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according to (6). Hence we conclude thatb
dim, X <0,

since W has been an arbitrarily taken open necighbourhood of p in X,
and the proof of Theorem 1 is complete.

It is seen by Duda’s example given at the beginning of this note
that the local compactness of quasi-components is & necessary hypothesis
in Theorem. 1. Tn fact, the example shows that a peripherically eompact
space can be 1-dimensional and have only 0-dimensional quasi-components.
However, the difference botween the dimension of & peripherically com-
pact metric space and the maximal dimension of its quasi-ecomponents
cannot be greater than 1. This is a consequence of the following

Turorem 2. If every component (' of a peripherically compaet metrie
space X has the dimension dimC << n (where n == 0, 1,...), then dimX
<n+1.

Proof. For any point p of X there is an arbitrarily smail open neigh-
bourhood V of p in X such that the boundary Frx(V) is compact. Since
each component K of this boundary is contained in a component O of X,
we have

dim K < dim¢ < n,

whence dimFry (V) < » (see [3], p. 106). It follows that dim, X < n-1
and Theorem 2 is proved.

At lagt, the following question concerning some genoralization of
Theorem 1 on higher dimensions remains open:

P 373. 1s it true that if every quasi-component ¢ of a peripherically
compact separable metric space X is locally compact and has the di-
mengion dim@ < (where n =1,2,...), then dimX < n?
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ON THE PROBLEM OF EXISTENCE
OF FINITE REGULAR PLANES

BY

L. SZAMKOLOWICZ (WROCLAW)

1. Preliminaries. An ordered pair P = (X, Ry», where X is a set
consisting of finitely many elements (points) and R, is a relation of three
arguments which are points of X, is said to be » finite plane if the follow-
ing conditions hold:

Al, If ¢ = b, then Ry(a,Dd,c).

A2. If Ry(a, b, ), then Ry(b, a,0) and Ry(s, a, b).

A3. If @ % b, Ry(a,b,c) and Ry(a,b,d), then Ry(b,c,d).

A4. There exist points @, b, ceX such that ~Rs(a, b, ¢).

Let a = b. The set of points #¢X satisfying the relation Ry(a, b, 2)
i8 said to be a straight line, which will be denoted by [a, b]. We say that
a finite plane is regular if

AB. All straight lines consist of the same number of points.

All planes in this paper will be finite and regular. They will be simply
called planes.

Let aeX. The number of all different straight lines [a, #], zeX,
is said to be an order of ramification of a. It it easy to see thatb, if the order
of ramification of an arbitrarily chosen point of the plane P is 4, then the
order of ramification of any other point of P is also 4.

We denote by P¥ the plane whose points have the order of ramifi-
cation ¢ and the number of points of every straight line is k. We have,
evidently, ¢,k > 2.

Let P¥ = (X, R,>. From Al-A5 it immediately follows that

1.1. X consists of s = (k—1)i+1 points,

1.2. & is a divisor of the product is,

13. i >k

It is easy to see that the planes Pr satisfy the following condition:

A6,. [a,b] ~ [6,d] # 0 for every pair of straight lines [a, b] and
[6,d] in X. .
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Hence P¢ are projective plane geometries in the sense of [8].

The planes P, satisfy the following condition:

" AB,. For every triple a,b, ¢ for which ~ Ry(a, b, ¢) there exists one
point & such that [a,b] ~ le,d] = 0, and Ry(c,d,e) for every ecX if
[a, b] ~ [¢, €] = 0.

The planes PE,, are affine plane geometries (e. g. in the sense
of [1]).

In general, the planes P;ﬁ_m satisfy the following condition:

Ab,,. For every riple a,b, 0 for which ~ Ry(a,b, ) there exist m
different points dy, Ay, ..., @ such that [a, 0]~ Te,d,] =0 (a=1,2,
ey )y ~ Ry(0, Gey dg) for a # B (o, 8 =1,2,...,m) and there is no set
of m-+1 points with the same property.

We shall call these planes L, -planes or Lobatohevsky’s m-planes.

2. The problem of existence, for any %, of affine and projective geo-
metries is well known (see, for instance, [2], [3], [4] and references in it)
and remains in general still unsolved. The negative answer to the so-called
Euler problem of 36 officers, which is equivalent to the problem of exis-
tence of the affine geometry PS5, was given by Tarry [7] as late as in 1901.
The general problem is connected with a problem concerning the ortho-
gonal Latin squares (a notion introduced by Huler). In 1923 McNeish
[B] gave a construction of planes Pt +1 When % is prime or is of the form
p" (p is prime). Recently, in [4], information has been given that Pj;
and P} do not exist (this result has been obtained by machine compu-
tation).

Note that

2.1. If there ewists a plane Ly, =P§§+m (m >1), then & is a divisor
of m(m—1).

To fact, from 1.1 it follows that the number of points of Pf., is
s = (k—1){k+m)+1. According to 1.2, & is a divisor of s(k-+m) = *+
+(2m— 1) k24 (m—1)%k—m(m—1). Hence &k iz a divisor of m(m—1).

From 2.1 it immediately follows that

2.2. AWl L,-planes are isomorphic to Ly = P3 (X oconsists of B points).

It is known (see [B]) that there exist infinitely many affine and pro-
jective geometries (L,- and I,-planes) which are not isomorphic to each
other.

The problem of the existence of the planes It in the gaeneral oase,
i. e. without restriction to affine and projective geometries seems to be
interesting.

The construction of Pi, for every 4, reduces to the construction of
full graphs consisting of ¢+ 1 points. In the particular case of & == 3,
i. e. for triple systems of Steiner, the problem of existence was solved
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by M. Reigs in 1839, who showed that there exist P} for ¢ of the form

" 6n+1 and 6n+3. Hence, our conditions 1.1-1.3 are sufficient for the

existence of Pj.
Tn this paper I give another approach to the investigation of P},
by constructing adequate algebras.

- 8. We call an A}-algebra the ordered pair (4, o), where A is a set con-
sisting of » points and o is an operation having the following properties:

W1. aoa =a,
W2. aob =boa,
W3. ao(aob) =b.

The existence of P} is equivalent, for ¢ > 3, to the existence of an
Al-algebra (4, o), where A is a set consisting of # = 2i+ 1 points. In
fact, we put Rs(a,b,c) if and only if either two of the elements are
identical or aob = ¢. Then {4, R,> is a P} plane. Inversely, given a P}
plane <A, R;>, we put aoa = @ and, for @ £ b, aob = ¢, where ¢ is the
unique point satisfying the relation Rg(a, b, ¢). Then (A4, o> is an A3 -alge-
bra. The isomorphic planes correspond in this equivalence to isomorphic
algebras.

The following theorems on algebras correspond to theorems 1.1
and 1.2 for % = 3, respectively:

3.1. If m 4s even, then A3-algebra does mot ewist.

3.2. If there ewists the A3;, -algebra, then 3 is a divisor of ¢(20+1).

‘We prove that

3.3. The existence of the Aj-algebra implies the existence of the
A}, 1-algebra.

In fact, let A = {a;, as,..., tyy1, B1, Bay-.., fu} be a given set
congisting of 2n -1 points and let us assume that the algebra operation
o is defined on the subset consisting of points f, fa, ..., B, We extend
this operation to the operation on the whole of A as follows:

(k=1,2,...,n+1),

(k #s8;k,8 =1,2,...,n),
(k=1,2,...,n),

(b #4s83k,8=1,2,...,n),
(k=1,2,...,n).

a0 oy = O

00 @ = ﬂ(k+a—1)modn

Uy 410 8% = 40 tyyr = Bl 1)moan
ﬁ(k+a—1)modnoak o a/coﬂ(k+s~l)modn = O
Blek—1)moa n0 W = %0 Blok_1ymoan = Gn41

It is easy to verify that all properties W1-W3 are satisfied. Now we
prove that

3.4. The exvistence of the Aj-algebra and the Al-algebra implies the
existence of the AS,,-algebra.
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In fact, {1, fas .- fm} being the Al-algebra and [yt p%, ..., 9"
the A%-algebra, let us consider the functions p(4,J) (4, ] = 1,2,...,m)
and q(k,8) (k,s=1,2,...,%) such that ;08 = fuup, v 0¥ = Pl
Tet A = {a}, ..., 0b; 03y oory G5 -oej 08y ooy i} Do @ given set of mn
elements. The operation o is defined as follows:

T 8 a(kc,8)
;oo = aﬂ((f,f))

(Bys==1,2,...,%5 4,f = 1,2,...,m).

1t is easy to verify that all the propertics W1-W3 are satisfied for
the operation o on A defined above.

Trom 3.4 it follows immediately that

3.5. The ewistonce of Ab, Aby,y ..y Ay, dmplics the ewistence of
A g

Let A} be an algebra given by the matrix

| ¢

il
B}

Sl il

The clags of all A%-algebras which may be obtained from. A} in the
way described in theorems 3.3 and 3.5 does not contiain all algebras 45,
Other classes may be constructed using the results of Skolem (6] Tor
given n > 13 there exist several non-isomorphic A}-algebras. The problem
of determining their number remains for different n still open.

4. Problems. Let 4}, be the algebra obtained from Aj-algebra by
the construction of theorem 3.3 applied % times. Hach subalgebra of
A2 indueed by two different elements consisty of exactly three elements,
which satisty the relation R, of section 3 and arve called linearly depon-
dent. Let us consider subalgebras generated by three lincarly indepen-
dent elements @, @,, #;. It is easy to verify that every triple of inde-
pendent elements of 43 = AY generates the whole algebra. For thiy al-
gobra satisfies condition

W4. If @, b, ¢ are independent, then ao(boe) == (a0b)oe.
The algebra A3 = 4j, does not satisfy this condition. Tndeed

0,0(004) == @,0f5 = 5, {100)0u = Py == a5

Moreover, the elements o, oy, a, generate the whole algebra, and the
elements B, fs, f, generate only an Aj-subalgebra.

Tt can be proved that if W4 is satisfied, then every triple of cloments
of the A3-algebra generates an Aj-subalgebra.

icm
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P 374. Does the number n of elements of the A2-algebra satisfying
W4 belong to the sequence defined by the reccurent formula ag,,
= 2a,+1, ay = 1% Are these algebras isomorphic for a given n? Can
the relation B be generalized for more than three elements? Find out the
connections between such algebras and more dimensional regular finite
projective spaces.

It is easy to prove that the algebra Aj satisfies the condition

W4'. (aob)o(aoce) =ao(boge).

P 375. Investigate the algebras satisfying W4'. Is the number of their
elements of the form 3*-'? Are they all isomorphic (for a given 7)? Find
out the connections between such algebras and more dimensional regular
finite affine spaces.

' We call an Aj-algebre an ordered pair {4,0), where A is a set
consisting of # points and o is an operation having the following pro-
perties:

W1'. aoa = a,
W2'. ao(aob) =boa,
W3'. ac(ao(aocd)) =b.

A subalgebra generated by two elements o and b consisting
of four elements a,b,¢=0acb and d =>boa is presented by the
matrix

¢ b a ¢ a

d ¢ a [/ d

obtained according to W1-W3.

In the same manner as in section 3, it can be gshown that the existence
of P} is equivalent, for ¢ > 4, to the existence of the 43-algebra (4,05,
where A is a set consisting of » = 3441 points.

P 376. Are implications, similar to that of 3.3 and 3.5, true for
A3-algebras?

Furthermore, it seems to be interesting to give an axiom scheme
for the general case of Af-algebras.
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PROBLEMS OF ORDER WITH RESPECT
T0 TETRAHEDRAL SEXTUPLES

BY

P.J. VAN ALBADA (EINDHOVEN)

Introduction. H. Steinhaus [3] has posed the following problem:

There exist numbers & >b >¢ >d >e¢ >f >0 for which there
are 30 different tetrahedra with the edges @, b,c¢,d, ¢,f. Which other
values besides 0 and 30 can be assumed by N (e, b, ¢, d, e,f), i. e. the
number of all different tetrahedra which have the edges a,b,¢,4d, ¢, f?

In the first section of this paper we golve this problem by showing
that N ecan also assume all integral values between 0 and 30.

When 7' is a tetrahedron with the edges a >b >¢ >d >¢ >f >0,
we write T = (x, v, #) if » is the edge opposite to a, y is the edge opposite

" to the largest edge which remains if ¢ and x are omitted, # is the third

side of the triangle which contains # and y. In the second section we show
that there are sextuples for which the alphabetical order of the 30 tetra-
hedra (z, y,2) is also the order with respect to their size.

In the third section we study the semi-order of the 30 types of tetra-
hedra (x, ¥, 2) with respect to their volume. It is seen that this semi-order
is not quite the same for completely tetrahedral sextuples and for sex-
tuples which are not necessarily completely tetrahedral. (A sextuple
(a,b,c,d,e,f) is called completely tetrahedral [2] if all possible tetra-
hedra (x, v, ?) exist.)

I. Determination of all possible N(a,b,0,d,e,f). To prove
that N(a,b,c,d, ¢, f) can assume all integral values from 0 up to 30,
we adopt a method developed by Blumenthal [1] for other purposes:
we take @ = (- 5)'% b = (t+4)'"7%, ¢ = (1+3)'* d = 1+ 2)"% ¢ = (4 1)7,
f=1""; then N becomes a function of ¢ alone and is equal to zero if t = 0
and takes in succession all integral values up to 30 if ¢ increases to infinity.

If 4 is the set a,b,¢,d,e,f and if a;,b;¢4 for 4,j =1,2,3 with
all a;, b; different from each other, then, if a; and b; are opposite edges,
T = (by, bs, bs) is a tetrahedron if and only if the following two condi-
tions are satisfied:

Colloquium Mathematicum IX.2 (]
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