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Thus if D, >—Dan; then b2+ 62 > 0% dﬁ_(_lfﬁ, A= (02_f2)(02_dz)_1
>1. In that case
4D = bi(c?+ A2+ 2+ f2— 2b%) — b2(a?— b%) (% + 2b% — 02— 2 — 62— f2) —

— (b2 — %) {0* — d%) (62— f2) — 62 (0% — )% — d* (2 — f2)2 —
— (a®—f2) (62— d*) (62— f*) — a*(e* — f*) (d*— ¢7)

< bA{o2 d2+ 62 f2—2b%).

Thus from Dy > Dy and Dy >0 it follows 3e* > o*-- 42 (24— 1) f2,
whence e2—f2 > ¢2—d?, from which 1 > 2.

Sinee b, ¢, f are sides of a triangle, they satisfy b2—e2—f2 < 2ef.
Now take f =1, d2 = €2+ 8, ¢ = e2+y, b2—¢?—1 = f. Then § < 2,
further 8>y 4 6+Ai—1 =y 64 (€24 6 —1)(y—8)"1 > 26-|- 2 (62 6 — 1)~
TFrom 26+ 2(e2+86—1)"2 < < 26 follows 0 <1, and even 6 < ¢—
—(e2— 1) = {e+(e2— 1)1 From p >2(e*—1)"* follows B = 26— 0,
0 < {e2— 1), From y— d+ (e2+ 8 — 1) {y— 8)~1 < 2¢— 24 follows (y — 8)2~—
—2(6—8)(y—08)+(e— )2 < 1—0--062—260 <1, or e~1<yp<etl
From e* >y 6+(2A—1) >e+2 follows ¢ >2, § < 2—38"% 0 < 312
If we now compute 3D, for a? == b2 = (¢--1)2— 0, 6 == e2--¢--{, d* =
= ¢24- 0, || <1, the vesult is }D; = —4e*—pe®-qe*-+-re-|-s, where

p=16—90—55—4f >24+2-3'" >5,
q = 240—20-4118+8,—802— 82— {2— 80— 200—2{0 < 3,
r = 196—8-50-+-2L—1102—660—~4L0-4-20,+ 2 < 0,

s =1.

Hence 4Dy < —4et—Dbe+3e*+1 < —91 for ¢ > 2.
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TRANSFORMATIONS OF COMPLEX SERIES
BY

B. JASEK (WROCLAW)

Even the most recent editions of the book “Theorie und Anwendung
der unendlichen Reihen” by K. Knopp do not mention certain problems
concerning rearrangements and some other transformations of complex
series, in particular, problems that have been solved since the first edition
of the book had appeared. The intention of the present paper is to give
a review of recent research in this domain and of its bibliography.

I. INTRODUCTION

1. Notation. Let § denote a geries S = 2;-+#,+ ... We assume
that the sequence {2,} (2, = w,+ 1y, for n = 1,2,...) contains infinitely
many terms different from 0, and that its limit equals 0.

A sequence differing from the natural sequence 1, 2,3, ... at most
in the order of terms will be called a permutation and denoted by N == {N,}.

By ¢t we denote a sequence t = {t,}, each term of this sequence being
a number of a fixed set of complex numbers T.

By St we mean the series St = ;2,4 t5%-F...

S(N) denotes a series which arises from the series § by rearrangement
of its terms according to the permutation .

Complex numbers will sometimes be treated as vectors and vice
versa; the double notation, however, will not be introduced.

The “ordinary” complex plane will be denoted by H.

A space obtained from the plane H by joining to it a point at in-
finity will be denoted by H'.

H* will denote a plane H with joined elements of the form (oo, ¢),
for which we assume |(co, ¢)] = oo, and arg(co,p) = ¢, where 0 < ¢
< 27. By the neighbourhood of a point z,¢ H* we shall mean the interior
of every circle with positive radius and centre at point 2, if |2, << co.
In the opposite case, by the neighbourhood of a point z,¢H* we shall
mean the set A(z,,¢) of elements satisfying (for ¢ > 0) the condition
1/e < |#] < oo and |argz—args,| < e. It is easy to check that in the to-
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pology generated by the fundamental system of neighbourhoods which
we have defined H* is a topological compact space.

Let the initial point of the vector 2, be placed at the origin of the sy-
stem of coordinates, the initial point of the vector 2, at tho end point
of the vector #, and the initial point of the vector &, at the point of the
vector z,. We proceed analogously with the remaining terms of the series
S. In this way we obtain an infinite polygonal line, and we denote it by
L = L(8). L, = L,(8) denotes the end point of the veetor 2, in polygonal
line L(8).

A set of limit points of the sequence of points {L,} (i. e., of the se-
quence of partial sums of the series ) in the space H* will be denoted
by L* = L*(8).

A get of limit points of the sequence of points {L,} in the space H'
will be denoted by L' =.L'(S).

2. Classification of the series S. In present-day investigations
a division of all geries S into four classes is very often used. A formmlation
of the principle of this division will be preceded by some definitions and
theorems.

Definition 1. A unit vector » with initial point at the origin will

00
be called a direction of convergence of sovies § if tho serien D [(v, 2,)] is
[

convergent ((v, 2,) denotes the inner product of vectors » and z,).

Definition 2. If a unit vector » with initial point at the origin is
not a direction of convergence of the series S it iy called a direction of
divergence of this series.

Definition 3. A unit vector » with initial point at thc origin is
called a principal direction of series S if each open angular region with
vertex at the origin and containing vector » is such that the sum of abso-
lute values of the terms of series § which belong to this region is equal
to co.

The notionsg given in the above definitions were introduced by Stei-
nitz [35]. We must underline that there are also other definitions for
these notions, and there is no agreement as to the terminology. H. g.,
principal direction is called direction of condensation in [297], strong
direetion in [28], and direction of divergence in [13].

THROREM 1. A series S has no principal direction if and only of i is
absolutely convérgent.

A proof of this simple theorem can be found in [80] (chapter TLL,
problem 52).

THEOREM 2. If a series § is not absolutely convergent, it has at most
two directions of convergence.
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Proof. Suppose a series § bas more than two directions of conver-
gence. Thus among these directions there are two directions linearly inde-
pendent, say v; and v,. Then each unit vector can be written in the form
v = ay9;-+ ayv,, where a; and a, are certain real numbers. Then we have

(25 2a)l = lay (91 20) + aa (Vg #n)] < || {01, 20)] -+ |@a} [(05, 22)] -

From the above inequa.lity and from definition 1 it follows that for

each vector v the series 2\ v, 2,)| is convergent. Assuming at first v = 1,
et

and then » = ¢ we should obtain the convergence of both series, 2 [
and Z’|g/" |, i. e., an absolute convergence of the series § which contl %-

d.lcts the assumption.

THEOREM 3. If v is & principal direction of a series S and v’ is a unit
vector perpendicular to v, then for each ¢ > 0 there ewists a sequence of na-
tural numbers i, < i, < ... such that

o] [}
1 ’
Dzl =00 and DN, )| < e
k=1 k=1

A simple proof of this theorem can be found in [26].
There are series S for which every unit vector is a principal direc-

tion, e. g., a series Zem“’/n for each ¢ not commensurable with = [26]
N=1

For each series S the set of its principal directions is closed. It is
also easy to construct a series S for which the set of principal direc-
tions is equal to an arbitrarily given closed set of unit vectors with initial
points at the origin of coordinates.

Definition 4. Let us denote by R, the class of absolutely conver-
gent series S, by R, the class of series § with exactly one axis of conver-
gence (i. e., two opposite directions of convergence in the sense of defi-
nition 1), by R; the clags of series S with exactly one principal direction
or exactly two opposite principal direetions and without an axis of con-
vergence, finally by R, the class of series with at least two prinecipal
directions linearly independent.

It is easy to check that none of the sets R,, R,, R, and R, is empty.
They are disjoint and each series § belongs to one of them. As far as we
know, no definite names for the classes R,, Ry, Ry and R, have been
introduced.

Series with terms

1 1, "
2 =;+—27@, and 2, =
are examples of the geries SeR, and SR, respectively.

Colloquium Mathematicum IX, 2 7
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We shall see in the theorems given in chapter III that the division
of the series into the four classes Ry, Ry, By, B, agrees with many other
properties of these series.

II, PROBLEMS

A. For a given series § we shall mean by Ay(8) the set of sums of all
series () which are convergent in H. What are the properties of the
set A,(8)?

B. Let K denote a set of all permutations N such that series S(N)
is convergent for all convergent series S. A set of permubations K will
be called the dlass of permulations preserving convergence. What condi-
tion is necessary and sufficient that the permutation N belong to the
class K?

0. What are the properties of sets L'(§) and L*(8) (L.1)?

D. A series § iy fixed. To each permutation N there correspond
sets L' [S(N)] and L*[S(N)]. Hence we have two families of sets, denoted
by A'(8) and A*(8) respectively. What subsets of the space H' (H*) be-
long to the family 4'(8) (A*(S))?

BE. A series § and a set T are fixed. We denote by I'y(S8,T) the
get of sums of all series 8% convergent in H. What are the properties
of the set I'y(S,T)?

F. A set of complex numbers M will be called a set of convergence
factors if for every series § a sequence m = {my} (m;e M for j =1,2,...)
can be chosen so that series Sm is convergent (in H). What is the class
of sets that are sets of convergence factors?

G. A set Q of complex numbers will be called a set of sum factors
if, for every series § with an infinite sum of absolute values of terms and
for every z<H, there exists a sequence g = {g,} (¢ne@ for n =1,2,...)
such that series S¢ is convergent and has the sum equal to 5. What is the
clags of sets that are sets of sum factors?

H. A geries § and a set T are fixed. Let I™(8, T) denote a family
of all sets of the form L*(S¢). What is the family I™(8, 1)

III. RESULTS

The successive sections of this chapter are devoted to the discussion
of the results concerning the problems A-IL.

A. Cauchy was the first to notice that the convergence of some geries
(with real terms) depends upon the order of their terms. Dirichlet ex-
plained, this fact partially, proving that the convergence and the sum of
an absolutely convergent series do not depend on the order of terms. At

icm
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the same time he gave several examples in which a rearrangement of
terms of not absolutely convergent series yielded a change of its sum.
Riemann [31] showed that unconditional convergence, i. e., convergence
for any order of terms, implies absolute convergence, and that any preas-
signed sum can be obtained by an adequate rearrangement of terms of
a conditionally convergent series. This theorem stimulated further re-
search. More detailed studies of this subject were conducted by M. Ohm,
0. Schlomileh, E. Borel (cf. § 44 in Knopp’s book quoted at the begin-
ning of this paper) and Pringsheim. [29].

Riemann’s theorem was generalized by Sierpinski [34], who proved
that in order to get a preassigned sum of conditionally convergent series
it is sufficient to rearrange its terms of one sign only (the sign depending
on the sum wanted).

The first theorem on the structure of the set Ay(8) for series
8 with complex terms was formulated by Lévy [23] in 1905.

The set 4,(8) is a point, a straight line or & plane H. The paper of
Lévy, however, is not quite clear and has some gaps. A complete proot
of this theorem. was given by Steinitz [35], in 1913-1916. His studies
concerned the structure of the set 4,(S) in arbitrary Euclidean spaces
of finite dimension. His work contains about 150 pages. Its volume is
due to the fact (which came out later) that the author had introduced
an artificial connection of the problem. with the properties of convex
gets.

It is not surprising that studies concerning this subject were conti-
nued by many authors. A paper of Gross [10] (written in 1917) referred
to the same problem. The methods which he used are similar to those
of Steinitz, but his paper is much shorter and clearer. In 1926 Threfall
[37] published a short proof of the following theorem: if series S is not
absolutely convergent, then by rearranging its terms we can obmm a con-
vergent series with amother sum.

The same subject was studied by: Bergstrom [5] in 1931, Ness [26]
in 1937, Sklyarskii [36] in 1944 and Kadec [20] in 1953.

The structure of a set 4,(8) can be characterized more precisely
as follows:

THEOREM 4. The set AO(S) ©8 empty (in H) if and only if at least one

of the series an and 2 Yn 18 unconditionally divergent, i. e., preserves the
N=

divergence for every ordew of its terms.

THEOREM 5. The set Ay (S) contains exactly one point if and only if
SeR,.

THEOREM 6. If the set Ay(8) is not empty, then 4t is a strasght line if
and only if SeR,.
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TaroREM 7. If the set Ay (8) 48 not empty, then it 48 the plane H if and
only if Selyw By

The following theorems on vectors in a plane are essential for all
papers devoted to the structure of the set A,(8) (exeept the paper of
Ness [267).

TarorEM 8. If ¢, 05-4-... 4 ¢ ==
o @ITangement Oxyy -+, 0N, such that o, -+ 6x,-t
2,...,p, where a does mot depend on p.

A simple proof of thig theorem for an arbitrary Huclidean space
is given in Kadee [20].

Ness applies essentially the foﬂmvin;, theorem of Sierpiniski [34]:

0, and max ¢ == 1, then there exists
oyl = for =1,

THROREM 9. If p, — 0, P, >0 and Z]),, == oo, then for every & >0
there exists a pea"mmatwn N such that "™

21%* 22"1\7,c - d

I=1 =1

a8 " = 00,

B. Trivial examples of permutation of the class K are permutations
(¥,} satisfying the condition |N,—n| << ¢, where ¢ =0 and does not
depend on n.

We denote by B a finite set of natural numbers. Let 6(B) denote
the smallest closed interval containing B. If B is identical with the set of
all natural numbers from the interval §(B), then this set will be called
a segment of the sequence of natural numbers. In particular, single natural
numbers are segments of the sequence of natural numbers. Every set of
natural numbers can be represented as a sum of segments. If a seb
confiaing p numbers, then it may be represented as a sum of at most p
segments.

For a given permutation N and fixed » let us consider natural num-
bers # < n for which the condition N, >n is fulfilled. Let Py, pay ..., Pr
be those numbers. Analogously let us denote by ¢y, qey ..., ¢ Dabural
numbers y >n for which N, < n. Let us represent the set py,...,0r
as the sum of the least possible number of segments of a sequence of
patural numbers, and let I(n) denote the number of those sogments. By
I(N) we shall denote the number of analogical segmoents for the set ¢,
oy - ey Go- We assume 1(n) = L(n)-+-1(n).

THBOREM 10. A permutation N <K if and only if the sequence 1(n)
is bounded. Permutations of the class K preserve also the sums of all con-
vergent series.

A gimple proof of this theorem is given by Kronrod [21].

The theorem remains true if, ingtead of the usual summability, we
consider summability by Toeplitz’s methods [3].

icm
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Some theorems on permutations, preserving convergence and sum of
series in particular cases, can be found in [7], [8], [19], and [29].

C. In the case of Se<R, the sets L’(S) and L*(8) reduce to single
points. If all terms of series S are real, and the series is unconditionally
divergent, then the limit point of partial sums is either +-co or —oo. Let
u and v denote, respectively, the upper and the lower limit of the sequence
of partial sums of the series S. The set of limit points of this sequence
is identical with the closed interval [u, »] (which can be infinite). In
both cases mentioned above, sets L'(S) and L*(S) are closed and connec-
ted. These cases are not exceptional; on the contrary, the following ge-
neral theorem is true:

TarorREM 11. For each series S the sets L'(S) and L*(S) are closed
and connected. For each closed and connected set O C H* there exists o series S
such that C = L*(8).

The theorem remains true if we replace H* by H’, and L* by L'.

The proof of theorem 11 can be found in [6].

D. The first theorem on the structure of the family A'(8) was proved
by Hadwiger [11].

THEOREM 12. If a set A,(8) is o straight line, then for each closed and
connected subset C on this line, there exists a permutation N such that L' [S(N)]
= (. If A,(8) = H, then for each closed omd convex set D C H' there exists
a permutation N such thet L'[S(N)] =

The following theorem, proved by La,puk [24], is a generalization
of this theorem:

TumorEM 13. If A,(8) = H, then the family A’ (S') is identical with
the family of oll continua of the space H'.

An analogical theorem for the space A*(S) ean be proved without
any essential difficulty.

BE. The problem of the structure of the set I'y(S, T) has been formulated
too generally. We shall discuss particular sets 7.

TEEOREM 14. If S8R, and T, consists of two numbers, 0 and 1, then
Ty (8, To) %8 a perfect subset of the rectangle |z < o and |y| < B, where

Z [2n| ond B = Z (] -

In [17], [25], and [30] we can find proofs of this theorem in the case
where all terms of the series § are real. The proof for the series with
complex terms does not differ essentially. The same theorem is valid
for unconditionally convergent series in Bamnach, spaces.

More detailed studies of the set I'y(S8, T,) for Se¢R, can be found
in [13].
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TurorEM 15. If 8 ¢R, and T', denotes the set composed of two numbers,
+1 and —1, then the set I'y(8,1y) arises by linear transformation of the set
I'o(8, To) [17].

TurorEM 16. If SeR; and o set T is compact in H, then I'y(8,T) is
perfect.

The proof of this theorem differs slightly from the proof of theo-
rem 14. ; .

The question of the structure of the set I\(8,1,) when S¢Ry is
much more difficult. Studies devoted to this case can De found in [13],
[18], and. [27]. i

The set I,(§,T,) has an interesting strueture in the caso of S¢k,.
It was studied by Hanani [14]. The formulations of his theorems will
be preceded by the following notices:

o0
For SR, we shall denote by R (8, 1) the set of numbers D =0y 2),

Pz ],
where o' is a direction of convergence of series S. According to theorem
15 the set R(S§, T,) is perfect. By P (8, T,) we denote the Cartesian pro-
duet of the set R(S,T,) and a straight line perpendicular to vector o'
(the rectangular system of coordinates is determined by vectors v’ and
o 1 v).

TEEOREM 17. If SRy, then I'y(S, 1) is dense in the set p ~ P (8, Ty)
for every straight line p non-parallel to v. In the case when p is parallel to
v and passes through a point of the set P(8, Ty) the set p ~ I'y(8, 1) can
be empty.

THEOREM 18. If SRy, then I'y(8, Ty) is dense on every straight line
non-parallel to the principal direction of series 8. If p s parallel o the
principal. direction of series S, then the set p ~ Iy(8, Ty) can be emply.

TaEoREM 19. There are series SeR, for which the equality 1Iy(S8, 1)
= H ocours.

TaeoREM 20. If SeR,, then I'y(S,T,) = H.

The cage of more general sets 7' will be discussed in subsoquent
paragrapbs. '

F. It is evident that 7, iy a set of convergence factors.

THEOREM 21. A set T, is a set of comvergence faotors.

A proof of this theorem can be found in [97. The most important
part there of is the proof of a lemma which we shall formulate as

THEOREM 22. If complew numbers oy, oy, ..., ¢, satisfy condition

§j=1,2,...,p such that
[0+ ty0at .ot luoll < V3 for k=1,2,..,p.

- iom®
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A definite solution of the problem of characterization of sets of
convergence factors was given by Calabi and Dvoretzky [6], who
proved

THEOREM 23. A bounded set of complex numbers M is & set of convergence
factors if and only if O belongs to the smallest closed and convexr set
containing M.

G. The first non-trivial example of a set of sum factors was given

by Hornich [18]: a set of numbers of the form ';/'0, where v # 0 and %
is a natural number >3, is a set of sum factors.

The definite solution of problem @ can be found in [6]. The result
can be formulated as

THEOREM 24. A given set of complex numbers Q is a set of sum factors if
and only if 0 is an interior point of the smallest convexw sef containing Q.

Thug any three complex numbers which are vertices of a triangle
containing in it interior the origin of coordinates form a set of sum fac-
tors.

H. As far as we know, the family I™ (S, T,) has not yet been studied.
The family I'*(S, @), when @ is a set of sum factors is characterized by

THEOREM 25. If S¢R, and Q is a set of sum factors, then the family
I'™(8, Q) is identical with the family of all continua of the space H*.
A proof can be found in [6].

Theorem. 24 implies that there exist series SeR, u R; v R, for
which the family I™ (8, T,) is not identical with the family of all continua
of the space H*. .

T am preparing a paper about the structure of the family I"™ (8, T,).
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