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gpa = g. According to Theorem 3, aff and fa are continuous involutions.
Hence, a and p are homeomorphisms.

This explaing the meaning of the relation ~ on I. Namely we have

COROLLARY. If f, geR, then f~ g if and only if there ewist homeo-
morphisms a and p such that fa =g and gf = I

There are other problems concerning the gemigroup €. Note the
following one: do there exist for every fe(' a mapping geC, different
from f and the identity, non-monotone if f is monotone, such that

fg =gt (P372)
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ON THF DIMENSION OF QUASI-COMPONENTS
IN PERIPHERICALLY COMPACT SPACES

BY

A. LELEK (WROCLAW)

It is well known that a compact metric space has a dimension ab
most n provided that all its components have dimensions at most n.
An example given in 1927 by Mazurkiewicz [4] shows that there exists
such a separable metric space of an arbitrary posgitive dimension that
each of ity components, even every quasi-component, consists of a single
point. Recently, Engelking agked if there exists a space of this kind which
simultaneously is peripherically compact (also called semicompact), i. e.
satisfies the condition that each point has arbitrarily small neighbour-
hoods whose boundaries are compact. This question has partially been
answered by Duda, who constructed the following

ExAMPLE. There is such a separable metric space X that dim X = 1,
every component of X consists of a single point and X is peripherically com-
pact. Indeed, denoting by # the segment 0 <t <1 and by ¥ the Cantor
ternary set in .#, let A be a set which is obtained from a biconnected set
by removing its “explosive” point and is contained in % X in such a way
that the intersection A4 ~ ({¢} x.#) is a point p, for every te¢%. Then
dim4d = 1. Put X = 4 U (¥ XxZ%), where Z is the set of all rational num-
bers in . Obviously, X is a 1-dimensional peripherically compact set
and contains only degenerate connected subsets.

However, in this example the quasi-components of X are the sets
{p:} v ({t} %) for te¥. As we show; it is impossible to find any space
X possessing all the properties of Duda’s example described above with
the word “quasi-component” instead of “component”. Namely, we have
the following

TEEOREM 1. If every gquasi-component @ of a peripherically compact
separable metric space X is locally compact and has the dimension dim@ < 0,
then dimX < 0.

Proof. The space X being peripherically compact, we may assume
by a theorem proved in 1942 by Freudenthal [1] that X is a subset of
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a compact metric space Y such that
1) dim (¥ —X) <0.

Let p be an arbitrary point of X and @ — the quasi-component
of X, containing p. For each open neighbourhood W of p in X there is
such an open set V in ¥ that W = V ~ X. Since ¢ is locally compact,
there exists an open neighbourhood U of p in Y such that U ~Q ~¢
is compact (*). Then peU ~ V and it follows from the inequality dimg
< 0 that there exists an open neighbourhood 7' of p in ¥ satistying

TCUAV and @~ (T)==0,
where Fry(T) denotes the boundary of 7'in ¥ (see [2], p. 164 and 173),
Consequently, o
Fl‘y(T) Cc Y—-—(Um@ r‘sQ)
and since the set U ~ @ ~ Q is compact, and thus closed in Y, it follows

from (1) that each point geFry(T) has an open neighbourhood S(g) in
Y satisfying

B8 CY—(UAQAQ) and (¥Y—X)~TFry[8(g)] =0
(ibidem), whence p does not belong to K @) and Fr[8(¢)]C X. Accord-
ing to the compactness of Fry(T), let us take a finite cover Sy, ..., 8,
from the cover of Fry(T) congisting of all the sets S(¢). So we have

@) 8o . B CY—(UnQnQ,
(3) Fry(8)CX for d4=1,...,m
and the set

R=T—(8v...u8y

contains the point p and is open in Y. Furthermore, since the open gets
84y ...y Sy form a cover of Fry(T), it ix easily seon that each point be-
longing to the boundary of the set R also belongs to the boundary of the
union 8; w ... u 8,. Thus

(4) Fry(R)CFrpS,w... S CHrp(8) v v lrp(8,)C X
(zee [2], p. 29), according to (3). Moreover, we have

QAFry(RICQARCQATCQAUCTAQ,
whence

QAFry(R) =(UnQn@) ~nFrp(R)C(UAQ A A Fr (S oo By
C(UﬁQ"\Q) ﬂ(§1V ‘JS'M)z 0,

(*) 4 always denotes here the closure of a set 4 in the gpace Y.
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by virtue of (2) and (4), i. e.
(8) Q ~ Fry(R) = 0.

Since there is a mapping f: X — € of X into the Cantor set ¥ such
that the sets f~1(y), where y<f(X), coincide with the quasi-components
of X (see [3], p. 93), one can find a decreasing sequence

G O0G,D...
of subsets of X which satisfy
Q=N&
=1

and are all both closed and open in X. For instance, it is sufficient to
represent the point f(Q) as the intersection of a decreasing sequence

(@1, 5] D [@g, 5] D ...

of segments on the real line such that no end point @;, b; belongs to %,
and take

G = (lay, b:])

for i =1, 2, ... Then, if all the sets &; ~ Fry(R) were non-empty (¢ = 1,
2, ...), they would form a decreasing sequence of non-empty closed sub-
sets of Fry(R), according to (4), and the compactness of the set Fry(R)
would imply that

0 # () G: ~n Fry(R) = @ ~ Fry(R),
i=1
contrary to (5). Consequently, a positive integer j exists such that
(6) @; ~ Fry(R) = 0.

Now, consider the set G; ~ R. It is an open neighbourhood of p in
X as peQ CG; and peR. Further, since G;CX and RCT CV, we have

GARCXAV =W,
Moreover, the set G; being both closed and open in X, we have
Fre(@ AR CGHARAXCEHAX =6
and the boundary Frx(G;) of G; in X is empty; thus
Frx(Gy n R) = Frx[G; ~ (R ~ X)]CFrx(G;) v Fryx(R ~ X)

=Frx(R~nX)=R~X~X~AX~RCR~ Y—R = Fry(R)
(see [2], p. 29). It follows that
Frx(G; ~ B)CG; ~ Fry(R) =0,
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according to (6). Hence we conclude thatb
dim, X <0,

since W has been an arbitrarily taken open necighbourhood of p in X,
and the proof of Theorem 1 is complete.

It is seen by Duda’s example given at the beginning of this note
that the local compactness of quasi-components is & necessary hypothesis
in Theorem. 1. Tn fact, the example shows that a peripherically eompact
space can be 1-dimensional and have only 0-dimensional quasi-components.
However, the difference botween the dimension of & peripherically com-
pact metric space and the maximal dimension of its quasi-ecomponents
cannot be greater than 1. This is a consequence of the following

Turorem 2. If every component (' of a peripherically compaet metrie
space X has the dimension dimC << n (where n == 0, 1,...), then dimX
<n+1.

Proof. For any point p of X there is an arbitrarily smail open neigh-
bourhood V of p in X such that the boundary Frx(V) is compact. Since
each component K of this boundary is contained in a component O of X,
we have

dim K < dim¢ < n,

whence dimFry (V) < » (see [3], p. 106). It follows that dim, X < n-1
and Theorem 2 is proved.

At lagt, the following question concerning some genoralization of
Theorem 1 on higher dimensions remains open:

P 373. 1s it true that if every quasi-component ¢ of a peripherically
compact separable metric space X is locally compact and has the di-
mengion dim@ < (where n =1,2,...), then dimX < n?
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OF FINITE REGULAR PLANES
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1. Preliminaries. An ordered pair P = (X, Ry», where X is a set
consisting of finitely many elements (points) and R, is a relation of three
arguments which are points of X, is said to be » finite plane if the follow-
ing conditions hold:

Al, If ¢ = b, then Ry(a,Dd,c).

A2. If Ry(a, b, ), then Ry(b, a,0) and Ry(s, a, b).

A3. If @ % b, Ry(a,b,c) and Ry(a,b,d), then Ry(b,c,d).

A4. There exist points @, b, ceX such that ~Rs(a, b, ¢).

Let a = b. The set of points #¢X satisfying the relation Ry(a, b, 2)
i8 said to be a straight line, which will be denoted by [a, b]. We say that
a finite plane is regular if

AB. All straight lines consist of the same number of points.

All planes in this paper will be finite and regular. They will be simply
called planes.

Let aeX. The number of all different straight lines [a, #], zeX,
is said to be an order of ramification of a. It it easy to see thatb, if the order
of ramification of an arbitrarily chosen point of the plane P is 4, then the
order of ramification of any other point of P is also 4.

We denote by P¥ the plane whose points have the order of ramifi-
cation ¢ and the number of points of every straight line is k. We have,
evidently, ¢,k > 2.

Let P¥ = (X, R,>. From Al-A5 it immediately follows that

1.1. X consists of s = (k—1)i+1 points,

1.2. & is a divisor of the product is,

13. i >k

It is easy to see that the planes Pr satisfy the following condition:

A6,. [a,b] ~ [6,d] # 0 for every pair of straight lines [a, b] and
[6,d] in X. .
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