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identity operation, then so is the other, for it should be noted that
6;(@y ..., 8,) = a;¢8 while the values attained by operations of the form
(1) are always in § (a8 shown above). Certainly g = ¢; and b = ¢; implies
7 = j and then we have g = h. In all other cases we may assume that h
is given by (1) and similarly

(3 . g(@1y ooy o) = fr (2,

where 7 < 00, jiy ...y fre{l, ..., n}

It is easily seen that if an operation h of the form (1) satisfies
h(@yy ...y @) = 0, where {ay, ..., a,}eJ, then either I = co or gome num-
ber occurs at least twice in the sequence 4,, ..., 4. In both cases we have
identically h(#y, ..., #,) = 0. The same being true for g, the appearance
of 0 in (2) implies g(wy, ..., %,) =0 = h(®2y, ..., @,).

...,w,r),

It g(ay,...,a,) = h(ay,...,a,) #*0, then we must have I,r<n
(ef. (1), (3)) and, by n < m,
(4) fl(a'ily ey O) = q{“ila oy tigdy
fr(a’ju ey @) = Q{ahv seey “f,-}’

It follows mow from the one-to-one property of the mapping ¢, by
q), (2),' (3) fmd (4) that {'hl, ey @y} ={ay, ..., @, }. Hence I=r,
{i1y .y} ={j1; .-, jv} and, again by (1) and (3), ¢ = h. This completes
our proof.
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REMARKS ON THE CARTESIAN PRODUCT OF TWO GRAPHS
BY

L. SZAMKOLOWICZ (WROCLAW)

1. In paper [4] H.S. Shapiro introduced a mnotion of the Cartesian
product G, X @, of two graphs. F. Harary in his paper [2] (see also [3])
introduced a notion of the composition Gy * G, (we write G * @, instead
of Harary’s notation G,[G,], according to the associativity of this opera-
tion) of two graphs. These notions for connected graphs are special cases
of a more general notion of the Cartesiam product of two graphs with
metrics. In the present note we shall study this product under some
natural assumptions concerning these metrics, namely those of [1] (p. 630).
We shall prove that under these assumptions our product coineides with
G, X Gy or G+ G,y

2. Definitions. A pair (¥, o), where N is & finite or infinite set, is
said to be an NS-space if o(z,y) is a function defined on the whole N
whose values are non-negative integers such that

10 o(w,y) =0 if and only if » =y,

20 o(w,y) = oy, @),

° o(®,y)+e(y, 2) > elo, 2),

40 If o(w,y) = n(n > 1), then there exists an element z¢N such
that o(z,2) =1 and ¢(z,y) = n—1.

The Cartesian product of two NS-gpaces <(Ny, g;> and (N, > We
define as an NS-space (N,XN,, ¢), where N, XN, is the set of ordered
pairs (@,¥), ®<N, yeN,, with the metric o defined by

o[(®y, 41) 5 (@2, 2)] = fLo1 (%15 @a)y 0a(Y1y ¥e)] = Ik, m),

b = 01(®1, Bs), M = 03(41, Ya)y @1, B2eN1, Y1, YaeN,, where f is & fune-
tion whose values are non-negative integers and satxsﬁes the following
conditions (see [1], p. 630):

(1) f(k, m) = f(m, k)

for all non-negative integers m, %,
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(2) f0,1)=1,

(8) fllym) <f(¥',m’) for m' >m and &' >F,

(4) f(s-k,s-m)=sf(k,m) for all non-negative integers s, k, m,
(8) f(k,f(m,s)) =f(f(k, m),s}] for all non-negative integers %, m,s.
From (4) and (2) it follows that

(6) f(0, m) =m-f(0,1) =m,

Hence, according to (1), we get the equality

(7) f(k,0) =F&.

The inequality

(8) Sk, m) < k+m

follows from the triangle inequality 3° for the points (a,, y,), (@5 Yy)
and (@, 9,), and from (6) and (7).
Further, from (3), (2) and (8) we obtain

9) 1<0(1,1) 2.

3. Bohnenblust proved in [1] that if values of f(£, ) and &, n are
non-negative real numbers, then any function satisfying the five con-
ditions (1)-(5) is necessarily of the form

F(&ym) = (gp eyl
for some real number p (0 <p < oo), and if, in addition, (8) is assumed,
then 1 <p < co. We are going to prove the following.

THEOREM. Any function f, whose values are non-negative integers,
satisfying the conditions (1)-(5) and (8) is of one of the forms
flk,m) =k+m.

Proof. According to (9), we consider two cases according as f(1, 1)
=1 or f(1,1) = 2.

A. f(1,1) =1. From (6), (7) and (3) it follows that flk, m) >
max(k, m). On the other hand, from (4) and (3) we obtain flk,m) <
max(k, m).

Consequently,

f(k,m) = max(k,m) or

f(k, m) = max(k, m).
- B.f(1,1) = 2. Any function f satisfying conditions (1)-(8) generates
2 sequence {a,}, n =1,2,..., defined inductively by

(%) w=1; @ =Ff1,a_) forax>1.

This sequence is evidently non-decreasing.
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Furthermore, in virtue of (1), (5) and definition (x), we have the
equality
(++) Oy =f(am )

for any integers =, m > 0. This assertion was proved in paper [1] (Lem-
ma 4.1).
We now prove that

o =% for any % >0.

(#4%)
By () and (8), we have

(1) top1 = f(1, oaes) < ap_s+1.

From (), (++) and (4) we obtain

(i) ag = f(1, ap_1) = flag, o) = a-f(1,1) = 2-a,
hence, by (8),
(iii) o1 = 2 a5—1.

To prove (+), we proceed by induction. We have, evidently, ¢, = 1,
ay = f(1,1) = 2. Assume that

o =¢ Tfor & <2k—2.

Then from (i) it follows that ay_; < 2k—1, and from (iii) ey,
> 2k—1. Hence ay_, = 2k—1.

The equality ay = 2k follows at once from (ii) and the induction
hypothesis. Thus (x++) is proved.

From (++) and (++) we obtain f(k, m) = k+m. Thus if f(1,1) =2,
then f(k, m) = k-+m.

3. Applications to connected graphs. A graph @ is a pair <N, W),
where N is a finite or infinite set of elements (vertices) and W a relation
for which the following conditions hold: .

> oWy - yWaz,
2 ~aWa.

Let w,‘yeN. A path in @ from @ fo y is a finite sequence {x.}, #xe N,
k=0,1,...,n, such that

for k+#j4 k,j=0,1,...,m,
k=10,1,...,n,

(a) @ 5
(2a) @, Way,,; for
By =Y.

The number n is the length of the path.

(aaa) @y, = @,
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The graph G is connected if for every point # and y of that graph
there exists a path joining these points in G.

The distance d(z,y) of points » and y of graph @ is the minimum
of the lengths of all paths joining # and y in @. It iy easy to verify that
d is a metric satisfying conditions 10-4°. Thus every connected graph
may be considered as an NS-gpace.

On the other hand, for every NS-space (N, o> there exists exactly
one connected graph (N, W), where W is given by

Wy if and only if g(z,y) = 1.

The distance d(z,y) in & = (N, W) is evidently o(x, y).

The Cartesian product of two connected graphs G, G, is the Cartesian
broduet of these graphs considered as NS-spaces @, = (N, W~
~<{Nyy 000 and Gy = (Ny, Wy> ~ (N, 05). From our theorem it follows
that the Cartesian product of Gy and @, is a graph G = (¥ 1 XNoy WD~
~<{N;XN,, 0>, where

max [0y (%1 #2), 02(¥1, ¥2)]
O 01 (1) @s)+ 0a(¥1, Ys).

In ‘the first case the relation W in & is given by

W@, 91)s @2y 92)] o and only if o, =m, and Wy(yy,vs), or
Wiy, @) and y, = ys, or Wylwy, 2,) and WYz 92)-

We see that@ is in this case the comopsition @, +@, in the sense of
Harary.

In the second case the relation W in G is given by

W@, 41)y (@2, 9a)] &f and only 4f By=1a, and Wy(ys,ys), or
W@y, @) and y, = y,.

G I8 the Cartesian product Gy,x @, in the sense of Shapiro.

4. Remarks and problems. It iy obvious that both products Gyx @,
and @+@, are associative. Therefore such products as @G X. .. XGy Or
Gy*.. xGy can be written without brackets. Such products can be defined
also for infinite systems of graphs Gy = (N;, W,> (tT):

-ﬂ,zGt= <£,Nt{{f: g} fygeteP;Nz, I =95 fit) # g(t) for exactly ome
toel and {f(t,), g(ta)}EWtaDy

[T 6. = <BXNy, {{f, g}: 19PN, g f) #g) implies (f(),
9O} Wi,

where P N, denotes the Cartesian product of the system of sets X,

(tel), i e., the set of all functions over 7' satisfying f(¢) e N, for all 7.
Clearly II” is a generalization of # and IT* a generalization of *.

o[(#1; 91), (mz, Y2)] =

— iom°
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The definitions of II° and I7* and the following problem are due to
Jan Mycielski.

P 348. Is the decomposition of a graph into a IT® or II* product
of indecomposable non-one-point graphs unique (disregarding the order
of its terms)?
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