78

R. KAPAŁA AND A. LELEK

REFERENCES

- [1] R. H. Bing, Sets cutting the plane, Annals of Mathematics 47 (1946), p. 476-479.
- [2] E. Čech, Trois théorèmes sur l'homologie, Publications de l'Université Masaryk de Brno 144 (1931), p. 1-31.
- [3] S. Eilenberg, Transformations continues en circonférence et la topologie du plan, Fundamenta Mathematicae 26 (1936), p. 61-112.
- [4] C. Kuratowski, Théorème sur trois continus, Monatshefte für Mathematik und Physik 36 (1929), p. 214-239.
- [5] Quelques généralisations des théorèmes sur les coupures du plan, Funda menta Mathematicae 36 (1949), p. 277-282.
 - [6] Topologie II, Warszawa 1952.

And the first of the second

CHAIR OF MATHEMATICS, WROCŁAW POLYTECHNIC SCHOOL INSTITUTE OF MATHEMATICS, WROCŁAW UNIVERSITY

Reçu par la Rédaction le 31, 12, 1960

COLLOQUIUM MATHEMATICUM

VOL. IX

1962

FASC, 1

ON COMPACTIFICATIONS OF SOME SUBSETS OF EUCLIDEAN SPACES

 $\mathbf{B}\mathbf{Y}$

A. LELEK (WROCŁAW)

Let S_n be the unit sphere, i. e. the sphere with centre 0 and radius 1 in the (n+1)-dimensional Euclidean space E^{n+1} . I say that a set $X \subset S_n$ is densely connected in S_n if the set $R \cap X$ is connected for every connected open subset R of S_n . Obviously, each set in S_n (where $n = 0, 1, \ldots$) that is non-degenerate (i. e. containing at least two distinct points) and densely connected in S_n is dense in S_n , but not inversely.

THEOREM. If a non-degenerate set $X \subset S_n$ is densely connected in S_n (n = 0, 1, ...), Y is a compact metric space and $h: X \to Y$ is a homeomorphism such that $\dim[Y - h(X)] \leq 0$, then $n \leq \dim Y$.

Proof. Let p, $q \in X$ and $p \neq q$. Since the sphere S_n is topologically homogeneous, we can assume that p, q are the poles p_N (north) and p_S (south) of S_n , respectively. The set Y - h(X) being empty or 0-dimensional, there exists (see [3], p. 164) an open neighbourhood G of h(p) in Y such that

(1)
$$\operatorname{Fr}(G) \subset h(X)$$

and $h(q) \in Y - \overline{G}$ (1). Then neither h(p) nor h(q) belongs to Fr(G) and so there are such sufficiently small open neighbourhoods P and Q of p and q in S_n , respectively, that

(2)
$$\operatorname{Fr}(G) \subset Y - [\overline{h(P \cap X)} \cup \overline{h(Q \cap X)}].$$

The theorem being evidently true for n=0, let us assume that n>0 and denote by r the projection of $S_n-\{p_N,\,p_S\}$ onto the equator S_{n-1} of S_n along the meridians of S_n . Since r is a continuous mapping

⁽¹⁾ \overline{G} and Fr(G) denote the closure and the boundary of G in Y, respectively. The notation from [3] and [4] is used throughout in this proof.

and $S_n - (P \cup Q)$ is a compact set, there exists a number $\varepsilon > 0$ such that

$$(3) \qquad x, x' \in S_n - (P \cup Q) \text{ and } |x - x'| < \varepsilon \text{ imply}$$

$$|r(x) - r(x')| < \sqrt{2(n+1)/n}.$$

But $\operatorname{Fr}(G)$ is a compact set and h^{-1} is a continuous mapping. It follows from (1) and (2) that there exist open sets H_1, \ldots, H_j in Y such that

(4)
$$\operatorname{Fr}(G) \subset H_1 \cup \ldots \cup H_j \subset Y - [\overline{h(P \cap X)} \cup \overline{h(Q \cap X)}],$$

(5)
$$\delta[h^{-1}(H_i)] < \varepsilon \quad \text{for} \quad i = 1, ..., j.$$

Now let us suppose on the contrary that dim $Y \leq n-1$. Then (4) and the compactness of Fr(G) imply the existence of open sets I_1, \ldots, I_k in Y, satisfying

(6)
$$\operatorname{Fr}(G) \subset I_1 \cup \ldots \cup I_k \subset \overline{I}_1 \cup \ldots \cup \overline{I}_k \subset H_1 \cup \ldots \cup H_j$$

and $\dim \operatorname{Fr}(I_i) \leq n-2$ for $i=1,\ldots,k$. Hence the union $\operatorname{Fr}(I_1) \cup \ldots \cup \operatorname{Fr}(I_k)$ is an at most (n-2)-dimensional set (see [3], p. 176) contained in the open set $H_1 \cup \ldots \cup H_j$, according to (6). Therefore there exist (see [3], p. 182 and 184) open sets J_1,\ldots,J_j in Y such that

(7)
$$\operatorname{Fr}(I_1) \cup \ldots \cup \operatorname{Fr}(I_k) \subset J_1 \cup \ldots \cup J_j,$$

(8)
$$J_i \subset H_i \quad \text{for} \quad i = 1, ..., j,$$

(9)
$$J_{i_0} \cap \ldots \cap J_{i_{n-1}} = 0$$
 for $1 \le i_0 < \ldots < i_{n-1} \le j$.

Applying $\dim[Y-h(X)] \leq 0$, let us take a finite cover K_1, \ldots, K_l of the compact set $\operatorname{Fr}(I_1) \subset \ldots \subset \operatorname{Fr}(I_k)$, where all the sets K_i are open in Y, have the boundaries contained in h(X) and the diameters less than the Lebesgue number of the cover J_1, \ldots, J_j , according to (7). Then we have

(10)
$$\operatorname{Fr}(I_1) \cup \ldots \cup \operatorname{Fr}(I_k) \subset K_1 \cup \ldots \cup K_l,$$

 $\operatorname{Fr}(K_i) \subset h(X)$ and for every $i=1,\ldots,l$ a number $\varphi(i)=1,\ldots,j$ exists such that

(11)
$$\overline{K}_i \subset J_{\varphi(i)} \quad \text{for} \quad i = 1, ..., l.$$

Putting

$$C_i = \bigcup_{\substack{\varphi(m)=i\\m=1,\dots,l}} \operatorname{Fr}(K_m)$$

for i = 1, ..., j, we thus get

$$(12) C_1 \cup \ldots \cup C_i = \operatorname{Fr}(K_1) \cup \ldots \cup \operatorname{Fr}(K_l) \subset h(X),$$

(13)
$$C_i \subset J_i \subset H_i \subset Y - [h(P \cap X) \cup h(Q \cap X)]$$
 for $i = 1, ..., j$,

by (4), (8) and (11). Moreover, each set C_i is compact and (12) implies that the union

(14)
$$B = h^{-1}(C_1) \cup \ldots \cup h^{-1}(C_j)$$

is a compact subset of $X \subset S_n$. According to (13), the sets $G_i = B \cap h^{-1}(J_i)$ (i = 1, ..., j) are open in B and their union is B. It follows from (8) that $G_i \subset h^{-1}(H_i)$, which gives $\delta(G_i) < \varepsilon$, by (5). We also have

$$G_{i_0} \cap \ldots \cap G_{i_{n-1}} \subset h^{-1}(J_{i_0} \cap \ldots \cap J_{i_{n-1}}) = 0$$

for $1 \le i_0 < \ldots < i_{n-1} \le j$, according to (9), whence the inequality $d_{n-1}(B) < \varepsilon$ follows (see [4], p. 60). Thus there is such a continuous mapping f of B that

$$\dim f(B) \leqslant n-2,$$

(16)
$$\delta[f^{-1}(y)] < \varepsilon \quad \text{for} \quad y \in f(B)$$

(see [4], p. 64). Since $C_i \cap [h(P \cap X) \cup h(Q \cap X)] = 0$, by (13), we obtain $h^{-1}(C_i) \cap (P \cup Q) \cap X = 0$ for $i = 1, \ldots, j$ and so $B \subseteq S_n - (P \cup Q)$, by (14) and the inclusion $B \subseteq X$. Therefore the projection r is determined on B. If we had r|B non $\simeq 1$, then, by (3) and (16), there would exist an essential mapping of f(B) onto S_{n-1} (see [4], p. 284), contrary to (15) (see [2], p. 88). Thus we have the homotopy $r|B \simeq 1$, which means that the set B does not separate the points p and q in S_n (see [4], p. 187 and 345). Let R be the component of $S_n - B$, containing p and q. Hence R is a connected open set in S_n (see [4], p. 163) and so the set

$$(17) R \cap X \subset S_n - B$$

is connected, X being densely connected.

Since the neighbourhood G of h(p) does not contain the point h(q), the connected set $h(R \cap X)$ containing these points must intersect $\operatorname{Fr}(G)$ (see [4], p. 80). But $h(p) \in h(P)$, whence the point h(p) lies outside any of the sets I_1, \ldots, I_k , according to (4) and (6), as well as of the sets K_1, \ldots, K_l , according to (4), (8) and (11). Thus, for the same reason as above, (6) implies that $h(R \cap X)$ must intersect at least one of the sets $\operatorname{Fr}(I_1), \ldots, \operatorname{Fr}(I_k)$ and (10) implies that $h(R \cap X)$ must intersect at least one of the sets $\operatorname{Fr}(K_1), \ldots, \operatorname{Fr}(K_l)$. It follows from (12) that $h(R \cap X)$ intersects some C_{i_0} ($i_0 = 1, \ldots, j$). We infer, by virtue of (14), that

$$0 \neq R \cap X \cap h^{-1}(C_{i_0}) \subseteq R \cap X \cap B,$$

which contradicts (17).

Colloquium Mathematicum IX

COROLLARY. If \tilde{X} is a metrizable compactification of a set $X \subset E^n$ $(n=1,2,\ldots)$ such that

$$\dim(\tilde{X}-X) \leq 0$$
 and $\dim(E^n-X) \leq n-2$,

then $n \leq \dim \tilde{X} \leq \dim X + 1$. Hence if $X \subset E^n$ and

$$\dim X \leqslant n-2 \geqslant \dim(E^n-X),$$

then X has no metrizable compactification \tilde{X} satisfying the inequality $\dim(\tilde{X}-X) \leq 0$, i. e. X is not peripherically compact (see [1], p. 58).

For we evidently have $\dim \tilde{X} \leq \dim X + 1$ (see [3], p. 175) and the inequality $\dim(E^n - X) \leq n - 2$ implies, by virtue of the Mazurkiewicz Theorem (see [4], p. 343), that the set $R - (E^n - X) = R \cap X$ is a semicontinuum for every connected open subset R of E^n . Thus the set X is densely connected in the compactification S_n of E^n and the inequality $n \leq \dim \tilde{X}$ follows, according to the theorem.

EXAMPLE. There exists for every $n=1,2,\ldots$ a separable metric space A_n such that 1° dim $A_n=n$, 2° A_n is topologically complete and peripherically compact and 3° if C is a metrizable compactification of A_n , satisfying dim $(C-A_n) \leq 0$, then $n+1 \leq \dim C$.

For denote by M_n^m the set of points in E^n at most m of whose coordinates are rational and put $A_n = M_{n+1}^n$ for $n=1,2,\ldots$ Hence 1° follows (see [2], p. 29). Obviously, $E^{n+1} - A_n$ is an F_{σ} -set and the completeness of A_n follows by the Aleksandrov Theorem (see [3], p. 316). Each open cell in E^{n+1} , bounded by hyperplanes with the equations of type $x_i = a$ ($1 \le i \le n+1$), where a is an irrational number, has a boundary contained in A_n ; thus we get 2^o . But $\dim(E^{n+1} - A_n) = \dim L_{n+1}^{n+1} = 0 \le n-1$ (2) and so 3° follows, according to the corollary.

Remarks. The above example answers in the negative a question of Aleksandrov (see [1], p. 59) for the case of metrizable compactifications. It is answered in the general case by Sklyarenko (see [5], p. 41), who indicates the set $I^2 \cap L_2^1$ (2). The possibility of such an answer had been suggested to me by R. Engelking before Sklyarenko's paper [5] appeared.

It seems very probable that applying a theorem announced by Sklyarenko (see [5], p. 40, Theorem 3), one could generalize our theorem to the case where the set X is peripherically compact and densely connected in E^n , the space Y is compact, completely regular and not necessarily metrizable, and the set Y - h(X) is punctiform (i. e. it contains only degenerate continua) instead of being 0-dimensional.

Finally, the following question arises:

P 350. Is it true that if a non-degenerate set $X \subset S_n$ is densely connected in S_n (n = 0, 1, ...), Y is a compact metric space and $h: X \to Y$ is a homeomorphism such that $\dim[Y - h(X)] \leq 0$, then every closed separator C of h(X) satisfies $n-1 \leq \dim C$, that is the inequality $n \leq \dim X$ holds (see [4], p. 105)?

REFERENCES

- [1] П. С. Александров, О некоторых результатах в теории топологических пространств, полученных за последние двадцать пять лет, Успехи Математических Наук 15 (1960), р. 25-95.
 - [2] W. Hurewicz and H. Wallman, Dimension theory, Princeton 1948.
 - [3] C. Kuratowski, Topologie I, Warszawa 1952.
 - [4] Topologie II, Warszawa 1952.
- [5] Е. Г. Скияренко, О совершенных бикомпактных расширениях, Доклады Академии Наук СССР 137 (1961), р. 39-41.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 20. 4. 1961

⁽²⁾ In the notation from [2] (see p. 162-163).