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ON A QUASI-ORDERING IN THE CLASS OF CONTINUOUS
MAPPINGS OF A CLOSED INTERVAL INTO ITSELF

BY

J. MIODUSZEWSEKI (WROCLAW)

1. Introduction. Let us consider the class ¢ of all continuous map-
pings of the closed interval I = ¢0,1)> onto itself. ¢ forms a semigroup
with respect to the superposition of mappings with unit ¢ which is an
identity mapping. The operation of superposition induces in a natural
manner a quasi-ordering in C (i. e. a relation which is reflexive and tran-
sitive). Let f, geC. We say that

(1) f 3 g if there exists an aeC such that fo = g.

. The reflexivity and transitivity of 3 is obvious. We have ¢ 3 f
for every feC. Let us consider the equivalence relation associated with =<3 :

@)f~giff3gandg3f ,

There are some difficulties in the investigation of these relations on
the whole of C. Namely, there exist pairs of mappings (see, for instance,
the example in [4], p. 340) which are incomparable with respect to -3,
but which are defined in the relation 3’ for f, geC as follows:

(8) f 3'g of for every & >0 there ewists an acO such that fa =g.

The meaning of f =g is: |f(x)—g(x)] < e for every mel.

The reflexivity and transitivity of 3’ is obvious. The equivalence
relation asgociated with -3’ will be denoted by ~ .

However, on some subeclasses of ¢, which are also subsemigroups,
the sitnation is easier than on the whole of . We shall distinguish the
clags B C C of all mappings which are not constant on subintervals of I.
We shall prove (Theorem 1) that on R the terms < and ~ are equivalent
to the terms 3’ and ~' respectively. We shall also distinguish the class
8 CC of all simplicial (piece-wise linear) mappings. We shall prove that
E and § form directed sets with respect to -3, i. e. for every f, geR (or
f1 g€8) there exists an kR (or heS) such that f < h and g = h (Theorem
2). This was proved, in fact, with some additional conditions in [1], [2]
and [4]. The meaning of relation ~ on R is explained by Theorem 3 and
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a corollary to it. Namely, f ~ ¢ implies the existence of homeomorphisms
a, feC such that fa =g and gf = f.

Throughout this paper we shall use the method of double graphs
of two mappings introduced in [1] and [4]. We shall often say that ¢ is
factorized by f instead of f -3 ¢g. The finding of ae( such that fo =g
we shall call a factorization of g by f. The finding of «, feC such that
fo = gp we shall call a uniformization of f and g.

2. Double graphs. Let f, geC. The subset of I*

[fy g1 = {(@, ): f(@) = g ()}
is said to be a double graph of f and g. The double graphs are convenient
in the investigation of factorization and uniformization of mappings
according to the following property, which is obvious:

(4) Let f, geC. The curve @ = a(t), y = B(1), tel, les'in f, g] if and
only if fa = gB.

The local gtructure of double graphs of mappings f, geC is explained
by the following lemma (see [37]):

(5) For every (%, y)e[f, g] there ewists a decreasing family of rectangles
P =I'"XI" having (z, y) m interiors and such that for each P the boundary
of P intersects [f, g] at vertices of P only, and the intersection of all I in
question is the component of (¢, y) 10 {(&, n): [(&) = g(n) == a}, where a iy
the oommon value of f(x) and g(y).

We define a family {P} = I, xI. of rectangles, where ¢ > 0. Lot

o' =max(0,a—e) and o' = min(1, a+-¢). We define I, snd I, as the
components of # and y in sets {£: 0’ < f(&) < o'} and {n: o’ < g(n) < &'}
respectively. It iz easy to verify that rectangles P, bave the required
properties (for details, see [37).
" Note that if f, geR, then the intersection of P, is («,y) and therefore
[f, g1 is a set whose order of ramification iy at most 4 at every point.
Henece, every continuum contained in [f, g] is locally connected. Note
also that if f, geS, then [f, ¢] is the sum of segments, vectangles with
sides parallel to the axes and isolated points.

If flX and ¢|Y are partial functions of f and g, then [f|X, ¢| Y] is
the common part of [f,¢] and X x Y.

The total structure of [f, g1 will be easier it we congider some partial
funetions of f and g. Let feC. We shall consider two kinds of segments
of I with partial functions on it.

1° Let A = {ay, a;y be such that f(4) = I and f(Int A) does not
contain 0 and 1. There are two kinds of such segments. The fivst kind
are those for which f(a;) =0 and f(a,) = 1, and the second kind are
those for which f(a,) = 1 and f(a,) = 0 We shall denote these segments
by AT and A~ respectively.

icm

QUASI-ORDERING OF CONTINUOUS MAPPINGS 235

2° Let B~ or BT be the maximal segment <b;, b,> such that
F(<byy bed) # I and f(by) = f(by) = 0 or f(b,) =f(by) =1 respectively.

Note that the segments of 1° and 2° have at most the ends in common
and form a finite covering of J C I, the maximal segment J' of I such
that f transforms the ends of J” into the ends of I.

We shall denote similar segments for g by A'f, 4'-, B'* and B'~.
Consider a division of I* into rectangles of the form 4 X A’y AX B’y Bx 4’
and B X B’ with several combinations of signs + and —. The rectangles
in question form a finite covering of J xJ’. The following two lemmas
describe the behaviour of [f, g] in these rectangles:

(6) [f,9] ~ Fr(AxA') consists of two opposite vertices of A XA’,
which are joined in [f, g1~ (A XA") with a continuum. The wvertices in
question are the upper right and the lower left if the signs at A and A’ are
the same, and the upper left and the lower vright if the signs are different.

(7) [f; 91 » Fr(4 x B') contains two adjacent vertices of A X B', which
are joined in [f, gl ~ (AXB’) by o continuum. The vertices in question
lie on the right side or on the left side of A X B’ according as the signs at
A and B’ are the same or different. Furthermore, that side of A X B’ con-
tains [f, g] » Fr(A xB’).

The case of BXA' is symmetric 4
to that of (7). The situation is illus- 1
trated in fig. 1. The proofs of (6) and E
(7) are standard. As an example, we
prove assertion. (7) in the case of
At X BT, A
. Let A% = <{ay,a,y and
by, byy. We have f(a:) = 0, f(a,) =1,
g(b1) = g(bs) = 1. Hence flz)—g(y) *
is negative on a; xB'f, (AT—a,)xb, g
and (At —a,)Xby, i.e. on the lower E
left and upper left sides of A+ xB'*, & B A B E 1 %
excluding vertices (a, by) and (a,, by). Fig. 1
f(®)—g(y) is non-negative on a,x B'",
i. e.\on the right side of 4" x B'*. Hence [f, g] ~ Fr(4* xB'*) Cay,x B'*
and in addition (@, b;) and (a,, b;) belong to [f, g]. According to the
continuity of f and g, the double graph [f, g] disconnects the rectangle
between the first three sides and the last one. Therefore, it contains
a continnum joining in A+ X B't vertices (a,, b1) and (ay, by).

We prove another simple lemma:

[
BT = B; =

) == ——o

(8) In every rectangle A X I there ewists a continuum joining the upper
side with the lower side of A XI and contained in [f, ¢].

Colloquitim Mathematicum' IX. 2 . 5
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In fact, let A = <a1, a2> and f(a,) =0 and f(ag) = 1 (the case of
A7), The difference f(x)—g(y) is 110gafu1ve or 0 on the loft side ey XI and
is positive or 0 on the 11ght side ay X I of A XI. According to the conti-
nuity of f and g, [f, g1 disconnects A x I between these two sides. There-
fore, it contains a continuum joining in 4 XI the remaining two sides
of AxI.

3. Relations < and <3’ on R. In order to compa.ro both these rela-
mons on R, let us congider equations fa Fi = 1, for f, gelR.
We prove that the solutions of these equations a.ppmxmm.b(a th(s golutions
of fa = ¢. This is not true in general for ¢ and even for 8, because it may
happen that the family of sotutions of fa = = 4 does not contain conver-

ging subsequences. We prove that
9) If f, g« R and {a,} is a sequence of mappings in O such that fu, & O
n=1,2,..., then {a} forms an equicontinuous sequence of mappings.

To prove this, let ¢ > 0. Let us consider for every (z, y)<[f, ¢] a ree-
tangle P = I'xI"” of () with diamP <e This is posmble, becauge
f, geR (see the remarks which follow the proof of (5)). Rectangles P form.
a covering of [f,¢]. We take a finite subeovering Py, P,, ..., P,. The
corresponding projections I7, I, ..., I, cover I. Let 4 be the Lebesgue
number of the last covering. Let us consider an x-neighbourhood of
[f, g] which contains no whole side of P, for any %k ==1,2,...,7 Such
a neighbourhood exists according to the property of rectangles P de-
seribed in (5). Olearly, 5 < ¢/3. Let o',a' eIl and |o'—a"| < 6. Then
there exists a j, 1 <j <7, such that ', 2" Ij. According to (4), the
graphs of a, lie, for sufficiently large #, in the n-neighbourhood of [f, g).
According to the definition of %, the graphs of a”|Ifl lie for thoge n in the
n-neighbourhood of a rectangle Py, k = 1,2,... or #, with the projec-
tion I;. Hence we have |a,(2')—an(2")| < e-+27 < 2¢ for these suffi-
ciently large n. Thus (9) is proved. :

TaworEM 1. If f, geR, then f X' g implies f -3 ¢.

Proof. From f 3'¢ it follows that thore exists a sequence {a.},
n =1, 2,..., such that fa, & According to (9), {a,} I8 oquicontinuous,
Let {a,} be a subsequence of {a,} which is uniformly convergont. Ac-
cording to (4), imgy,, is & solution of fu = g, because its graph. Hes in [f, g].
As a golution of fo = g, it belongs to K. Hence f - ¢ on .

4. Uniformization. Let f, g<C. In order to find he( such that f 3 &
and g 3 b, it is sufficient to find «, f<C such that fa = gp. This is not
always possible. For ingtance, the functions of the example quoted in
§ 1 (for details, see [4]) have no uniformization, or, in other words, no
common majorization. This problem of uniformization was congidered
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in [1], [2] and [4] for classes R and S with some inessential additional
conditions, which will be omitted here. We express the theorem in terms
of relation 3.

THREOREM 2. R and 8 are directed sets with respect to 3.

Proof. Let f,geR or f,geS. Let A C1I and A’ C 1 be segments
described in 1° of §2 for f and ¢ respectively. According to (8), there
exigt continua K C (4 XI) ~ [f,g], joining the upper and lower sides
of AxI, and K' C(IxA’) ~[f,g] joining the right and left sides of
IxA'. Clearly, K v K’ is a continuum. If f, geR, then, according to
the remarks following the proof of (5), K v K' is locally connected. If
f, g8, then, according to these remarks, K « K' may be taken locally
connected. In both cases K w K’ may be considered as a continuous
image of the closed interval 0 <t < 1. Let @ = «(t), y = f() be the equa-
tions of K w K'. According to the definition of K and K', mappings
a and # are onto. Hence, by (4), fo = gf. The mapping fa = gp majorizes
f and g¢.

Let ¢ >0 and f, geC. We shall write, for convenience, f 3, g if there
exists an aeC such that fa = g. We shall prove that

(10) € is an approzvimatively dirested set with respect to -3, 4. e. for every
fy9€C and ¢ > 0 there ewists an h,eC such that f 3, b, and g =3, h,.

This follows from Theorem 2 and the following obvious implieation:
f'=fand f 3 b imply f 3.% for every ¢ > 0. In fact, let f,geC. Be-
cause R (and also S) is dense in C, there exist f', ¢'eR (or f', ¢’ 8) such
that f' = f and ¢’ = g. Aceording to Theorem 2, there exist a and § in
R (or both in 8) such that f'a = ¢'f. Let h, = f'a = ¢’f. We have f' 3 k,
and ¢’ < h,. According to the implication mentioned above, we obtain
f <.k and g 3, h, which proves (10) as & was arbitrarily given.

5. A lemma concerning the equation fo = f. We shall consider this
equation for feR only. Then aeR. Let ay, ayel and a; < a,. Let a(a,)

= b, and a(a ) = bg. We prove that
(11) If o = a; and a(by) = ay, then aa(w) =z for every @, a,
<O < B

To prove this, let us consider the graph I of a|<a;, a,> and the curve
z = a(y), by <y <b,, which we shall denote by I"'. We consider the
case b; < b, only, because the proof in the case b, << b, is the same. It
is sufficient to prove that the curves I” and I coincide.

Suppose, on the contrary, that I and I do not coincide. Hence
there exist #; and ,, 4, < #; < %, < @y, such that the points (ml, 1))
=p and (7, a(x,)) = ¢ lie on I and that this is not true for (£, a(£)),
where #; < & << @,. Let us consider rectangles P and @, having properties
of (5), for p and ¢ respectively. Because feR, rectangles P and ¢ may
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be taken such that their projections on x- and y-axis are digjoint., We
shall consider the case a(x;) > a(x,) only. By (), curve I" meets FrP
at one of the right vertices of P, and meets Fr¢ at one of the left vertices
of @. Similarly, "' meets FrP at one of the
lower vertices of P, and it meets FrQ at one
of the upper vertices of . The situation is
illustrated in fig. 2. Let D be the rectangle
congisting of points whose coordinates lie
between those of points of P and @. We gee
that I diseconnects D Detween its left and
Tig. 2 right sides and that /"' disconnects D between
its upper and lower sides. Then ™ and I
have a point in common in rectangle D. This ig impossible, because
the abscissa & of that point is such that o, < & < @,, contrary to the
definition of », and x,.

6. The equation fo = f. The identity ¢ iz always a golution. But
it is possible that there exist another solutions. If fe<R, this second so-
lution, if it exists, is uniquely determined by f. The uniqueness fails if
there exist intervals on which f is constant.

TurOREM 8. If feR, then there ewists at most one solution of the equa-
tion fo = f different from the identity e. It is an involution which changes
the orientation.

Proof. Note first that if o is & solution such that «(0) = 0 and
a(l) = 1, then « is an identity. In fact, according to (11) for @, = 0 and
a, = 1, we have aa(w) = @ for every z<I. Hence a is an involution on I
with fixed points 0 and 1. It must be an identity.

IL f(0) = 0 and f(1) =1 or if f(0) = 1 and f(1) = 0, then for every
solution o we have ¢(0) = 0 and a(1) = 1. In this case, according to the
above remark, a is an identity.

In the general case, we consider the division of I into segments
deseribed in 1° and 2° in § 2. There is finite number of such segments
and they may be enumerated and ordered as follows:

N BB <4, <B; ... K44y By < Ky,

where the meaning of X < ¥ is # <y for all #eX and ye V. B, and H,
are complementary segments to J, the sum of all 4 and B (y00 § 2). Re-
call that the graph of a is in [f, f] and that « is onto. ITence, by (6) and (7),
we have
(1) a(ay) = a;and a(ay) = ayforj =1,2,...,handl=0,1,...,k—1,
or
(i) a(a;) = az_; and a(e;) = a;_; for j=1,2, veey o and 1 =0, 1,
oy k-1,

— fom®
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Here a; and a; are the ends of 4; for j = 1,2,...,k—1, af is the
right end of B, = (0, a;>, and a; is the left end of B, = {ar, 1>. Hence
@_y and a;, j =1,2,..., k are the ends of B.

In both cases, (i) and (if), we have aa(a;) = a; and aa(a}) = a} for
all a; and o; in question. Then we apply lemma (11). According to it
we obtain aa(x) = » for every zed, i. e. aq < o < a;. In the case i) a
must be an identity on J, in the second — it is an involution on oJ, which
changes the orientation.

The sclutions on the whole of I are extensions of those on J. We have
a(J) =J and 0 # f(x) #1 for # < a and & > a;. Hence, as « is onto,
we obtain a(B, v By) = B, v E,. We shall show that aa(z) =2 for
well; © B,. According to (11), it is sufficient to show that aa(0) = 0
and aa(l) = 1. We show only the first equality. Denote by =z, the infi-
mum (which is, in fact, the minimum) of » such that aa(2) = 2.

Suppose, on the contrary, that @, % 0. Then a(x,) # 0 in case (i),
and a(@,) # 1 in case (ii). In case (i) this is obvious, as a(#,) = #,. In
cage (i) we have a(ag) = ay, a(a) = ag; if, in addition, a(z,) = 1 and
(1) = m,, then, according to (11), we should have aa(z) = 2 for w, < a
< a; and @ <o <1, and o should transform the segment a4, <2 <1
onto @, <& < a; but « is onto, and we have a contradiction. Hence
<0, z,> and, in case (ii), {a(s,), 1> are non-degenerate segments.

In case (i), ¢ iy an involution on (@, a>, in virtue of (11). As « is
onto, we have a(<0, #,>) D <0, #,>. Then there exists an », 0 <& < x,,
such that «(s) = x and, in consequence, ea(z) =« which is in contra-
dietion to the definition of x,.

In case (ii), a is an involution on (wy, ap> v <ay, a(®,)y, in virtue
of (11). Then, because a is onto, we have ({0, 5,>) D (#,, 1> and a(<z,,
1>) 3 <0, 5,>. Then the curves y = a(z), 0 <o <z, and o = a(y),
%, <Yy <1, intersect for some (2, y) with 2 < #,. We have for such an
% the equality aa(x) = #, contrary to the definition of .

The uniqueness of the solution g, such that a(0) = 0 and a(1) =1,
was shown at the beginning of the proof; it is always an identity. The
solution of case (ii) is also unique. In fact, we have for such an « the
equalities a(0) =1 and (1) = 0. If «' is another solution of this kind,
then we have fao’ =f and fo'a = f, where ao’ and o’a are a solution
which does not change the orientation. Hence aa’ = ¢ nad a’a = . The-
refore, o' = a~' = a. This completes the proof.

7. Remarks. Note first the following

CoROLLARY. If f, geR and fa = g and g8 = f, then a and § are homeo-
morphisms.
In fact, from fo =g and gf = f follows immediately fof = f and
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gpa = g. According to Theorem 3, aff and fa are continuous involutions.
Hence, a and p are homeomorphisms.

This explaing the meaning of the relation ~ on I. Namely we have

COROLLARY. If f, geR, then f~ g if and only if there ewist homeo-
morphisms a and p such that fa =g and gf = I

There are other problems concerning the gemigroup €. Note the
following one: do there exist for every fe(' a mapping geC, different
from f and the identity, non-monotone if f is monotone, such that

fg =gt (P372)
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ON THF DIMENSION OF QUASI-COMPONENTS
IN PERIPHERICALLY COMPACT SPACES

BY

A. LELEK (WROCLAW)

It is well known that a compact metric space has a dimension ab
most n provided that all its components have dimensions at most n.
An example given in 1927 by Mazurkiewicz [4] shows that there exists
such a separable metric space of an arbitrary posgitive dimension that
each of ity components, even every quasi-component, consists of a single
point. Recently, Engelking agked if there exists a space of this kind which
simultaneously is peripherically compact (also called semicompact), i. e.
satisfies the condition that each point has arbitrarily small neighbour-
hoods whose boundaries are compact. This question has partially been
answered by Duda, who constructed the following

ExAMPLE. There is such a separable metric space X that dim X = 1,
every component of X consists of a single point and X is peripherically com-
pact. Indeed, denoting by # the segment 0 <t <1 and by ¥ the Cantor
ternary set in .#, let A be a set which is obtained from a biconnected set
by removing its “explosive” point and is contained in % X in such a way
that the intersection A4 ~ ({¢} x.#) is a point p, for every te¢%. Then
dim4d = 1. Put X = 4 U (¥ XxZ%), where Z is the set of all rational num-
bers in . Obviously, X is a 1-dimensional peripherically compact set
and contains only degenerate connected subsets.

However, in this example the quasi-components of X are the sets
{p:} v ({t} %) for te¥. As we show; it is impossible to find any space
X possessing all the properties of Duda’s example described above with
the word “quasi-component” instead of “component”. Namely, we have
the following

TEEOREM 1. If every gquasi-component @ of a peripherically compact
separable metric space X is locally compact and has the dimension dim@ < 0,
then dimX < 0.

Proof. The space X being peripherically compact, we may assume
by a theorem proved in 1942 by Freudenthal [1] that X is a subset of
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