -z ¢
é

n

-
P"l‘ak_l)
1Q|F('—',;r——

(ses formulae (1), (2), (14)).

: n
prag-1 .7
a

(35) fak (w) =
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Taking, for instance, n =2, » =1, a;=1, a; =2, we obtain
a positive random variable ¥ belongmg to Y,; its densmy is

» Ip+d) f‘F"‘
lal V=r(p) (14

For n = 2, v =1, a; = 2, ay = 1 the corresponding density is

(36a) fl@) =

)29+L .

»
oy = 2. LoD 9t
(36b) : ld Vel@) (g ppapt

Using Mayer's functions (30) we see that the density correspon-
ding to the Mellin transform (34) can for ¢ =1 be expressed by the
formula

@7 : pron—1 4 Pia-—l
D45 ﬂl— ST g ey
n® v | G n "
f@)=—"%=x "o G| pto—1 p+a~1
2m) 2 gl I'(p) —— e -

For n=3,»=1,2, and for particular permutations Uy Oy g
of the numbers 1, 2,3, we obtain the following densities of positive ran-
dom variables belonging to @/, see ([1], p. 216, formula (8)):

1 +2
3P-F§P(2p;“1)F(2p3l" ) o 1l ,
- gt W @)
for = 2=l T(p) ! -3
1
3p+§ p(??ﬂ) p(?ﬂi‘ﬁ) P X 3 s
38) fl@) = i 2 w-r~le§m“W w1 1(9)
(33) sio) = 2wl T(p) e
1o 2p+3 ,
SRR g

-1 zaxd 1 =
fl@) = 2mig|T(p) ot ¢ W_f_’ﬂil(‘”“)’

'8

where Wy (x) is Whittaker’s function (see [1], p. 264).
To obtain new random variables of the same set we shall use the
known formula for the function I'(s)

ny n s
1 (5 5~mm)s ( 3) ~%
i = lime ¥=1 .8 14-—Je (Res > 0).
) gy =lme [T{+g)e o

INDEPENDENT RANDOM VARIABLES 161

We may write the funetion (14) for 4, = 1, 8 = 4t in the form

, r (ZH‘Q’W) ait Inn [ qit ]_1
(40) h(it) = —————= = lime 1+—=—] .

We see, that every factor of this product is the characteristic funcnon
of some infinitely divisible random variable, so the funetion (14) is:for
8 = it the characteristic funetion of some infinitely divisible random
variable also. Thus the function

r &
() oy = [ L2221

is for every positive d the Mellin transform of some random variable.
Evidently

- +afl—1+4gs +a)—1—gs
~ 0 ]’(p s g ) nj T(L‘%_._q_) d’}
(42) h(s) = ¢ , 5 | »
1],] g F(p—f—-_a’f_—~_1) k!le F(_____p+ h —1)
K Ny
where N, ny, 1y, ..., ny are arbitraiy positive integers, ¢, dy, dsy ..., dy are

arbitrary positive numbers satisfying the condition 2‘ =1, 0f,...

aﬂ} are arbitrary permutations of the numbers 1,2,...,n, v are
posmve integers satisfying the conditions 0 <, <n,, is the Mellin
transform of the same set.

In the special case N =2, %, = g =1,» = 1,9, =0, a{) = o =1,
d;, = d; = § we obtain

{43) ‘ h(s) = F(ﬁ(—;)qs) ) I’(Ip:(—z-’)qs) ‘

In the special case p = } we obtain the Mellin transform

1
44 h(8) = ——=
(a4) (®) Veosngs
and the corresponding density
. ( i 9
k)
4 2nq
{45) flz) = @) TERE z>0.

Taking the corresponding slymmetrical random variables instead
Colloquium Mathematicum IX u
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of the positive ones in the formmulae (35), (37), (38), (42), (43), (45)
we obtain random variables belonging to </}*

9. Particular cases. We shall now list the specifications which are
to be made in order to see the connection of our considerations with
probability distributions encountered in mathematical stabistics.

a. If we put a, = a3 =1/2, py = m/[2, Py = 0[2, ¢, = ¢y =1 in (1)
and (2), then Z; and Z, will have chl-square distributions with m and n

degrees of freedom, respectively, and —- U will have Snedecor’s # distri-

bution with (m,n) degrees of fleedom.

b. If we put a, = 9, = ¢, = @5 = 1/2, a3 = p, = n[2 in (1) and (2),
then ZF will be normal with zero mean and unit variance, nZ; will have
chi-square distribution with n degrees of freedom and U* = Z7:Z, will
have Student distribution with n degrees of freedom.

c. If we put @, =a, =9, =P, =@ = ¢y = 1/2 in (1) and (2),
then Z} and Z; will be normally distributed with zero mean and unit
variance and U** = Z}:Z; will have Cauchy distribution.
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