J. MIODUSZEWSKI

240

 $g\beta\alpha=g$. According to Theorem 3, $\alpha\beta$ and $\beta\alpha$ are continuous involutions. Hence, α and β are homeomorphisms.

This explains the meaning of the relation \sim on R. Namely we have Corollary. If $f, g \in R$, then $f \sim g$ if and only if there exist homeomorphisms a and β such that $f\alpha = g$ and $g\beta = f$.

There are other problems concerning the semigroup C. Note the following one: do there exist for every $f \, \epsilon \, C$ a mapping $g \, \epsilon \, C$, different from f and the identity, non-monotone if f is monotone, such that fg = gf? (**P 372**)

REFERENCES

[1] T. Homma, A theorem on continuous functions, Kodai Mathematical Seminar Reports 1 (1952), p. 13-16.

[2] J. S. Lipiński, Sur l'uniformization des fonctions continues, Bulletin de l'Académie Polonaise des Sciences, Classe III, 5 (1957), p. 1019-1021.

[3] J. Mioduszewski, Solution générale d'un problème de Sikorski, ibidem 6 (1958), p. 169-173.

[4] R. Sikorski and K. Zarankiewicz, On uniformization of functions (I), Fundamenta Mathematicae 41 (1954), p. 339-344.

MATHEMATICAL INSTITUTE OF THE WROCŁAW UNIVERSITY

Recu par la Rédaction le 14.7.1961

COLLOQUIUM MATHEMATICUM

VOL. IX

1962

FASC. 2

ON THE DIMENSION OF QUASI-COMPONENTS IN PERIPHERICALLY COMPACT SPACES

BY

A. LELEK (WROCŁAW)

It is well known that a compact metric space has a dimension at most n provided that all its components have dimensions at most n. An example given in 1927 by Mazurkiewicz [4] shows that there exists such a separable metric space of an arbitrary positive dimension that each of its components, even every quasi-component, consists of a single point. Recently, Engelking asked if there exists a space of this kind which simultaneously is *peripherically compact* (also called *semicompact*), i. e. satisfies the condition that each point has arbitrarily small neighbourhoods whose boundaries are compact. This question has partially been answered by Duda, who constructed the following

EXAMPLE. There is such a separable metric space X that $\dim X=1$, every component of X consists of a single point and X is peripherically compact. Indeed, denoting by $\mathscr I$ the segment $0 \le t \le 1$ and by $\mathscr C$ the Cantor ternary set in $\mathscr I$, let A be a set which is obtained from a biconnected set by removing its "explosive" point and is contained in $\mathscr C \times \mathscr I$ in such a way that the intersection $A \cap (\{t\} \times \mathscr I)$ is a point p_t for every $t \in \mathscr C$. Then $\dim A = 1$. Put $X = A \cup (\mathscr C \times \mathscr R)$, where $\mathscr R$ is the set of all rational numbers in $\mathscr I$. Obviously, X is a 1-dimensional peripherically compact set and contains only degenerate connected subsets.

However, in this example the quasi-components of X are the sets $\{p_t\} \cup (\{t\} \times \mathcal{R})$ for $t \in \mathcal{C}$. As we show, it is impossible to find any space X possessing all the properties of Duda's example described above with the word "quasi-component" instead of "component". Namely, we have the following

THEOREM 1. If every quasi-component Q of a peripherically compact separable metric space X is locally compact and has the dimension $\dim Q \leqslant 0$, then $\dim X \leqslant 0$.

Proof. The space X being peripherically compact, we may assume by a theorem proved in 1942 by Freudenthal [1] that X is a subset of

a compact metric space Y such that

$$\dim (Y-X) \leq 0.$$

Let p be an arbitrary point of X and Q — the quasi-component of X, containing p. For each open neighbourhood W of p in X there is such an open set V in Y that $W = V \cap X$. Since Q is locally compact, there exists an open neighbourhood U of p in Y such that $U \cap Q \cap Q$ is compact (*). Then $p \in U \cap V$ and it follows from the inequality $\dim Q \leq 0$ that there exists an open neighbourhood T of p in Y satisfying

$$\overline{T} \subset U \cap V$$
 and $Q \cap \operatorname{Fr}_{\Gamma}(T) = 0$,

where $\operatorname{Fr}_Y(T)$ denotes the boundary of T in Y (see [2], p. 164 and 173). Consequently,

$$\operatorname{Fr}_Y(T) \subseteq Y - (\overline{U \cap Q} \cap Q)$$

and since the set $\overline{U \cap Q} \cap Q$ is compact, and thus closed in Y, it follows from (1) that each point $q \in \operatorname{Fr}_Y(T)$ has an open neighbourhood S(q) in Y satisfying

$$\overline{S(q)} \subset Y - (\overline{U \cap Q} \cap Q)$$
 and $(Y - X) \cap \operatorname{Fr}_Y[S(q)] = 0$

(ibidem), whence p does not belong to $\overline{S(q)}$ and $\operatorname{Fr}_{\Gamma}[S(q)] \subset X$. According to the compactness of $\operatorname{Fr}_{\Gamma}(T)$, let us take a finite cover S_1, \ldots, S_m from the cover of $\operatorname{Fr}_{\Gamma}(T)$ consisting of all the sets S(q). So we have

$$(2) \bar{S}_1 \cup \ldots \cup \bar{S}_m \subset Y - (U \cap Q \cap Q),$$

(3)
$$\operatorname{Fr}_{Y}(S_{i}) \subset X$$
 for $i = 1, ..., m$

and the set

$$R = T - (\overline{S}_1 \cup \ldots \cup \overline{S}_m)$$

contains the point p and is open in Y. Furthermore, since the open sets S_1, \ldots, S_m form a cover of $\operatorname{Fr}_Y(T)$, it is easily seen that each point belonging to the boundary of the set R also belongs to the boundary of the union $\vec{S}_1 \cup \ldots \cup \vec{S}_m$. Thus

(4)
$$\operatorname{Fr}_{Y}(R) \subset \operatorname{Fr}_{Y}(\overline{S}_{1} \cup \ldots \cup \overline{S}_{m}) \subset \operatorname{Fr}_{Y}(\overline{S}_{1}) \cup \ldots \cup \operatorname{Fr}_{Y}(\overline{S}_{m}) \subset X$$

(see [2], p. 29), according to (3). Moreover, we have

$$Q \cap \operatorname{Fr}_{Y}(R) \subset Q \cap \overline{R} \subset Q \cap \overline{T} \subset Q \cap U \subset U \cap Q$$

whence

$$Q \cap \operatorname{Fr}_{Y}(R) = (\overline{U \cap Q} \cap Q) \cap \operatorname{Fr}_{Y}(R) \subset (\overline{U \cap Q} \cap Q) \cap \operatorname{Fr}_{Y}(\overline{S}_{1} \cup \ldots \cup \overline{S}_{m})$$

$$\subset (\overline{U \cap Q} \cap Q) \cap (\overline{S}_{1} \cup \ldots \cup \overline{S}_{m}) = 0,$$

by virtue of (2) and (4), i. e.

$$Q \cap \operatorname{Fr}_{Y}(R) = 0.$$

Since there is a mapping $f: X \to \mathscr{C}$ of X into the Cantor set \mathscr{C} such that the sets $f^{-1}(y)$, where $y \in f(X)$, coincide with the quasi-components of X (see [3], p. 93), one can find a decreasing sequence

$$G_1 \supset G_2 \supset \dots$$

of subsets of X which satisfy

$$Q = \bigcap_{i=1}^{\infty} G_i$$

and are all both closed and open in X. For instance, it is sufficient to represent the point f(Q) as the intersection of a decreasing sequence

$$[a_1, b_1] \supset [a_2, b_2] \supset \dots$$

of segments on the real line such that no end point a_i , b_i belongs to \mathscr{C} , and take

$$G_i = f^{-1}([a_i, b_i])$$

for $i=1,2,\ldots$ Then, if all the sets $G_i \cap \operatorname{Fr}_Y(R)$ were non-empty $(i=1,2,\ldots)$, they would form a decreasing sequence of non-empty closed subsets of $\operatorname{Fr}_Y(R)$, according to (4), and the compactness of the set $\operatorname{Fr}_Y(R)$ would imply that

$$0 \neq \bigcap_{i=1}^{\infty} G_i \cap \operatorname{Fr}_Y(R) = Q \cap \operatorname{Fr}_Y(R),$$

contrary to (5). Consequently, a positive integer j exists such that

(6)
$$G_j \cap \operatorname{Fr}_Y(R) = 0.$$

Now, consider the set $G_j \cap R$. It is an open neighbourhood of p in X as $p \in Q \subset G_j$ and $p \in R$. Further, since $G_j \subset X$ and $R \subset T \subset V$, we have

$$G_i \cap R \subseteq X \cap V = W$$
.

Moreover, the set G_i being both closed and open in X, we have

$$\operatorname{Fr}_X(G_i \cap R) \subset \overline{G_i \cap R} \cap X \subset \overline{G_i} \cap X = G_i$$

and the boundary $Fr_X(G_i)$ of G_i in X is empty; thus

$$\operatorname{Fr}_X(G_i \cap R) = \operatorname{Fr}_X[G_i \cap (R \cap X)] \subset \operatorname{Fr}_X(G_i) \cup \operatorname{Fr}_X(R \cap X)$$

$$=\operatorname{Fr}_{X}(R \cap X) = \overline{R \cap X} \cap X \cap \overline{X - R} \subset \overline{R} \cap \overline{Y - R} = \operatorname{Fr}_{Y}(R)$$

(see [2], p. 29). It follows that

$$\operatorname{Fr}_X(G_i \cap R) \subset G_i \cap \operatorname{Fr}_Y(R) = 0$$

^(*) A always denotes here the closure of a set A in the space Y.

A. LELEK

244

according to (6). Hence we conclude that

$$\dim_n X \leqslant 0$$
,

since W has been an arbitrarily taken open neighbourhood of p in X, and the proof of Theorem 1 is complete.

It is seen by Duda's example given at the beginning of this note that the local compactness of quasi-components is a necessary hypothesis in Theorem 1. In fact, the example shows that a peripherically compact space can be 1-dimensional and have only 0-dimensional quasi-components. However, the difference between the dimension of a peripherically compact metric space and the maximal dimension of its quasi-components cannot be greater than 1. This is a consequence of the following

THEOREM 2. If every component C of a peripherically compact metric space X has the dimension $\dim C \leqslant n$ (where $n=0,\ 1,\ldots$), then $\dim X \leqslant n+1$.

Proof. For any point p of X there is an arbitrarily small open neighbourhood V of p in X such that the boundary $\operatorname{Fr}_X(V)$ is compact. Since each component K of this boundary is contained in a component C of X, we have

$$\dim K \leq \dim C \leq n$$
,

whence $\dim \operatorname{Fr}_X(V) \leq n$ (see [3], p. 106). It follows that $\dim_p X \leq n+1$ and Theorem 2 is proved.

At last, the following question concerning some generalization of Theorem 1 on higher dimensions remains open:

P 373. Is it true that if every quasi-component Q of a peripherically compact separable metric space X is locally compact and has the dimension $\dim Q \leq n$ (where n = 1, 2, ...), then $\dim X \leq n$?

REFERENCES

- [1] H. Freudenthal, Novaufbau der Endentheorie, Annals of Mathematics 43 (1942), p. 261-279.
 - [2] C. Kuratowski, Topologie I, Warszawa 1958.
 - [3] Topologie II, Warszawa 1961.
- [4] S. Mazurkiewicz, Sur les problèmes κ et λ de Urysohn, Fundamenta Mathematicae 10 (1927), p. 311-319.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCHENCIOS

Recu par la Rédaction le 26, 9, 1961

COLLOQUIUM MATHEMATICUM

VOL. IX

1962

FASC. 2

ON THE PROBLEM OF EXISTENCE OF FINITE REGULAR PLANES

BY

L. SZAMKOŁOWICZ (WROCŁAW)

1. Preliminaries. An ordered pair $P = \langle X, R_3 \rangle$, where X is a set consisting of finitely many elements (points) and R_3 is a relation of three arguments which are points of X, is said to be a *finite plane* if the following conditions hold:

A1. If a = b, then $R_3(a, b, c)$.

A2. If $R_3(a, b, c)$, then $R_3(b, a, c)$ and $R_3(c, a, b)$.

A3. If $a \neq b$, $R_3(a, b, c)$ and $R_3(a, b, d)$, then $R_3(b, c, d)$.

A4. There exist points $a, b, c \in X$ such that $\sim R_3(a, b, c)$.

Let $a \neq b$. The set of points $x \in X$ satisfying the relation $R_3(a, b, x)$ is said to be a *straight line*, which will be denoted by [a, b]. We say that a finite plane is *regular* if

A5. All straight lines consist of the same number of points.

All planes in this paper will be finite and regular. They will be simply called *planes*.

Let $a \in X$. The number of all different straight lines [a, x], $x \in X$, is said to be an order of ramification of a. It is easy to see that, if the order of ramification of an arbitrarily chosen point of the plane P is i, then the order of ramification of any other point of P is also i.

We denote by P_i^k the plane whose points have the order of ramification i and the number of points of every straight line is k. We have, evidently, $i, k \ge 2$.

Let $P_i^k = \langle X, R_3 \rangle$. From A1-A5 it immediately follows that

1.1. X consists of s = (k-1)i+1 points,

1.2. k is a divisor of the product is,

1.3. $i \ge k$.

It is easy to see that the planes P_k^k satisfy the following condition:

A60. $[a,b] \cap [c,d] \neq 0$ for every pair of straight lines [a,b] and [c,d] in X.