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ON A NOTION OF UNIFORMIT'Y FOR L-SPACES
OF FRECHET

BY

A. GOETZ (WROCLAW)

The purpose of this paper* is to introduce a notion of uniformity
into Fréchet spaces (spaces with a given convergence of sequences). Our
definition is related to the notion of é-spaces of Efremovié (*) but, in
general, a Fréchet space with uniformity in our sense is mot a topolo-
gical one, and even if it is, its topology may not be completely regular,
while every Jspace, as well as the uniform spaces of A. Weil, must
be completely regular.

For our spaces, called %.%-spaces, we define the notions of uniform
continuity of functions and of uniform convergence which are generaliza-
tions of the corresponding notions for metric spaces. A similar theory
could be developed for sets instead of sequences.

1. DEFINITIONS AND EXAMPLES

1.0. Let X be an abstract space; its elements will be denoted by
@4 ,...,4,b,...; sequences of elements by {x,}, {#.},... or by small
Greek letters &, &', 7,...,a,,...; {#} will denote the constant sequence,
i. e. the sequence {s,} in which @, = « for every . If necessary, the index
of the sequence will specially be indicated, e. g. {)}, denotes for
each constant ¢ a sequence with index n, {#{"}; denotes for each constant
n a sequence with index 4.

Sequences of natural numbers which appear in this paper are sup-
posed to be inereasing.

1.1. Let us consider in X a relation n between sequences of elements
of X; n is called a nearness relation if it satisties the following conditions:

* The results of this paper were reported to the Symposium on General To-
pology and its Relations to Modern Analysis and Algebra, Prague, 2-8 September
1961.

(*) See [1]; a detailed account of é-spaces is given in Smirnov [6].
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(i) éné&;

(ii) if &n#, then &'mé;

(iii) if én¢’ and £még”, then &mé&"’;

(iv) {z}n{r} if and only if # = &';

(v) it {win{e}, then {w n{z,} for each sequence {i,} of indices;

and eventually the condition

(vi) if each sequence {4} of natural numbers contains a subuequen(e
{ju} for which the relation {m;}n{a;} holds, then {m}n{z;).

A get X in which a relation n satistying the conditions (i)-(v) is
defined is called a %.%-space. If, moreover, the condition (vi) iy satisfied,
X with the relation m is called a #Z*-space. We denote %.Z-gpaces
(%%*-spaces) by (X, n) or, if no confusion can arise, simply by X.

Examples

1.2. {w,}n{zm} if =z, = =, for sufficiently large n. (X, mn) is a ZL*
space. It is called trivial %Z*-space.
1.3. X ig a metric space with the distance funetion ¢. {w,}n{w,}
if limo(®,,¥,) =0. (X,n) i a ZL*space. When speaking of metric
N—>00

spaces we shall always regard them. as #.Z*-gpaces with the nearness
relation just defined.

1.4. Given a set X, let # = {f} be a family of mappings of X into
the %%-space (%L*-space) (¥, n). Suppose that the family & separates
the points of X, i. e. that for each two points », and z, of X there exists
a function fe# for which f(x,) # f(x,). Then a nearness relation in X
can -be defined by setting

{o}N{wi} it {f(2:)}n{f(a;)} for each feF.

(X, N) is & %L-space (%L*-space); it is said to be generated by the
family of mappings &.

1.5. A subset ¥ of a #%- (%%*) space (X,n) with the relation
n|Y (the restriction of m to ¥) iy a #.%- (#.%*-) space itself. Tt is called
a UL- (UL*-) subspace of X.

1.6. Given two %% (%%*-) spaces (X, n) and (Y, m), let us define
& nearness relation mxm between sequences of elements of X xY by
getting

{@, gum xm{zy, y,)} if {m)n{z,} and {y,}my,}.

(XXY,nxm)is a %L (%L*) space called the product of (X, n)
and (¥, m).
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Similarly, the product of an arbitrary family of #.%- (%.%*-) spaces
(X,,n,),ﬂ can be defined. In particular, the space X7 of all mappings
of T into the #%- (%%*-) space X can be considered as a #%- (%%F*-)
space.

1.7. Let # be a non-empty family of one-to-one mappings of ¥ into
X, and let (Y, n) be a #%-space. Suppose that for each pair of mappings
f and ge#F there exists such a mapping ke that {A-1(z,)}n{h1(z,)}
whenever {f~1(z,)}n{f~(z,)} or {y~2(@,)}n{g~ (x,)}, and let us define
a nearness relation N in X by setting {x,}N{z,) if there exists a mapping
feF satisfying the condition {f-*(,)}n{f~1(s,)}. Then (X,N) is a #%-
space.

Indeed, conditions (i), (i), (v) are evident, (iv) is satisfied because
every fe# is one-to-one; (iii) follows from our supposition about #.

In particular, ¥ may be a subset of X, and the family & may be
supposed to include the injection mapping. In this case the relation

{yn}u{y,} implies {y,}N{y,}.
2. 4¥-SPACHS AND CONVERGENOE

2.1. A sequence {,} of elements of a #.%-space (X,n) is said to
converge to aeX, in gymbols .

2, >a or a=Ilimg,,

if {m,}n{a,}; ¢ is called the limit of the sequence {w,}. This convergence
is said to be gemerated by the nearness relation m.

It is quite obvious that:

TaEOREM. The set X with the convergence definéd above is an L-space
of Fréchet. If, moreover, (X,n) is a UL*-space, X with this convergence
is an L*-space (?).

Therefore, we may apply to #%-spaces all the notions which are
defined for Fréchet spaces as, for example, that of derived set, density,
compactness, continuity of functions ete.

Examples
2.2. In example 1.2 the only convergent sequences are constant
for sufficiently large indices.

2.3. In example 1.3 the convergence coincides with the usual con-
vergence in metric spaces.

2.4. In example 1.4 the formula ¢ = lima, is equivalent to f(a) =
= limf(x,) for every fe#. In the particular case of a Banach space and
the family & of all linear functionals this convergence coincides with
the well-known weak convergence.

(*) In what concerns #*-spaces we follow Kuratowski [4], ch. II, § 14.
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2.5. In example 1.5 precisely those sequences are convergent in Y
which are convergent in X to a limit belonging to Y.

2.6. In examples 1.6 the convergence is equivalent fo the convergence
of the projections on all axes.

2.7. In the particular case of example 1.7 the convergence coincides
with the “operational eonvergence” of J. Mikusifigki ([8], Appendix,
ch. IV, §2).

3. #¥-STRUCTURES IN A GIVEN Z-8PAUI

3.1. Given an .#- (%*-) space X, a nearness relation m iy waid to be
compatible with the convergence of the given space if the convergence
generated by n coincides with the given convergence. In this case wo also
say that n determines a #.%- (or «%*-) structure in the given 2- (£*.)
space.

There may exist, of course, more nearness relations compatible with
the same convergence. .

3.2. A nearness relation n i3 said to majorize the relation n’, both
relations being defined in the same abstract set X, in symbols

n>=n or n <n,

if for every two sequences & and & the relation &n’&’ implies £né’; n'
is said to minorize m.

The relation < is a partial order relation in the set of all #.%-
structure defined in X. ‘

3.3. Given a set X, let us congider an arbitrary family (m)., of
%% -structures in X, and define a nearness relation n by setting éné’
it &ng&’ for each teT.

It is easy to verify that n is the largest UL-struciure minorizing all
the n/s. We denote it by

n= Am
tel

or, if T ig finite, by
n o=y Ang A« AL

" It is clear that if all the n,s generate the same convergence in X,
the UL-structure Amny i8 compatible with i,

If all the spaces (X, wy) are wL*-spaces (X, A my) is also a UL*space,
. el

3.4. Supposing now that X is an Z-space and all the n,s ave compa-
tible with the given convergence, let us set £N & if there oxist such a fi-
nite system of sequences 5, == &, ny, Ny, ..., % = & and an adequate
system f#,,f,,..., % of elements of 7 that

Mamgm  (i=1,2,..., k).

iom"

2 e
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The relation N is a nearness relation which defines the least UL -struc-
ture majorizing all the structures my for teT. We denote it by
N = n
r
or by

N=nuvn,v...vn

if 7' consists of finileby many elements.

Evidently N s compatible with the given convergence.

3.5. Given an Z-gpace X, let us define a nearness relation n, by
setting {w,)n.{o,} if either @, = @, for every u or both sequences are
convergent and lima, = lima,.

It is evident that n, is the least UL-structure compatible with the given
convergence.

Note that (X, ny) is not necessarily a #%*-space even if the given
space X was an .Z*-space.

3.6. Let us now set {m,}n;{x,} if for each sequence of natural num-
bers {i,} the sequences {z; } and {m;} either are both divergent or both
converge to the same limit.

It is easy to see that (X, m;) is & %L-space, and ny is the largest %ZL-
structure compatible with the given convergence.

3.7. The results of 3.3, 3.4, 3.5 and 3.6 may be summarized as fol-
lows:

THEOREM. The set of the UL -structures of o given set X forms an abso-
lutely multiplicative semilatiice. The subset of the UL-structures compatible
with & given convergence in X forms a subsemilattice which is itself a lattice
with the least element n, and the largest element ny.

3.8. Given a #%Z-space (X, n), let us set {»,} n*{w,} if every sequence
{ix} of natural numbers contains a subsequence {j,} for which {w; }n{w; }.

It is easy to show that (X, n*) is @ %.F*-space and that n* is the least
UL*-structure majorizing the UL -structure mn.

In particular, if X is a given L-space and n, the nearness relation de-

fined in 3.5, then (X, ny) is a UL*-space, and nf is the least UL*-structure

in X which preserves the convergence, i. e. , — o implies {z,}n}{a}.

However, ny s compatible with the given comvergence if and only if
the space X is an FL*-gpace.

Thus, we obtain a construction of an #*-convergence in X from a gi-
ven Z-convergence, by passing through the #.Z*-structure my defined
for that #-convergence. It leads to the same #*-convergence as the
procedures used by Urysohn [7] or Kisyriski [3].

3.9. Similarly, starting from the relation m; of 8.6 we obtain the
UZ*-structure mj. mf preserves, of course, the given convergence; more
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precisely, it is the largest UL*-structure compatible with the convergence
gemerated by nj.
If X with the given convergence is an Z*-space, then n} 4s the largest
UL*-structure compatible with that convergence.
3.10. Let X be an Z*space, (n).y & family of #ZZ*-structures
compatible with the convergence in X, and N = (n, (¢f. 3.4). We denote
. lel’
the relation N* obtained from N by the procedure of 3.8 by
N =\ my
el
or, respectively,
N* =n,Vn,V...Vuy.

N* is the least %L*-structure majorizing all the n,s. Tvidently, it is
compatible with the given convergence.

3.11. Combining the results of 3.3, 3.8, 3.9 and 3.10 we may state
the following

THEOREM. The set of all UL*-structures of a given set X forms an
absolutely multiplicative semdlattice (which is a subsemilattice of that of
3.7). The set of UL*-structures compatible with the same L*-convergence
in X forms its subsemilattice, which itself is a lattice and contains the least
dlement mg and the largest element mji.

However, the last lattice is not, in general, a sublattice of the cor-
responding lattice of 3.6.

3.12. An #- (#*) space X ig called compact if each. sequence {,}
of elements of X contains a convergent subsequence.

It X is compact, then the case of {#,} and {m}} being both diver-
gent may be omitted in the definitions of n} and n}. Hence m} = n}
and by 3.7 this is the only UL*-structure vompatible with the convergence
generated by my. As a corollary we obtain the following

TerOREM. Is X o compact F*-space, there ewists ome and only one
UL *-structure compatible with the given comvergence.

4 AP (WI*.) SPAOEY

4.1. According to Fréchet [2] an Z-space (respectively £*-space)
X is called an S-space (F*-space) if the convergence satisfies the fol-
lowing condition:

(8) if lima{™ = 2™ and lima™ = a, then there exists such. a sequence

Amr00 N->00
{6} of natural numbers that lima{™ = a.
N=+00

If the closure Z of the subset Z of the S-gpace X is defined as the set
of all limits of sequences of elements of Z, then Z=Zand Xisa 1, to-
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pological space. The topological convergence coinciheﬂ, however, with

the given convergence if and only if X is an %*-space.

4.2. We shall introduce a special kind of nearness in &- (&*-) spaces

(X, n) is called a #SF-space (XF*-space) if n is & nearness relation
satisfying the conditions (i)-(v) (rvespectively (i)-(vi)) and, moreover,
the following condition:

(vii) Given two sequences {£,} and {£}, where £, = {a{"}; and
&, = {@;™};, it &,né, for every »n then there exists such a sequen-
ce {i,} of natural numbers that {a{™}n{z;} for each sequence
{jn} With jp, = 4,, n =1,2,... :

Examples. Metric spaces (example 1.3) are #%*-spaces. The pro-
duct of a finite or denumerable family of #.5*-spaces is a %S *-gpace.
Subspaces of #F- (#F*-) spaces are %S - (%S*-) spaces. However, the
spaces of examples 1.4 and 1.7 are not, in general, #<-spaces.

4.3. Evidently, if (X, n) is a #%- (% 5*-) space, then the set X with
the convergence generated by m is an - (F*-) space.

As we have seen, for every #- (#*-) space there exists a #L- (%L*-)
structure compatible with the given convergence. These #%- (%L*-)
structures are generally not #- (#%*-) structures even if the given
space is an &- (& *-) space. It seems that not for each &*-gpace a compa-
tible % #*-structure exists. The question of uniformisability of & *-spaces
needs further investigations.

At any rate, if (m),r are & *-structures of the given X and card T
< Ry, then t/}n is a #¥*-gtructure.

5. UNIFORM OONTINUITY

5.1. Let (X, n) and (¥, N) be two #Z-spaces. A function f defined
on X with values in Y is called (m, N)-uniformly continuous (when no
confusion can arise we simply say uniformly continuous) if for each two
sequences {a,}. and {x,} of points of X

CALICS, {F (@) }N{f ()}

It is quite evident that every uniformly continuous function is con-
tinuous when X and Y are regarded as Z-spaces with the generated
convergence.

5.2. It is clear that if my <m, and f(z) is (n,, N)-uniformly con-
tinuous, it is also (my, N)-uniformly continuous.

Similarly, if N; <N, every (n, Ny)-uniformly continuous function
18 (m, Ny)-uniformly continuous as awell.

5.3. TaeorEM. Let X be an L*-space and (¥, N) a %L*-space, and
let mg denote the least UL*-structure in X compatible with the convergence

implies
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in X (cf. 8.8). Then every continuous function in X with velues in Y iy
(ng , N)-uniformly continuous.
Indeed, suppose {m,)mi{z}; then each sequence {7} of natural
. X . S ,
numbers containg a subsequence {j,} for which ecither @;, =@, (n =1,
2,...) or limg; = limay,. The function f being continuous, the same
holds for the sequences {f(w;,)}, { Fla,)} and the noedrness relation N.
That means that {f(w,)}N;{f(#,)}, where Ni iy the least ZL*-structure
in ¥ compatible with the convergence generated by N. Hence

{f (@) }N{f ()}

Similarly, if (X,n) is o %L*-space and Y an L*-space, then every
continwous fumetion f: X — Y is (m, NY)-uniformly convergent, where N,
denotes the largest #F*-structure compatible with the convergence in
Y (ef. 3.9).

Note that it may be proved by a similar argument that every (n, N)-
uniformly continuous function is (n*, N*)-uniformly continuous, where
n and N are #%-structures in X and Y respectively, and n*, N* denote
the corresponding #.#*-structures defined as in (3.8).

54. Let {f,} be a sequence of functions defined in the #.Z-space
(X,n) with values in the #Z-space (¥, N). The sequence {f,} is called
Z-continuous if for each pair of sequences {,} and {m,} satisfying the
condition {,}n{z,} there exists a sequence {i,} of natural numbers
for which {, (o, IN{f, (@},

Z-continuity is of course a property of the sequence, not of single
functions. '

Setting y™ = f,(z;) we immediately see that if (¥,N) is a #%-
space, every sequence of uniformly continuous functions s Z-continuous.

6, UNIFORM OONVERGEN(OE

6.1. A sequence {f,} of functions defined on X with -values in the
UZ-space (Y, N) is said to converge uniformly to the funetion f, in sym-
bels f, 3 f, if for each sequence {®,} of elements of X

{n (@ }N{S (@)} ;

It is clear that the uniform convergence f, =2 f implies the eonver-
gence f,, (x) — f(x) for every z<X, and that a subsequence of a uniformly
convergent sequence of functions iy itself uniformly convergent to the
same limit function. Thus, the wniform convergence is an L-convergence
in the sét of all fumctions defined om X with values in Y. If, moreover, N
8 & UL*-structure in ¥, this convergence is of L*-type.

6.2, From 5.4 and 6.1 we directly obtain the following

icm
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THEOREM. ' The limit function of every wniformly convergent S-con-
tinuous sequence of functions is wniformly continuous. Is (Y, N) a %F*-
space, then every umwiformly convergent sequence of umniformly continuous
Sfunctions has a uniformly continuous Wimit funciion.

In particular, in the case when Y is a metric space, this coincides
with the well-known fact about uniformly convergent sequences of con-
tinuous functions.
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