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D’une part, on a en vertu de l'inégalité [sinz| << |z| et de (B) pour
0<h <nfdn
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A cause de pe; <1, le dernier facteur est d’ordre O(n~Prthlr
= O(n~1*1P) et il vient

(M I, < Cynt (|| + By) 0= 1P = O (|ay| +- [ba]) 0"

1/p

D’autre part, on a pour tout &

00 ]

L= { )l + 0al P i} < { 3 (lowd - )

n-+1 741
od 1 1[1)
= {Z BP0 (| 4+ [be])” W} .
2 +1
En vertu de (A), la derniére somme peut étre majorée par le produit

o]

1 1/n
W= tia+ ) { Do)

%41

dont le dernier facteur est convergent d’ordre O(n'P~'"°) 4 cause de
p—pe >1, cest-d-dire de ¢ <1—1/p. On a done

(8) Iy <OV (Jay 4 B ynt ™.
Les formules (6), (7) et (8) entrainent directement la premidre partie
de (x).
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ON CHANGE OF VARIABLE
IN THE DENJOY-PERRON INTEGRAL (II)
BY

K. KRZYZEWSKI (WARSAW)

This paper continues the investigations concerning change of
variable in the Denjoy-Perron integral contained in [2]. The notation
and terminology used in this paper are the same as in [2]. We begin with
the following definitions:

A function F defined on an interval I will be said to be non-decreas-
ing (resp. non-inereasing) in the vestricted sense on « set B C I if for every
pair of points z,, #,, ¥; < #,, belonging to [intH, sup B, F(z,) < F(z,)
(resp. F(#,) > F(x,)), provided that at least one of the points x,, z,
belongs to F. A function which is either non-decreasing or non-inereasing
in the restricted senge on a set E will be termed monotone in the restricted
sense, or M, on E. A function F defined on an interval I will be termed
M@, on-a set BCI if B is expressible as the sum of a finite or enu-
merable sequence of sets on each of which ¥ is M,.

Let us denote by N (F; I) the set of the values assumed an infinity
of times by a function F on an interval 7.

A function F will be said to fulfil the condition (Ty) on an interval I
if (i) the set N (F;I) is at most enumerable; (ii) for each y belonging to
N(F;I) the set F~'(y)—int(F~'(y)) is at most enumerable.

‘We shall say that a function F is non-decreasing (resp. non-increasing)
at @ point z, if there exists a neighbourhood of x, such that for x belong-
ing to this neighbourhood

(#—m)(F (@) —F (m)) 2 0 (vesp. (@—m,)(F (2)—F () <0).

A function which iy either non-decreasing or non-increasing at ,
will be termed monotone ai x,. We shall now prove the following

THEOREM 1. Let F be a continuous fumction defined on an interval
[a, b]. Then the following condutions are équivalent:

() F is MG, on [a,b],

(ii) every perfect subset of [a, b] contains a portion on which the func-
tion F ts M,,
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(iii) F fulfils the condition (Ty) on [a, b], .

(iv) at each point of (a, D), evcept perhaps those of an enumerable set,
F 48 monotone.

Proof. In order to prove that (i) implies (ii) it is enough to use
Baire’s theorem. Therefore, we shall now show that (ii) implies (iii). For
this purpose, let K be the class of all closed subintervals I of [a, b] such
that F fulfils the condition (T,) on I. We ghall show that the class K
satisfies the following conditions:

(a) if [ag, by] and [by, 6] belong to I, then [a,, ¢;] also belongs
to K,

(b) if I, K, then every interval I C I, also belongs to K,

(e) if every interval I Cint([,) belongs to K, then the interval I,
belongs to K,

(d) if each interval contiguous to a perfect set B belongs to K, then
there exists an interval I, such that I,¢K and E-int(I,) 7 0.

We see at once that (a) and (b) are satisfied. In order to prove (c)
let every interval I Cint(I,), where I, = [a,, b,], belong to K. Then,
for sufficiently large positive integer =, the interval I, = [a,4-1/n,
by—1/n] belongs to K. Further, since

N(F;1,)C Y N (F; L)+ {F(a), F(by)},

the set N (F'; I,) is at most enumerable. It is easy to see that for y be-
longing to N (F; I,) the set F~1(y)—int(F-1(y)) is at most enumerable.
Thus F fulfils the condition (T,) on I,, and this completes the proof of
(¢). Now we shall show that K satisfies (d). Let B be a perfect set, and
let each interval contiguous to B belong to K. Since (ii) is satisfied, there
exists a portion P of B such that ¥ is M, on P. Let I, be the smallest
cloged interval containing . We shall show that the interval I, is the
required one. In fact, let {I,} denote the sequence of the intervals con-
tiguous to P, and let 4 be the set of all numbers y such that the set F=1(y)P
containg at least two points. We find that

N(F; 1) CA-+ D N(F; 1,);

hence it follows that the set N(F; I,) it at most enumerable. Further,
let y belong to N (F;1,). Since F is M, on P and each I, belongs to
K, it easily follows that the set F—(y)—int(F-1(y)) is at most enume-
rable. Thus, since also E-int(I,) 5% 0, the proof of (d) is completed. We
" have shown that the class K satisfies the conditions (a)-(d). Hence, by
Romanowski’s lemma (p. 39 in [4]), it follows that the interval [a, ]
belongs to K and therefore F fulfils the condition (T,) on [a, b].
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In order to prove that (iii) implies (iv), let M denote the set of the
points at which F assumes a strict extremum. Sinece F fulfils the condi-
tion (Ty) and the set M is at most enumerable, it is enough to show that I
is monotone at each point 2 belonging to (a, b)— (M+F-1[N(F;[a, b))
For this purpose, let us remark that since the value F(a,) is assumed only
finite numbers of times, there exists a neighbourhood of z, such that
for # belonging to this neighbourhood F(z) 52 F(x,), provided that
# # x,. Further, since F' does not assume a strict extremum atb ©, and is
continuous, it is monotone at x,.

In order to complete the proof of the theorem, it is enough to show
that (iv) implies (i). For this purpose, let FE. (vesp. E2), » =1,2,...,
be the set of all # belonging to (@, b) such that |s—a| < 1/n, sela, b]
implies

(s—a)(F(s)—F(z)) =0 (resp. (s—)(F(s)—F (2)) <0).

Further, let B, . (resp. E%;), k=0,1,...,n—1, denote the in-
tersection E), (resp. E) with [a-- k(b—a)/n, a+(k+1)(b—a)/n]. We
see at once that F is non-decreasing (resp. non-inereasing) in the restricted

2 o m—1
sense on each H, ; (vesp. B ;). Further, since the set [a, 5] — >3y E},k

i=1n=1k=0
is at most enumerable, F' is MG, on [a, b]. Thus the theorem is proved.

For simplicity of wording, every continuous function which is MG,
and fulfils condition (N) on an interval will be called ACMG, on that
interval. By [5], Theorem 8.8, p. 233, and Theorem 6.8, p. 228, it follows
that every function which is AOM®, on an interval is ACG, on that interval.

THEOREM 2. Let ¢ be a function ACMG, on an interval [o, d], and
let f be a finite function defined on the interval [a,b] — |le, @1]. Then
the following conditions are equivalent:

(i) the function f is Dy-integrable on [a, b,

(ii) the fumetion f(p)g' is Di-integrable on [¢, d].

Moreover, if one of these conditions is satisfied, then

»(@) a
&) (D)) [ f@)dz = (D) [ flp®)-¢' @) ds.
®(c) ¢

Proof. First let, (i) be satisfied, and let # be an indefinite D,-in-
tegral of f. We shall show that the function F, = F(p) is ACG, on [e, d].
For this purpose, on account of [5], Theorem 8.8 (p. 233) and Theorem
6.8 (p.228), it is enough to prove that F, is VBG, on [¢,d]. The
function ¥ is ACG, on [a,b], and thus it is VBG,; therefore [a, b] is
the sum of a sequence of sets E, on each of which ¥ is VB,. Let us put
Ty = ¢7'[B,]. Since ¢ is MG,, we can express each T, as the sum of
a sequence of sets 7, on each of which ¢ is M,. Now it is enough
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to show that F, is VB, on each T, ;. For this purpose, lle‘o {Ip} be any
finite sequence of non-overlapping intervals whose end-points belong to
fixed T,. Since ¢ is monotone in the restricted sense on this T, ,, it
easily follows that O(Fy;I,) = O(F ;9[Lp]). Now, since the intervals
@[I,] are non-overlapping and have end-points belonging to fixed E,
on which F is VB,, this completes the proof that F, is VB, on each T, ;.
We have thus shown that 7, is ACG, on [¢,d]. By Theorem 2 in [2] it
follows that the function f(¢)¢’ is D,-integrable on [¢, d] and (:}) .holqs.

Let us suppose that (ii) is satisfied. We shall prove that f is D,-in-
tegrable on [a, b]. For this purpose, let us denote by K the class of all
closed subintervals I of [e, @] such that f is D,-integrable on ¢[I]. We
shall show that the class K satisfies the conditions (a)-(d) from the proof
of Theorem 1. The conditions (a) and (b) are obvious. In order to prove (¢),
let every interval I C (¢o, d,) belong to K, and let ug write m, = inf o(i),

sup @(1).

cost<dy
M, = We may clearly suppose that ¢ does not agsume the
cogtai
values m,, M, at te(cy, d,) and that mq = @(eo), My = p(do). Let {a.},
{b,} be any sequences such that lun @y, = My, hmb = M, and my, < @,

<b, <M, forn=1,2,... lmthel, let

6 = int{t: @, = p(t), 0y <t < do} and d, = sup{t: b, = (1), 6o <t < do}.

We see at once that hm(-ﬂ = ¢, and hmdn = d,; moreover, ¢, ¥ ¢,

and d, # d, for n = 1,2, ... Hence, in view of our hypothesis, it fol-
lows that f is D,-integrable on each [a,, b,]. Therefore, on account of
the part which has a]ready been proved we obtain

ff dm—D*ff )oo' (1)dt.
n
Hence, the definite D*-mtegrals of f over [a,, ),] tend to a finite limit
a§ n — oo and therefore f is D,-integrable on [m,, M,]. This completes
the proof of (¢). We shall now show that K satisties (d). Let ¥ be a perfect
set, and let each interval contiguous to X belong to K. On account of
our Theorem 1 and of [3], Theorem 1.4 (p. 244), there exists a portion P
of B such that (a) ¢ is M, on P and (b) f(¢)¢’ is summable on P and
the series of the oscillations of the indefinite D,-integrals of f(p)e’ over
the intervals contiguous to P is convergent. Let I, be the smallest interval
containing P, and let {I,} be the sequence of the intervals contiguous
to P. We shall show that f is D,-integrable on ¢[I,]. In fact, on account
of (a), it follows that the intervals I, = @[L,], n = 1,2, ..., -are con-
tiguous to the closed set @ = @[P] (). Since each I,, n =1,2,..., be-

(*) of course some of I, can reduce to points.

icm
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longs to K, it follows that f is D,-integrable on each I,. Moreover, by
(a) and the part of the theorem which has already been proved, we obtain

Dy; f; I) = O(D.; flp)¢’; I,)) for positive mteger n. Therefore, by the
second pa.rt of (b), it follows that 20 (Dy; f; I,) < +oo. Further, since

@ is clearly monotone and AC on P, m view of the first part of (b) and the
well-known theorem concerning change of variable in the Lebesgue
integral, we infer that f is summable on Q. Now, it is enough to use Theo-
rem 5.1 of [5] (p. 257) to prove that f is D,-integrable on ¢[I,], and since
E-int(I,) # 0, this completes the proof of (d). We have thus shown
that the class K satisfies the conditions (a)-(d), p. 318. Hence, by Roma-
nowski’s lemma ([4], p.39) it follows that the interval [¢, d] belongs
to K, and so f is D,-integrable on [a,b]. Thus the theorem is proved:

Theorem 2 generalizes Kartak’s result ([1], p.414), and gives
more than the result of Matik ([8], p. 292) applied to the Denjoy-Perron
integral. We shall now prove

THEOREM 3. Let ¢ be a function defined on an interval [¢, d1. If, for
every function F increasing and AC on the set ¢ [[c d]], the funetion G = F (p)
is A0G, on [¢,d], then ¢ is ACMG, on [c, d].

Proof. Suppose that ¢ is not ACMG, on [¢, d]. Then, since ¢ is clearly
continuous and fulfils econdition (N) on [¢, d], it is not MG, on [e, d].
Therefore, on account of Theorem 1, there exists a perfect set F C [¢, d]
such that ¢ is not M, on any portlon of B. Let E, be the set of points
t such that (i) ¢ is not the end of the interval contiguous to E, (ii) every
neighbourhood of # contains points ¢,, ?, such that o(t) = @(t,) and (1)
7 @(t), provided that either ¢, >t and #, >t or #, < ¢ and #, < £. The
set F, is dense in F, since otherwise there would exist a portion P of B
such that PE, = 0. We see at once that ¢ is monotone at each point of
P at which it does not assume a strict extremum and which is not the
end of the interval contiguous to E. Therefore, by an argument similar
to that used in the proof of Theorem 1, it follows that ¢ is MG, on
P, and hence, by Baire’s theorem, M, on any portion of P, and so
M, on any portion of K. This contradicts the hypothesis. We have
thus proved that F, is dense in E. Let {1,},_, 2, be a sequence of pomts
belonging to El dense in E. We see at once that there exist points t’

(nyk=1,2,... and 4 =1,2,3,4) such that the following condmons
are sadnsfled
(a) tpeB for 4 =1,2 and n,k=1,2, ...,
(b) tnje < g <fpp <ty for m, b =1,2
(0) limt), =1, for i =
k

9 eney

1,2 and n=1,2,...,
(d) p(tap) = @(ty) for n, b =1,2,...,
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2

(e) for fixed m, either f ., <itnx for b =1,2,... OF B4y >,
for k =1,2,...,

(f) for fixed m, either 1° ¢(inz) > p(lhen) >t for k=1,2,...
or 2° ‘P(t:p,k) < ‘P(t:,,k“) <el(t,) for k=1,2,...

Let us define, for every positive integer m, the function F, on the
interval [a, b] = o[[¢, @]] as follows:

0 ab
(2) Fo(x) = eufk  at

# = @(t),

p =gy for k=1,2,...,
linear for other o so that F, is increasing,

where ¢, = -1 for 1° and &, = —1 for 2% Let us put

O F
@) Py = 3 20,

n=1
where M, = sup |F,(®).
agr<h
‘We shall show that F is also AC on [a, b]. For this purpose, let us re-
mark that by Fubini’s theorem (p.117 in [5])

The function F, is evidently increasing.

5]

Fr
Fi(2) = 2 nﬁl(;)ﬁ

=1

almost everywhere on [a, b]; hence

(4) (L)fﬁ'(s)ds =§7ﬁ—;-”;(fz) fl«";(s)ds

for every « belonging to [a, b]. Since each F, is evidently AC, it follows
z
that (L) jF,’,(s)ds = F,(2)—F,(a) for xe[a,b] and every positive in-
@ @
teger n. Therefore, in view of (3) and (4), we obtain (L) [F"(s)ds = F () —
a

—F(a). We have thus shown that F is AC on [e, b]. We shall now prove
that the function @ = F(p) is not ACG. on [¢, d], and this will contra-
dict the hypothesis of the theorem. For this purpose, in view of [5],
Theorem 9.1 (p. 233), it suffices to show that ¢ is not VB, on any portion
of E. Let P be any portion of E. Since the sequence {,} is dense in H,
there exists a point #, eP. Further, in view of (c), it follows that tﬁbo,,ceP
for i =1,2 and % >k, . Now, by (d), (f) and (2) we obtain

1

" [ 1
Ena (G (tna,k) - G(tfno,k)) > Z?'L = %m;; H

2 (P 2 (1210 —Fng [ (82 )

icm
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whence O(G; [tnyxs tagx]) >1/kng M, . Since the intervals [4, ., %zl
k = kn,, kny+1,..., are non-overlapping, it follows that G is not VB,
on P. Thus the theorem is proved. :

By the preceding theorem and [2], Theorem 2, we obtain

COROLLARY. Let ¢ be a function which is continuous, derivable al-
most everywhere and fulfils the condition (N) on an interval [¢, d]. If,
for every nom-negative function f, summable on the interval g|le, all, the
function f(@)p" is Da-integrable on [c, d], then the function ¢ is ACME,
on [c, d].
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