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Suppose now that the cardinalsy of V and 7' are arbitrary. If « is
a theorem in 7, there exists an open subthcory 77, of 7 such that « is
a theorem in 7 ,, and the sets of all terms and individual variables in
T, are countable. By the part of (xxi) which has just been proved, there
exists a proper Herbrand disjunction é for « such that 6 is a theorem in
T ,. Since I, is a subtheory of 7, 6 is also a theorem in 7.

(xxii). Let 7 be an open theory. A formule o i8 a theorem in I if and
only if a proper Herbrand disjunction for a is a theorem in 7.

This follows immediately from (xviii) and (xxi). .

(xxiii). In order that & theory T be open it is necessary omd suffiotent
that, for every formula o (in the prenew form (12)), a be a theorem in 7 if
and only if & proper Herbrand disjunction for a is o theorem in 7.

The necessity follows from (xxii). To prove the sufficiency let us
agsociate with every theorem o in & a proper Herbrand disjunction 4,
which is also a theorem in-7". By (xviii) the implication §, - a is a tauto-
logy. This proves that the set of all open formulas 8, is a set of axioms
for . Thus 7 is open.

REFERENCES

[1] J. Herbrand, Recherches sur la théorie de la démonstration, Prace Towa-
rzystwa Naukowego Warszawskiego, Wydzial III, 33 (1930), p. 33-160.

[2] H. Rasiowa and R. Sikorski, On the isomorphism of Lindenbaum algebras
with fields of sets, Colloquium Mathematicum 5 (1968), p. 143-168.

[3] L. Rieger, On free Ng -complete Boolean algebras, Fundamenta Mathematicae
38 (1951), p. 35-52.

[4] — O jedné zdkladni v¥te matematické logiky, Casopis pro pstovani Matema-
tiky 80 (1955), p. 217-231.

[6] R. Sikorski, On Herbrand’s theorem, Colloquium Mathematicum 6 (1958),
p. 55-58.

[8] — Boolean algebras, Bexlin-Gottingen-Heidelberg 1960.

[T] — A topological characterization of open theories, Bulletin de 1'Académie
Polonaise des Sciences, Série des sci. math., astr. et phys., 9 (1961), p. 259 -260.

Regu par la Rédaction le 10. 5. 1961

icm

COLLOQUIUM MATHEMATICUM

FASC. 2

VOL. IX 1962

A KIND OF CATEGORICITY
BY

A. GRZEGORCZYK (WARSAW)

The notion of categoricity has been introduced in order to charac-
terize theories which intentionally have only one model. However, the
most elaborated formalization of this notion (eategoricity in power in-
troduced by Xos [2] and Vaught [4]) does not correspond to these in-
tuitions. The arithmetic of natural numbers intentionally related to one
model is not categoriecal in any power. The same can be said about the
complete theory of real numbers. The aim of this paper is to define a no-
tion of categoricity according to which the classical elementary theories
of arithmetics and geometry (and not too many others) would be cate-
gorical.

1. DEFINITIONS

Let Cn(X) be the notion of consequence based on the first order
functional calculus. Let {4,} and {G,} be two sequences of constants
indexed by the formulas. We define the Skolem forms of a set X (skl(X))
of formulas in the normal prenex form.

If ¢ is a formula in the normal prenex form, then

Y(Ag) if @ has the shape \/ 2,¥(w,),

Nuys vooy 5, P (G a(@rys ..., @) if D has the shape
/\wkl, ceey By, V @, ¥ (20)

skl (@) =

@ in other cases.

§kl(®) = sk1(P) for such n that skl™(P) = skl™+(d),
= the set of skl(®) for PeX.
Let X be a set of sentences (formulas without free variables) with

extralogical constants: O,,..., 0, (individual constants), P,,..., P,
(predicates) and F,, ..., I, (function-constants).

sk1(.X)
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P, is the sign of identity. We suppose that all sets X of the sentences
considered below contain the axioms of identity for P,. We shall say

. that

1.1. M is a consiructive model for X iff:

1° M =M, 01, 000y 00y Pay ooy Pry Jry oos fuy {0}, {yx} > 18 & mo-
del for skl(X), o;, pi, fi are interpretations of extralogical constants of
X and {ax}, {gx} are interpretations of the added Skolem-constants
(i. e. the constants occurring in skl(X) and not oceurring in X) if they
exist, and p, is the relation of identity,

2° M is the smallest set containing the individuals oy, ..., 0,
{ax} and closed under the functions fy, ..., f, and {gx}.

1.2. A set X of sentences in normal prenex form is constructively
categorical iff X is consistent and every two constructive models of X are
isomorphic.

We shall deal also with terms: 1. the individual constants oy, ..., o,
Ax are terms, 2. if ¢,, ..., t, are terms and F; is one of the primitive funec-
tion-constants or Skolem. function-constants, then F;(t,, ..., %) is a term.

Let us notice the following easy theorem:

and

1.3. Bvery consistent set of semtences has a constructive model.

Proof. If X is consistent we can define an extension S of skl(X)
ag follows:

8 =UZ%Z,, where Z,=skl(X),

and

Zyo{T~R®M if
(1) Zn+1 =

Znw {"R™M in other cases;

R ¢C0n(Z,),

where {R™} is a sequence of all sentences of the form

P’l:(tl.i ""tr)?

where P; is a predicate of the set X and ¢,, ..., t, are terms. The extengion
8 is consistent and determines a model on terms which satisfy defini-
tion 1.1.

1.4. Bvery model M for a set X of sentences contains o submodusl M CM
which 1s constructive for X.

Proof. We choose from the model M the 111te]preta.t1ons of the
Skolem-constants {dx} and using the axiom of choice we define the
functions {Gx}.

Now for a syntactical characterization of the constructive catego-
ricity we need the notion of decidability of a predicate:
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1.5. A predicate P; is decidable in the set Z of sentences iff for all
the terms #,,...,1. of Z

(2) Pilty, ..., 1) 0n(%) or PPty .e ., t) e Cn(Z).

2. THE MAIN PROPERTY
The following theorem gives a criterion of categoricity:

2.1. A set X is constructively categorical iff each predicate P; of X
is decidable in skl(X).

Proof. If the predicate P; is not decidable in skl(X), there is a sen-
tence R of the form P (t1y ..+, t,) independent of skl(X). Starting from
two sets, Z, = skl(X) o {"R"} and Z, = skl(X) v {"~R"}, by means of
construction (1), we obtam two extensions, S’ and §", of skl(X) which
determine two non-isomorphic constructive models on terms.

Conversely, if two models 9N and M’ are non-isomorphie, then for
any one-one mapping of |M| onto |M’| there must be elements m,, ...,
m, | IM| such that for a relation p;

(3) N(_pi(”hv trey mr)/\]?;(mi; EERE) 'I}’b;)).

Let us consider the following mapping ': n' = m if ne|M|, me| M|
and there exists a term f; such that » and m are interpretations of the
term=t; in models 9N and M’ respectively. * is a well-defined one-one map-
ping because of the decidability of P, in skl(X). p, is the relation of iden-
tity (see definition 1.1). Hence if # is the interpretation of two different
terms, t; and ?,, then from the two possibilities, "P, (i, tz)“sﬂn(skl(X))

"~P, (ty, 1) eOn(ﬁkl(X)), only the first can occur, and thus the terms
t1 and ¢, must have a unique interpretation in every model. For the map-
ping ' defined above it is evident that condition (3) may be satisfied only
if the sentence P;(ti,...,t,) for some terms t,,...,t. is independent of
skl(X).

3. BXAMPLES

The notion of constructive categoricity is non-extensional. This means
that there are two axiom systems @ and @' such that @ and @' are logi-
cally equivalent, Q' is categorical and @ is not. Such is the case of the
arithmetic @ of natural numbers considered by R. M. Robinson { {1). The
original axiom system for ¢ is non-categorical, as may easily be seen.

Let @' be the following axiom system:
0+ 82;  AzVyllw=0Ay =0)V
2+ 8y = 8(@+y); 0 =0;
(*) For the theory Q see [3], p. 51.

Sm:Sy-Hvzy;
e+ 0 = x;

(z = 8y));
-8y = (z-y)+a.
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8.1. The system @' is constructively categorical.

Proof. The unique axiom of Q' containing an existential quantifier
i3 the third one. Its Skolem-form has the shape

(4) Ae(@ =0 AGs = 0)V & = §(Gw)).

By this sentence the function G is completely characterized as the
function of predecessor. For every term ¢ there is an neN such that
t = A, Cn(skl(Q). Hence the predicate = is decidable on ferms,
and, by 2.1, @' is constructively categorical.

3.2. The complete arithmetic B of real numbers has o constructively
categorical amtoms system.

Proof. In order to give a complete characterization of all existences
all existentional axioms may be formulated in the form of the following
scheme:

N2oyens zzrl»)-l\/m[(ziau»l =0A2 = 0)V {Zn1 # 0 Azpt2r @+
oo By g =0 A Ay (Bo+2r Y +e ot a1 =0 —» & <y}l

Hence sk1(B) containg an infinite sequence of Skolem-functions: G4 (2o, 21),
G320, 21, %2, %a), - .. denoting the least roots of the polynomials with the
coefficients 2y, ..., Zy1 if 2y 7 0 and 0 if 2y, = 0. Hvery funetion
Gy is formally definable in the theory B. All terms #;, £, of ski(B) are
thus definable in B and all sentences of the form #; =1 or ¢ <1; are
decided in gkl1(B) because of the completeness of B. Hence the predicates
= and < are decidable in skl(B) on terms.

Theorem 3.2 can easily be generalized:

3.3. If T is a complete amioms-system and Skolem-functions for T are
definable in On(T), then T is constructively -categorical.

Proof. Analogically to the proof of 3.2.

If we cancel & number of axioms from the theories @ or B without
reducing the number of primitive notions we obtain a theory which is
non-categorical, but bas a constructively ecategorical recursively enu-
merable extension. There are also axioms-gystems which have no con-
structively categorical extiensions.

3.4. The set theory of H. Zermelo has an axioms-system with no econ-
sistent recursively enumerable oategorical extensions. :

Proof. Let Z be the axioms-system of set theory with the familiar
“Augsonderungs-axiom” and the axiom of infinity assuming the existence
of the set of von Neumann’s natural numbers: A, {4}, {4,{4}},....
Let 4, be the term denoting in skl(Z) the set of natural numbers whoge
existence is assumed in the axiom of infinity. Let {4,} be the gequence
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of numerals denoting in skl(Z) the above-mentioned von Newmann
natural numbers. Hence I'AneAl“e(}n('.skl(Z)).

It is easy to see that the implication skl'(®) - & is logically
true for every formula @. Hence from the Skolem-form of the “Ausson-
derungs-axiom” we infer that for every formula ¥ of Z there exists a term
ty of sk1(Z) such that the formula

(5) . Nelpety = (wed AP (2))]

is a theorem of skl(Z).
The set S of natural numbers is weakly representable by the formula
¥ in the set T of sentences iff for every natural number n

(6) nel = "P(4,) «Cn(T).

The arithmetic of natural numbers is interpretable in Z. Hence there
exists a formuls ¥ of Z such that in every extension Z' of Z the formula
¥ represents a non-recursive set Sz (2). Hence from (5) and (6) it follows
that for every extension Z' of Z there exists a non-recursive set 8z such
that

nelgz = "4, ety On(sk1(Z)).

If Z' is reeursively enumerable, the set of # such that "4, ety
On(skl(Z')) as well as the set of n such that "~ (4, ety) e Cn(ski(Z")
are recursively enumerable. Thus if 8z is non-recursive, the predicate
¢ cannot be decidable in skl(Z'). Hence, by 2.1, Z’ is non-categorical.

In the last theorem by the extension of a set T of sentences we under-
stand each set X of sentences such that 7 C X. The problem whether
theorem 3.4 remains true if as an -extension of T' we mean sets X such
that 7 C Cn(X) remains open (P371).
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