256

Á. Császár

 E_3 : l'ensemble

$$\left\{ \left(\frac{1}{n}, y\right) : n = 1, 2, ..., 0 \leqslant y \leqslant \frac{1}{n} \right\} \cup \left\{ (x, 0) : 0 \leqslant x \leqslant 1 \right\}$$

du plan euclidien;

 E_4 : l'ensemble

$$\bigcup_{n=1}^{\infty} \{(x, y): \ 0 \le x \le 1/n^2, y = nx\}$$

du plan euclidien.

L'espace E_i (i=1,...,4) satisfait aux conditions (4.1)-(4.4), excepté (4.i).

Remarquons encore que les représentants des graphes finis et connexes, appelés courbes ordinaires par K. Menger, ont été caractérisés topologiquement par cet auteur de la façon suivante (voir [5], p. 304 et [6], p. 266; cf. aussi [2], p. 325, théorème V):

Pour que l'espace G soit homéomorphe à un représentant d'un graphe fini et connewe, il faut et il suffit que G soit un continu métrisable, ne contenant que des points d'ordre fini et un nombre fini de points de ramification.

Travaux cités

- [1] C. Berge, Théorie des graphes et ses applications, Paris 1958.
- [2] Á. Császár et J. Czipszer, Sur les courbes irramifiées, Acta Math. Acad. Sci. Hung. 9 (1958), p. 315-328.
 - [3] D. König, Theorie der endlichen und unendlichen Graphen, Leipzig 1936.
 - [4] C. Kuratowski, Topologie II, Warszawa 1952.
- [5] K. Menger, Grundzüge einer Theorie der Kurven, Math. Annalen 95 (1926), p. 277-306.
 - [6] Kurventheorie, Leipzig und Berlin 1932.
- [7] J. Nagata, On a necessary and sufficient condition of metrizability, J. Inst. Polytechn. Osaka City Univ. Ser. A Math. 1 (1950), p. 93-100.
- [8] Ю. М. Смирнов, О метризации топологических пространств, Усп. Мат. Наук 6 (46), (1951), р. 100-111.

Reçu par la Rédaction le 2. 12. 1960

Some remarks on Borsuk generalized cohomotopy groups *

bу

J. W. Jaworowski (Warszawa)

1. In [3] K. Borsuk introduced the concept of generalized cohomotopy groups. We recall some of the basic definitions.

Let X be a topological space. A closed subset A_k of X is called a k-skeleton of X, if $\dim A_k \leq k$ and if every closed subset of X of dimension $\leq k$ can be continuously deformed in the space X into A_k .

If X is a polyhedron and K is a triangulation of X (or, more generally, if X is a CW-complex given in a cellular decomposition K), then the k-skeleton K^m of the complex K is also an m-skeleton in the sense of Borsuk of the space X. Borsuk also showed that if X is a compact ANR-space satisfying the so-called condition (Δ) , then there exists a k-skeleton of X for every $k=0,1,\ldots$ (see [2]).

Let S be an ANR-space and let A be a closed subset of the space X. Consider the set S^X of all continuous mappings of X into S and denote by S^{ACX} the subset of S^A consisting of all mappings $f: A \rightarrow S$ which are extendable over X.

If $f \in S^X$ then we denote by [f] the homotopy class of the mapping f, by $[S^X]$ the set of homotopy classes of the mappings $f \in S^X$, and by $[S^{A \subset X}]$ the set of homotopy classes of mappings $f \in S^{A \subset X}$. By the homotopy extension theorem, $[S^{A \subset X}]$ is a subset of $[S^A]$.

If S is the n-sphere S^n and $\dim A < 2n-1$, then a group operation in $[S^A]$ can be defined and, under this operation, $[S^A]$ becomes an Abelian group which is called the n-th cohomotopy group $\pi^n(A)$ of A (see [5]).

Let $\pi^n(A \subset X)$ denote the subgroup of $\pi^n(A)$ generated by the elements of $\lceil S^{A \subset X} \rceil$. If A = X and $\dim X < 2n-1$, then $\pi^n(A \subset X) = \pi^n(X)$.

Borsuk showed that if A and B are two k-skeletons of X and k < 2n - 1, then the groups $\pi^n(A \subset X)$ and $\pi^n(B \subset X)$ are isomorphic. Hence if k < 2n - 1 and if the space X possesses a k-skeleton, then an abstract group $\pi^n_k(X)$, isomorphic to $\pi^n(A \subset X)$, can be defined. If dim X = k, then $\pi^n_k(X) = \pi^n(X)$. In particular, if X is a polyhedron (or, more generally,

^{*} This work was done when the author was supported by the National Science Foundation under NSF-G14779.

a CW-complex, or a compact ANR-space with property (Δ)), then the group $\pi_k^n(X)$ is defined for every n and k < 2n-1.

In this paper we prove some elementary properties of the groups $\pi_k^n(X)$ and express them in the most simple cases in terms of known homological invariants.

2. If X, Y, S are three spaces, and $f: Y \rightarrow X$ is a mapping, then the assignment $\alpha \rightarrow \alpha f$, for $\alpha \in S^X$, defines a function

$$f^{\sharp}: [S^X] \rightarrow [S^Y]$$

which has the following properties:

(i) If $f: X \to X$ is the identity mapping, then $f^{\sharp\sharp}$ is the identity.

(ii) If Z is another space and $g: Z \rightarrow Y$ is a mapping, then

(iii) If $g: Y \rightarrow X$ and $g \simeq f$, then $g^{\ddagger =} = f^{\ddagger}$.

If S is the n-sphere S^n and $\dim X$, $\dim Y < 2n-1$, then $f^{\#}$ is a homomorphism of the cohomotopy groups, $f^{\#}$: $\pi^n(X) \to \pi^n(Y)$ (see [5], p. 214).

THEOREM 1. Let A be a closed subset of X, B a closed subset of Y and let S be an ANR-space. Let $f\colon Y\to X$ be a mapping such that $f(B)\subset A$ and let $f_0\colon B\to A$ be the mapping defined by f. Then f_0 maps $[S^{A\subset X}]$ into $[S^{B\subset Y}]$ and therefore defines a function

$$f: [S^{ACX}] \rightarrow [S^{BCY}]$$

which has the following properties:

- (i) If $f: X \to X$ is the identity, then $\bar{f}: \lceil S^{ACX} \rceil \to \lceil S^{BCY} \rceil$ is the identity.
- (ii) If C is a closed subset of Z and $g: Z \to Y$ is a mapping such that $g(C) \subset B$, then $\overline{fg} = \overline{g}\overline{f}$.
- (iii) If $g: Y \rightarrow X$ is a mapping such that $g(B) \subset A$ and $g \simeq f$, then $\bar{g} = \bar{f}$.

Proof. If $[a] \in [S^{ACX}]$, $a: A \to S$ and $a': X \to S$ is an extension of a, then $a'f: Y \to S$ is an extension of the mapping $af_0: B \to S$; but $[af_0] = f_0^{\#}[a]$.

Properties (i) and (ii) follow from the corresponding properties above. To prove property (iii) we notice that the mapping αf_0 can be written as $\alpha' f i_B$, where $i_B \colon B \to X$ is the inclusion mapping. Since $f \simeq g \colon X \to X$, then $f i_B \simeq g i_B \colon B \to X$ and hence $\alpha' f i_B \simeq \alpha' g i_B \colon B \to S$.

LEMMA 1. Let X be a compact ANR-space with property (Δ), A a k-skeleton of X, B a compact subset of Y of dimension $\leq k$ and f a mapping of Y into X. Then f is homotopic to a mapping $f' \colon Y \to X$ such that $f'(B) \subset A$.

Proof. By [1], p. 79, the mapping f is homotopic to a mapping f_1 : $Y \to X$ such that $\dim f_1(B) \leq k$. Since A is a k-skeleton of X, there exists a mapping μ : $f_1(B) \to A$ such that the inclusion i_1 : $f_1(B) \to X$ and the mapping $i_A\mu$: $f_1(B) \to X$, where i_A : $A \to X$ is the inclusion, are homotopic. It follows that the partial mapping f_1i_B : $B \to X$, where i_B : $B \to Y$ is the inclusion, is homotopic to a mapping f_2 : $B \to X$ such that $f_2(B) \subset A$. Since X is an ANR-space, the mapping f_2 can be extended to a mapping f'_1 : $Y \to X$ such that $f' \simeq f$. Then f' has the desired properties.

THEOREM 2. Let X and Y be two spaces such that X is a compact ANR-space with property (Δ) and let S be an ANR-space. Let A be a k-skeleton of X and let B a compact subset of Y such that dim $B \leq k$. Let f be a mapping of Y into X. Then there exists a unique function

$$f_{A,A}: \lceil S^{ACX} \rceil \rightarrow \lceil S^{BCY} \rceil$$

which has the following properties:

- (i) If $f: X \to X$ is the identity, then $f_{A,A}$ is the identity.
- (ii) If Y is a compact ANR-space, B a k-skeleton of Y, Z is another space and C is a compact subset of Z with $\dim C \leq k$ and $g: Z \rightarrow Y$ is a mapping, then

$$\overline{(fg)}_{A,C} = \bar{g}_{B,C}\bar{f}_{A,B}$$

- (iii) If $f, g: Y \rightarrow X$ and $f \simeq g$, then $\bar{f}_{A,B} = \bar{g}_{A,B}$.
- (iv) If $f: Y \to X$ and $f(A) \subset B$, then $\overline{f}_{A,B} = \overline{f}$.

Proof. Using Lemma 1 we replace f by a mapping $f': Y \to X$ homotopic to f and such that $f'(B) \subset A$ and we define $f_{A,B} = f'$. If $f'': Y \to X$ is another mapping homotopic to f such that $f''(B) \subset A$, then, by property (iii) in Theorem 1, $\overline{f''} = \overline{f'}$. Hence the function $f_{A,B}$ is uniquely defined and, obviously, it has properties (iii) and (iv) of Theorem 2. This implies that the function $f_{A,B}$ is unique. The properties (i) and (ii) follow from the corresponding properties of Theorem 1.

THEOREM 3 Let A be a closed subset of X, B a closed subset of Y and S be the n-sphere S^n . Let $f\colon Y\to X$ be a mapping such that $f(B)\subset A$, and $f_0\colon B\to A$ be the mapping defined by f. Then the homomorphism $f_0^{\sharp\sharp}\colon \pi^n(A)\to \pi^n(B)$ of the cohomotopy groups induced by f_0 maps $\pi^n(A\subset X)$ into $\pi^n(B\subset Y)$ and hence induces a homomorphism

$$\tilde{f}: \pi^n(A \subset X) \to \pi^n(B \subset Y)$$

which has the following properties:

- (i) If $f: X \to X$ is the identity, then \tilde{f} is the identity.
- (ii) If C is a closed subset of Z and g: $Z \rightarrow Y$ is a mapping such that $g(C) \subset B$, then $(\widetilde{fg}) = \widetilde{g}\widetilde{f}$.
- (iii) If $f, g: Y \rightarrow X$ are two mappings such that $f(B) \subset A$, $g(B) \subset A$ and $f \simeq g$, then $\tilde{f} = \tilde{g}$.

Theorem 3 will be a consequence of the following algebraic lemma the proof of which is evident:

LEMMA 2. Let G, H be Abelian groups, $\mathfrak A$ a subset of G, $\mathfrak B$ a subset of H and $\varphi \colon G \to H$ a homomorphism such that $\varphi(\mathfrak A) \subset \mathfrak B$. Let G_0 be the subgroup of G generated by $\mathfrak A$ and G the subgroup of G generated by $\mathfrak B$. Then: (1) φ maps G_0 into G and therefore defines a homomorphism G is $G \to H_0$ such that G is $G \to H_0$, then G is G if G is G is G in epimorphism.

Proof of Theorem 3. By Theorem 1, we can apply the lemma to the case, when

$$G = \pi^{\mathbf{n}}(A)$$
, $H = \pi^{\mathbf{n}}(B)$, $\mathfrak{A} = [S^{A \subset X}]$, $\mathfrak{B} = [S^{B \subset Y}]$, $G_0 = \pi^{\mathbf{n}}(A \subset X)$, $H_0 = \pi^{\mathbf{n}}(B \subset Y)$

and φ is the homomorphism of cohomotopy groups induced by f_0 . The properties (i), (ii), (iii) follow from the corresponding properties in Theorem 1.

THEOREM 4. Let X, Y be two spaces such that X is a compact ANR-space with property (Δ) and let S be the n-sphere S^n . Let A be a k-skeleton of X and B a compact subset of Y with $\dim B \leq k$, where k < 2n-1. Let $f \colon Y \to X$. Then f defines a unique homomorphism

$$f_{A,B}^{\sharp}: \pi^n(A \subset X) \to \pi^n(B \subset Y)$$

which has the following properties:

- (i) If $f: X \rightarrow X$ is the identity, then $f_{A,A}^{\sharp}$ is the identity.
- (ii) It Y is a compact ANR-space, B is a k-skeleton of Y, C is a compact subset of a space Z with $\dim C \leq k$ and $g \colon Z \to Y$, then

$$(fg)_{A,C}^{\sharp} = g_{B,C}^{\sharp} f_{A,B}^{\sharp}$$
.

- (iii) If $f, g: Y \rightarrow X$ and $f \simeq g$, then $f_{A,B}^{\ddagger} = g_{A,B}^{\ddagger}$.
- (iv) If $f: Y \to X$ and $f(A) \subset B$, then $f_{A,B}^{\sharp} = \tilde{f}$.
- (v) $f_{A,B}^{\sharp}[S^{ACX}] = f_{A,B}$

Proof. The existence of $f_{A,B}$ and property (v) follows from Theorem 2 and from the first part of Lemma 2. Properties (i), (ii) follow from the corresponding properties in Theorem 2. Properties (iii) and (iv) follow from Theorem 2 and 3 and from the second part Lemma 2.

COROLLARY 1. Let A and B be two k-skeletons of a compact ANR-space X with property (Δ) and let S be an ANR-space. Then the function $\bar{e}_{A,B}$, where $e: X \rightarrow X$ is the identity mapping, establishes a unique one-to-one correspondence between the sets $[S^{A \subset X}]$ and $[S^{B \subset X}]$

COROLLARY 2. Let S be the n-sphere S^n and let A and B be two k-skeletons of a compact ANR-space X with property (Δ) such that k < 2n-1. Then the identity mapping $e \colon X \to X$ induces a unique isomorphism $e_{A,B}^{\sharp} \colon \pi^n(A \subset X) \approx \pi^n(B \subset X)$.

The fact that $e_{A,B}^{\sharp}$ is an isomorphism follows from properties (i) and (ii) in Theorem 4.

Thus we have obtained the theorem proved by Borsuk on isomorphism between $\pi^n(A \subset X)$ and $\pi^n(B \subset X)$. We stress the fact that this isomorphism is unique; for this allows us to state the following

COROLLARY 3. Let X and Y be two compact ANR-spaces with property (Δ) and let k < 2n-1. Let $f \colon Y \to X$ be a mapping. Then f induces a unique homomorphism

$$f^{\ddagger}: \ \pi_k^n(X) \to \pi_k^n(Y)$$

which has the following properties:

- (i) If $f: X \rightarrow X$ is the identity, then $f^{\sharp\sharp}$ is the identity.
- (ii) If Z is a compact ANR-space with property (Δ), and g: $Z \rightarrow Y$, then $(fg)^{\#} = g^{\#}f^{\#}$.
 - (iii) If $f, g: Y \rightarrow X$ and $f \simeq g$, then $f^{\sharp\sharp} = g^{\sharp\sharp\sharp}$.
- (iv) If $k = \dim X$, then $f^{\#}$ coincides with the homomorphism of cohomotopy groups induced by f.

Property (iv) justifies notation (1).

3. We assume throughout this section that X is a compact ANR-set with property (Δ). Then, as it has been shown by Borsuk, for every k=0,1,... there exists in X a k-skeleton A_k . Let $e\colon X\to X$ be the identity mapping and let $k\leqslant l\leqslant \dim X$. Consider the function

$$i_{l,k} = \overline{e}_{A_l,A_k} : [S^{A_l \subset X}] \rightarrow [S^{A_k \subset X}]$$

defined by e (see Theorem 2). We observe that in the case, when $A_k \subset A_l$, the function $i_{k,k}$ is onto; hence by the uniqueness property stressed in Theorem 2 and in Corollary 1 it follows that the function $i_{l,k}$ is always onto. This can also be shown directly, for the function $i_{l,k}$ can be defined as follows:

Let $a = [a] \in [S^{A_1 \subset X}]$, where $a: A_1 \to S$. Then there exists an extension $a': X \to S$. We claim that the restriction $a'i_{A_k}: A_k \to S$, where $i_{A_k}: A_k \to X$ is the inclusion, represents $i_{l,k}(a)$. For, by Lemma 1, there exists a mapping $f: X \to X$ homotopic to the identity e such that $f(A_k) \subset A_l$. Then the function $f: [S^{A_1 \subset X}] \to [S^{A_k \subset X}]$ (see Theorem 1) defined by f coincides, by property (iii) and (iv) in Theorem 2, with $i_{l,k} = \overline{e}_{A_l,A_k}$. But $\overline{f}[a] = [a'fi_{A_k}]$, and, since $f \simeq e: X \to X$, then $a'fi_{A_k} \simeq a'ei_{A_k} = a'i_{A_k}$.

If S is the n-sphere and l < 2n-1, then we have a homomorphism

$$h_{l,k} = e_{A_l,A_k}^{\sharp}: \pi^n(A_l \subset X) \to \pi^n(A_k \subset X)$$

(see Theorem 4). By the third part of Lemma 2 we infer that $h_{l,k}$ is an epimorphism.

Denote $i_{k,k-1} = i_k$, $h_{k,k-1} = h_k$. Therefore, if k < 2n-1, then $\pi^n(A_{k-1} \subset X)$ is the image of $\pi^n(A_k \subset X)$ under the homomorphism h_k . We have therefore a sequence

$$\cdots \left[S^{A_{2n}\subset X}\right] \xrightarrow{i_{2n}} \left[S^{A_{2n-1}\subset X}\right] \xrightarrow{i_{2n-1}} \left[S^{A_{2n-2}\subset X}\right] \subset \pi^{n}(A_{2n-2}\subset X)$$

$$\xrightarrow{h_{2n-2}} \pi^{n}(A_{2n-3}\subset X) \xrightarrow{h_{2n-3}} \cdots \xrightarrow{h_{n+3}} \pi^{n}(A_{n+1}\subset X) \xrightarrow{h_{n+1}} \pi^{n}(A_{n}\subset X) \to 0$$

such that each i_k is onto, and each h_k , for $2n-2 \leqslant k \leqslant n$, is an epimorphism.

It is clearly seen that the kernel of $h_{l,k}$: $\pi^n(A_l \subset X) \to \pi^n(A_k \subset X)$ is contained in $[S^{A_l \subset X}]$; in fact, an element $a \in \pi^n(A_l \subset X)$ belongs to the kernel of $h_{k,l}$ if and only if it is represented by a mapping $a: A_l \to S$ extendable over X and inessential on A^k . We also observe that, by the definition of k-skeleton, a mapping of X into S is inessential on a k-skeleton of X if and only if it is inessential on every closed subset of X of dimension $\leq k$.

Passing to the abstract groups, we obtain a sequence of epimorphisms

$$\pi^n_{2n-2}(X) \xrightarrow{h_{2n-2}} \pi^n_{2n-3}(X) \xrightarrow{h_{2n-3}} \dots \xrightarrow{h_{n+2}} \pi^n_{n+1}(X) \xrightarrow{h_{n+1}} \pi^n_n(X) \to 0 \ .$$

4. A theorem proved by Borsuk (see [2]) implies that

(*) If A_k is a k-skeleton of a compact ANR-space X with property (Δ), then the homomorphism j^* : $H^n(X) \to H^n(A_k)$ of the integral cohomology groups induced by the inclusion j: $A_k \to X$ is a monomorphism.

Let S be the n-sphere S^n . In the case when $\dim X \leq n+2$, the classification theorems of Hopf, Pontriagin and Steenrod can be used to determine the groups $\pi_k^n(X)$. Thus, for example, the Hopf classification and extension theorem can be formulated as follows:

THEOREM 5. If dim $X \leq n+1$ then $\pi_k^n(X) \approx H^n(X)$.

Proof. Let s^n be the generator of $H^n(S^n)$. If α is a mapping of an n-skeleton A_n of X into S^n then, by the Hopf classification theorem, the assignment $\alpha \to \alpha^* s^n$ defines an isomorphism $\eta \colon H^n(A_n) \approx [S^{A_n}]$. If $u \in H^n(X)$, then, by the Hopf extension theorem, the class $\vartheta(u) = \eta j^*(u)$ is extendable over X, i.e. $\vartheta(u) \in [S^{A_n \subset X}]$. If $\alpha \in [S^{A_n \subset X}]$ is an arbitrary element represented by $\alpha \colon A_n \to S$ and $\alpha' \colon X \to S$ is an extension of α , then $\vartheta \alpha'^*(s^n) = a$, hence ϑ maps $H^n(X)$ onto $[S^{A_n \subset X}]$. Since η is an iso-

morphism and, by (*), j^* is a monomorphism, it follows that ϑ is an isomorphism.

In particular it follows that in the case when dim $X \leq n+1$, $[S^{A_n \subset X}]$ is a subgroup of $\pi^n(A_n)$, i.e. $\pi^n(A_n \subset X) = [S^{A_n \subset X}]$.

Let now n=2 and $\dim X \leq 3$. Consider the function $[S^X] \xrightarrow{\epsilon_1} \pi_2^2(X) \approx H^2(X)$ (see No. 3); it maps $[S^X]$ onto $\pi_2^2(X)$. If $a \in \pi_2^2(X)$ and $u \in H^2(X)$ corresponds to a, then, by the Pontriagin classification theorem (see [4]), the set $i_3^{-1}(a)$ is in one-to-one correspondence with the subgroup $H^1(X) \cup 2u$ of $H^3(X)$ (the cup product of $H^1(X)$ by 2u).

5. Let now n > 2 and dim $X \le n + 2$. Then the Steenrod extension theorem can be formulated as follows:

THEOREM 6. If dim $X \leq n+2$, then $\pi_n^n(X)$ is isomorphic to the kernel of the Steenrod square homomorphism $\operatorname{Sq^2}: H^n(X) \to H^{n+2}(X, \mathbb{Z}_2)$ (the coefficient group \mathbb{Z}_2 here is the group of integers modulo 2).

Proof. If A_n is an n-skeleton of X, then an isomorphism ϑ : Ker(Sq²) $\approx [S^{A_n \subset X}]$ is defined here in the same way as the isomorphism ϑ in the proof of Theorem 5: If $u \in \text{Ker}(\operatorname{Sq}^2) \subset H^n(X)$, $j^* : H^n(X) \to H^n(A_n)$ is the homomorphism induced by the inclusion and $\eta : H^n(A_n) \approx [S^{A_n}]$ is the Hopf isomorphism, then we define $\vartheta(u) = \eta j^*(u)$. Then by the Steenrod extension theorem it follows that $\vartheta(u) \in [S^{A_n \subset X}]$ and ϑ maps Ker(Sq²) onto $[S^{A_n \subset X}]$; by proposition (*), ϑ is an isomorphism.

If $\dim X \leq n+1$ then the kernel of the epimorphism

$$\pi_{n+1}^n(X) = \pi^n(X) \xrightarrow{h_{n+1}} \pi_n^n(X) \approx H^n(X)$$

is also given by the Steenrod classification theorem. It is isomorphic to the finite quotient group $H^{n+1}(X, \mathbb{Z}_2)/\operatorname{Sq}^2 H^{n-1}(X)$ (we also use here the proposition (*)).

As an example, let us consider the case when X is a polyhedral compact (n+1)-dimensional pseudomanifold without boundary, with n>2, given in a triangulation. Then $H^{n+1}(X, Z_2) \approx Z_2$ and it follows from the above remark that either $h^{n+1} \colon \pi^n(X) \to \pi^n_n(X)$ is an isomorphism, i.e. $\pi^n(X) \approx H^n(X)$, or its kernel is isomorphic to Z_2 . This can also be shown directly, without using the Steenrod squares. For if a mapping $\alpha \colon X \to S^n$ represents an element in the kernel of h_{n+1} , then we may assume that α maps a (polyhedral) n-skeleton A_n of X into a single point $y_0 \in S^n$. Hence on each (n+1)-cell of X, α represents an element of the homotopy group $\pi_{n+1}(S^n) \approx Z_2$. It is clearly seen that if α is a fixed (n+1)-cell of X, then α is homotopic to a mapping $\alpha' \colon X \to S^n$ such that $\alpha'(\overline{X} - \sigma) = y_0$. Then the homotopy class of α can be represented by one of the two elements of $\pi_{n+1}(S^n)$ which can correspond to $\alpha' \mid \alpha$.

If X is a pseudomanifold with boundary then, evidently, $\pi^n(X) \approx \pi_n^n(X) \approx H^n(X)$.

264

J. W. Jaworowski

References

- [1] K. Borsuk, Ensembles dont les dimensions modulaires de Alexandroff coincident avec la dimension de Menger-Urysohn, Fund. Math. 27 (1936), pp. 77-93.
- [2] Some remarks concerning the position of sets in a space, Bull. Acad. Pol. Sci. 7 (1960), pp. 609-605.
- [3] On a generalization of the cohomotopy groups, Bull. Acad. Pol. Sci. 7 (1960), pp. 615-620.
- [4] L. Pontriagin, A classification of mappings of the 3-dimensional complex into the 2-dimensional sphere, Rec. Math. (Mat. Sbornik) N.S. 9 (1941), pp. 331-363.
 - [5] E. Spanier, Borsuk's cohomotopy groups, Ann. of Math. 80 (1949), pp. 203-245.
- [6] N. E. Steenrod, Products of cocycles and extensions of mappings, Annals of Math. 48 (1947), pp. 290-320.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES INSTITUTE FOR ADVANCED STUDY

Reçu par la Rédaction le 12, 12, 1960

The category of a map and of a cohomology class

by

I. Berstein and T. Ganea (Bucuresti)

The purpose of this paper is to prove several results concerning the n-dimensional category of a topological space X in the sense of Fox [7] and the category of a cohomology class $u \in H^q(X; G)$ in the sense of Fary [6]. The category of a map, a concept which goes back to Fox ([7], p. 368), will play a unifying role in the present setting: among other things, we prove that, provided X is a reasonale space, both the n-dimensional category of X and the category of u coincide with the categories of certain maps of X into standard spaces of homotopy theory.

1. The category of a map. Let $f: X \rightarrow Y$ be a (continuous) map of arbitrary topological spaces.

DEFINITION 1.1. cat f is the least integer $k \ge 1$ with the property that X may be covered by k open subsets U_m such that the maps $f \mid U_m$: $U_m \rightarrow Y$ defined by f are nullhomotopic; if no such integer exists, we put cat $f = \infty$.

We shall denote by $\operatorname{cat} X$ the Lusternik-Schnirelmann category of X, i.e., the least integer $k \ge 1$ with the property that X may be covered by k open subsets which are contractible in X; if no such integer exists, $\operatorname{cat} X = \infty$.

The following results are easy to check:

- 1.2. $\operatorname{cat} f \leq \min \{ \operatorname{cat} X, \operatorname{cat} Y \}.$
- 1.3. $\cot \theta = \cot X$ if θ is the identity map of X.
- 1.4. $cat g \circ f \leq min\{cat f, cat g\}$ for any map $g: Y \rightarrow Z$.
- 1.5. $\cot h_0 = \cot h_1$ if $h_t: X \to Y$ is a homotopy.

Next, since a CW-pair has the homotopy extension property and since a CW-complex is locally contractible, we have

1.6. If a CW-complex X is the union of k subcomplexes which are contractible in X, then $\operatorname{cat} X \leq k$.

We now prove

PROPOSITION 1.7. If X is a CW-complex and f: $X \rightarrow Y$ is an arbitrary map, then the following statements are equivalent: