

COLLOQUIUM MATHEMATICUM

VOL. IX

1962

FASC. 2

ON REARRANGEMENT OF SERIES, II

 $\mathbf{B}\mathbf{Y}$

P. H. DIANANDA (SINGAPORE)

1. Let N_1, N_2, \ldots be a permutation of the positive integers. Then the series $a_{N_1} + a_{N_2} + \ldots$ is a rearrangement in the order of its terms of the series $a_1 + a_2 + \ldots$ (hereafter called series A) of complex terms.

In a recent note [1] we generalized a theorem of Jasek [2] to Theorem 1. Suppose that

$$(1) na_n \to 0 as n \to \infty,$$

and $na_{N_n} \to 0$ as $n \to \infty$. Then

(2)
$$(a_{N_1} + \ldots + a_{N_n}) - (a_1 + \ldots + a_n) \to 0 \quad \text{as} \quad n \to \infty.$$

Jasek's theorem follows as a special case if the series A is convergent. In [1], using Theorem 1, we obtained a solution of Jasek's problem P300 [2].

In this note we shall prove

THEOREM 2. For (2) to be true for every series A satisfying (1), a necessary and sufficient condition (NSC) is

$$(3) \qquad \sum_{r>n\geqslant N_r}\frac{1}{N_r}=O(1) \quad as \quad n\to\infty.$$

Jasek's problem P 301 [2] may be restated as Find an NSC that (2) be true for every convergent series A satisfying (1). Theorem 2, while not a solution of the above, solves a related problem. In what follows we shall, for brevity, write \sum' for $\sum_{r>n\geqslant N_r}$ and \sum'' for $\sum_{r< n< N_r}$.

2. To prove Theorem 2, we note first that

$$(a_{N_1}+\ldots+a_{N_n})-(a_1+\ldots+a_n) = \sum'' a_{N_r}-\sum' a_{N_r}.$$

From (1), it easily follows that

(5)
$$\sum_{r} a_{N_r} \to 0 \quad \text{as} \quad n \to \infty.$$

Hence, from (4), we have

THEOREM 3. For (2) to be true for the series A satisfying (1), an NSC is

(6)
$$\sum_{r}' a_{N_r} \to 0 \quad as \quad n \to \infty.$$

Theorem 2 follows from Theorem 3 and the following lemmas: LEMMA 1. (1) and (3) \Rightarrow (6).

LEMMA 2. Let (3) be false and $a_n = 1/ns_n$, where

$$s_{\nu} = 1 + \max_{n \leqslant \nu} \sum_{n \leqslant \nu} \frac{1}{N_{r}}.$$

Then (1) is true and (6) false.

The proof of Lemma 1 becomes obvious if we note that $N_n \to \infty$ with n. To prove Lemma 2, we note first that $s_{N_r} \leqslant s_n$ for $r > n \geqslant N_r$. Hence

$$\sum' a_{N_r} = \sum' rac{1}{N_r s_{N_r}} \geqslant \sum' rac{1}{N_r s_n}.$$

But $s_n \to \infty$ with n, since (3) is false. Hence (1) is true and

$$\limsup_{n\to\infty} {\sum}' a_{N_r} \geqslant \limsup_{n\to\infty} {\sum}' \frac{1}{N_r s_n} = 1.$$

Thus (6) is false. This concludes the proof.

Remark 1. Theorem 2 remains true if the word "series" is replaced by the phrase "divergent series". This follows since

$$s_n \leqslant 1 + \left(\frac{1}{1} + \ldots + \frac{1}{n}\right) \sim \log n$$

so that the series A, where $a_n = 1/ns_n$, is divergent.

Remark 2. In each of Theorems 1 and 3 condition (1) may be replaced by condition (5).

3. The following results are easily proved:

THEOREM 4. Condition (3) is an NSC for

(7)
$$(a_{N_1} + \ldots + a_{N_n}) - (a_1 + \ldots + a_n) = O(1) \quad \text{as} \quad n \to \infty$$

to be true for every series A satisfying the condition

(8)
$$na_n = O(1)$$
 as $n \to \infty$.

THEOREM 5. If

(9)
$$\sum_{n=1}^{\infty} \frac{1}{N_r} \to 0 \quad as \quad n \to \infty,$$

for (2) to be true for every series A satisfying (8), an NSC is

(10)
$$\sum_{n=0}^{\infty} \frac{1}{N_{n}} \to 0 \quad as \quad n \to \infty.$$

Note. The sums in (9) and (10) have equal numbers of terms. Consequently (10) implies (9). Thus (8) and (10) imply (2).

Remark 3. Theorems 4 and 5 are also true with "series" replaced by "divergent series".

The following related problems are of interest:

P 377. Find results corresponding to Theorems 4 and 5 for "convergent series".

P 378. (a) Find an NSC that (7) be true for every (i) series, (ii) divergent series, (iii) convergent series A satisfying (5) and (8). (b) Solve (a) with (7) replaced by (2). (c) Solve (a) with (5) and (8) replaced by (1).

Addendum (1 November 1961). An NSC that $a_{N_1} + a_{N_2} + \dots$ converges for every convergent series A has been found by Kronrod [3]. I am indebted to B. Jasek for informing me of this.

Addendum (in proof). The same NSC has also been found by Levi [4]. I am indebted to U. C. Guha for drawing my attention to [4].

REFERENCES

[1] P. H. Diananda, On rearrangement of series, Proceedings of the Cambridge Philosophical Society 58 (1962), p. 158-159.

[2] B. Jasek, Über Umordnung von Reihen, Colloquium Mathematicum 7 (1960), p. 257-259.

[3] А. С. Кронрод, О перестановках членов чысловых рядов, Математический Сборник 18 (60) (1946), р. 237-280.

[4] F. W. Levi, Rearrangement of convergent series, Duke Mathematical Journal 13 (1946), p. 579-585.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF SINGAPORE

Reçu par la Rédaction le 28.9.1961