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ON DETERMINING BOUNDED SOLUTIONS
OF LINEAR DIFFERENTIAL EQUATIONS
BY THE SMALL PARAMETER METHOD

BY
C. GRAJEK (GDANSK)

In a previous note [1] we have considered the differential equation
of the form

@ Y4, WYV e Dy = F(B).

‘We have agsumed that the functions (), 1 =0,1,...,2—1, and
f(t) are defined and bounded for te(—oo, o). We have shown that under
certain agsumptions there exists a solution of (1) defined and bounded for
te(—oo0, oo). This solution has been expressed in the form. of a uniformly
convergent series the terms of which are bounded solutions of a sequence
of differential equations with constant coefficients:

(@) YW A, ¥ Aoy, = fr®), k=0,1,2,...

We have given in [1] sufficient conditions for the series formed from
the bounded solutions of the differential equations (2) to converge to the
bounded solution of the differential equation (1).

Namely we have assumed that the differential equation (1) can be
written in the form

®) YO+ [n i+ e 1Y+ T4+ o)y = F(2),
so that the characteristic equation ‘
(4) A, v A+ 4, =0

has only single roots and, moreover, that the condition § < 1 is satisfied
(see formula (21) in [1]).

It is evident that if the functions v;(t), ¢ = 0,1,...,n—1, in equa-
tion (1) are bounded, then they can be written in the form

(5) w(t) = dit@(t), 1=0,1,...,n—1,
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in such & way that the characteristic equation (4) has single roots. We
cannot, however, state beforehand whether in a decomposition of the
funetion v;(t), ¢ =0,1,...,n—1, in which the characteristic equation
(4) has single roots, the condmon 8 < 1 is satisfied. Roughly speaking,
it follows from the form of the formula defining § that the condition § < 1
i satisfied when the numbers @; = s%p lp(®), 2 =0,1,...,n—1, are

sufficiently small as compared with the distance of the roots of the cha-
racteristic equation (4).

Tf we accept the rule that in decomposition (5) numbers @; must be
as small as possible, it ean occur that in such a decomposition the charac-
teristic equation (4) has multiple roots, and the theorem given in [1]
does not include such a case.

If, however, while decomposing w;(t), ¢ = 0,1, ...,n—1, we accept
the rule that the characteristic equation (4) must have single roots, it
may happen that @;, ¢ = 0,1,...,%—1, will be 8o great that the condi-
tion 8 < 1 may fail to be fulfilled. Thus it is necessary to consider also
the oase in which the characteristic equation (4) has multiple roots. There
is one more reason to consider this case. Namely, in technical problems,
in which we often deal with equations of the form (1), the coefficients
(which are interpreted as physical quantities) are given at once in form
(8); therefore another decomposition is not recommended. Thus, having
functions v;(t), ¢ = 0,1, ..., n—1, given a priori in form (5), one cannot
exclude the case of the characteristic equation having multiple roots.

In the present paper we give a generalization of the theorem pu-
blished in [1]. Namely, we shall free ourselves from the rather incon-
venient assumption that the characteristic equation (4) has only gingle
roots. However, we still assume that the real parts of all roots of the cha-
racteristic equation (4) are non-zero.

§1. Let us consider a differential equation with constant cocfficients,
(6) YO Ay g Ay = ().

Let us assume that characteristic equation
(7 A, e A A, =0
has m different roots n, 4=1,2,...,m, and that k; is the multiplicity
order of the root (Zk = n)

It is known that 1f y,(t) is a particular solution of a homogeneous
differential equation corresponding to the differential equation (6) which
satisfies the initial conditions

; 0 for
8) 0 (0) = {
¢ WO=11 for i=

i=0,1,...,
n—1,

n—2,
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then the particular solution y,(f) of the differential equation (6) can be
written in the form
i

(9) ¥alt) = [l

0

t—1)f(z)de.

The validity of this fact may easily be verified. The particular solu-
tion -of a homogeneous differential equation corresponding to the differen-
tial equation (6) which satisfies the initial conditions (8) (ef. [2], D. 5-9)
has the form

m

1 67(1;—1 ert
10 1) =
(10) ¥ () Z(ki—l)! i {@i(r)}r=r;
i=1
where @;(r) =1 when m =1, and
(11) oy =[Jo—r)y it m>2
oy
Since
™ 1 §ri—1+p o
12 1RU0
(12) Y@ty = g(h_m ST { az-(r)}mi

= Zm 19 {W’e”}
£ (k—1)! 0% 1 @(r)frer;

in virtue of (8) the following relations hold:

~1 ¥P 0 for
(13) Z(k —1) aﬂ% {i( )Lri:[l for

From (9) and (10) it follows that the particular solution of the dif-
ferential equation (6) can be written in the form
ah -1

r(t--r)
k _._1 ff( 61*’51“ { ('r)}r rldr.

Lmwnra. If g(t) is a function defined and bounded for te(—oco, oo),
i. e |g(t)] < g, then the function

(18) ) = [g(x)0
3

p=0,1,...
p =n—1.

,’I’I;—2,

(14) Ya(t) =

—7)" Ny for w=0,1,2,...,
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© 2
where Zf stands fo'rI{ when o = Re(r) >0 and for [ when a = Re(r) < 0,

is also a bounded function and the following imequality holds:
_n!
FO! < T

The elementary proof is here omitted.

§2. THEOREM 1. If the characteristic equation (7) of the differential
equation (6) has m different roots v; such that Re(r;) = a; # 0, and l; is
m
the multiplicity of the root 7 (Jk; = n) and f(t) is a funotion defined and
i

bounded for te(—oo,c0), then there ewisis a solution y = y(t)
(6) which satisfies the following conditions:

m ky
- 1
) w0l <7 Y ey
i=1 Pp=1

where | = Eﬂtlp @)l

of equation

Pl
= {‘p@'(r)}mm
for j=0,1,...,n—1,

Proof. Let us conpgider the function

an y(t) = yo (1) + ¥4 (?),

where y,(t) is defined by formula (14), and y, has the form
m sgn 81%_ { r(l-—r)

(18) 2 T ff( 5 B

It is easy to see that y,(f) given by formula (18) is a solution of
a homogeneous differential equation corresponding to the differential
i

equation (6). Since f—}-sgn(—'a)f =
0 0

by (17), being a particular solution of the differential equation (6), can
be written in the form

. sgn A A
(19) ¥ = i f o) arki-*{@(r)}r-md’

sgn(—a)f, the function y(t) defined
11

Because of relations (13) we have

m sgn a]cL yPg r(i—7)
o f 1) s { }M.ar

't.sl

(20) y® @) =

for p=0,1,...,n—1.
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Having transformed (20), we can write
(21  ¥®@) =

—a) &7 kit gfilt—)
Tiej)! @7 {qji(’f)}r ,iff(’ (t—1) dr.

Thus, by the Lemma, we have

m kg .
1 @
@ el <2 2 =D (—1)! dﬂ-‘{@(r)}rari X

i
— plki—Tgailt-7)
flf Nli— "¢ d7<f22 (j—1 '[azl"l““" ar’-t {@,,;(’I‘)}rzri

sgn(
(—1X

i=1 Fa=1

?

i=1 J=1
q.e. d.
THEOREM 2. We are given the differential equation
(23) YO [ A1+ Eu 1 (019" 4 [Aot 0o (1)]y = F(B),

where @;(1) for +=10,1,...
bounded for te(—oo, co).
Let the characteristic equation (7) have m different roots r;, ¢ =1,

m
2y ..., m, and let k; be the multiplicsty of the root r; SZk, = n).
=1

,m—1 and f(t) are functions defined and

If Re(r;)) = a; # 0 for i =1,2,...,m and

o)
a@r’ =t | &, (r) frar;

.., n—1, then equation (23) has a so-

lution. bounded for te(—oo, 00), and defined by the series

n—-1 m ki —
Py
8 =
=Dl

<1,
»=0 3=l J=1

where @; = sup p; ()| for ¢ =0,1,.
t

(24) . y()) = D ylt)

k=0

converging uniformly in the interval —oo <<t < oo, where y,(t) are the
bounded solutions of differential equations

y'()”) .i_An_lyg"‘l)—f—. Ay, = (1),
YO Ay Aoy = —Fn_1 (Y5 —

Moreover, the remainder

(26) By = Y1+ Yrgat .

(25)
e — @0 (D) Yre—a-
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of series (24) can be estimated either by

@t 1
ar- i@w‘(”)} et

MY 4o o (1) s

ky
1 1
(27) iRhl < I:”‘ Z LS; ( . 1) ! lai'ki—ﬂ—l

X SUPpn-1
or by
T T
@) Bl <hizg 2, 2 G Der | @ {fIJ@-(r)}rﬁq ’
where J, =

Proof. Let us notice that if y,(¢) are bounded solutions of differential

equations (25), then we have
(29) fo < Sfey

where
F = sup [y +An 980 4 Aol
t

= Sll]’_)]——(p"_l(t)yscn__ll)—~. --""Po(t)yk_1| for k=1, 2, e
i
In fact, by theorem 1 we have
m Ty i -1
. = N 1 &t {r }
fe < fe-1Pnaa Z Zlv G D) a7 | =\ @By(r) ey +.ot
i=

=1

-t { r°
ar =\ @y (r)rur

i 1%2 2 (j—1) |la\kt—7+1

i=1 =1
d/-— 1 7
d?j ' { ¢'i (’V)}r;:ri

= fis 22 2 (G—1) ’|a\k‘"”1

=0 =1

= S?Io—x'

From (29) we immediately obtain

Shent

Ie=0

(30)

From the convergence of geries (30) and from theorem 1 it follows
the uniform convergence of the series

D@ tor

k=0

(31) p=0,1,...,n—1.
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f—1 v
Z(kaZ (G—1) '|az|’%-7+1 dﬁ- {@j(r)}rgri)
d; {q;m}lz e
k=0

d} -1 1.17
5

From relations (25) and the uniform convergence of series (29) and
(31) follows the uniform convergence of the series

Dy
E=o
We shall now show that (24) is a bounded solution of the differential

equation (23).
From equations (25) it follows that

In fact

Zly‘”’
<2 y (G—1 'Ial"’ s

(j—1 ‘lal"“ !

(32)

D+ A a9+ Agyid = ()= ) Toaa (D9 4+ g0 (D) 921,
k=0 k=1

whence, by the uniform convergence of series (31) and (32), we have

(ﬁ’yk)‘”“%...+£An+«pu(t>1 }j‘yk =
k=0 k=0

Thus the function defined by formula (24) is the solution of the dif-
ferential equation (23).

Since ¥(f) are bounded functions and, moreover, series (24) is uni-
formly convergent, the function defined by this series is bounded. The
remainder R, fulfils the inequality

[Bl < ]f'/k+1]+ [Yrgal +---
d’—l 1
{qi (7)} r=rg

\2 Z (G— 1)'1a11’%—7+1

i=1 g5=1

(3 90) ™+ [Ans +ona (9]
k=0

“(FeprFTogat-.r)

RS . 1 @l o1

“2 g(j—l)llail’“i‘”’ dr? {@i(r)},ﬁi (4848
e W1 L a1

1 Z Z '[%]k‘_ﬂl d”j_l {@,;('I‘)}r:ri ’
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Since

7k+1 = SI}P |‘Pn—1(t)(‘/;cn_u+- oo (DYl s
we have
m

Xy -1
1 1 di 1
B < =5 ) , Z =) 77 dﬂ"‘{qﬁm)}rﬂi
= j=

xagp!%_l(t)yﬁf""—%—- oty

X

Thus inequality (27) has been proved. Inequality (28) results from
(27) and (29).

§3. As an example let us consider the differential equation
(83) Y+ Ty +2 = A,

If we assume g;{t) =8 and ¢,(t) =4 and express the functions
va(t) = 7 and p,(t) = 2 in form (5), then the condition § <I1 will not
be fulfilled, and the series formed from the bounded solutions of the
corresponding sequence of differential equations will be divergent. How-
ever, if we express yy(f) = 7 and y,(t) = 2 in form (5), assuming g, (?)
=10 and @y(¢) = 0, then the condition § < 1 will not be satisfied, and
nevertheless the series formed from the bounded solutions of the cor-
responding sequence of differential equations will be convergent to the
bounded solution of equation (33).

This shows that the conditions given in theorem 2 are only sufficient
for the existence of a bounded solution of the differential equation (6).

A = const.
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SUR I’ORDRE DE GRANDEUR DES COEFFICIENTS
DE FOURIER D'UNE CLASSE SPECIALE DES FONCTIONS I”

PAR
M. TOMIC (BELGRADE)

Soit

1) Slfl1= %1 + Z (@, co8 v+ b, 8inve)

y=1

la série de Fourier d’une fonction L-intégrable. Posong
4Af = f(e+h)—f(z—h), k>0,
Alors f(x) appartient & Lip(a, p) si

0<a<l e p>1.

2) { f Mflpdﬂ?}w =0H) ot k-0

et & Lip* (a, p) si on a (2) avec o au lieu de 0. Une fonction de la classe
Lip(a, p) appartient néecessairement & IP (voir [1]). Il est aussi connu
que (f(w)eLip(a, p) entraine a,,b, = O(»™%) et que f(#)eLip(a,p) en-
traine o(»~%). Cet ordre ne peut pas étre amélioré.

Nous allons donner dans cefte communication des bornes inférieures
et supérieures plus précises pour les coefficients de Fourier des fonctions
LP? ol p > 2, en supposant en outre que ces coefficients sont monotones
par valeur absolue.

Soit S[f] une série de Fourier de la forme (1). Posons

1 1 '
?+—Q—=1, l<p <2, 2<qg<oo et fla)el’

Désignons par w,(4) le module de continuité intégrale d’ordre ¢ de
f(m), c’est-a-dire que

™

@0(8) = wg(8,) = sup { [ If(@+1)—flo—mIdal™.

T
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