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Ey: Pengemble

L .
{(—d,y)z n=1,2,.,0<y < }u {(,0): 0 < <1}

du plan euclicien;
By Pengemble
U (@, 9): 0 <o < 1nty y = nar)

new
du plan euclidien.

Lespace By (i=1,...,4) satisfait aux conditions (4.1)-(4.4), ex-
cepté (4.i).

Remarquons encore que les représentants des graphes finis et con-
nexes, fmppelés courbes ordinaires par K. Menger, ont 66é caractérigés
topologiquement par cet auteur de la fagon suivante (voir [5], p. 804
ot [6], p. 266; cf. aussi [2], p. 325, théordme V):

o Pour que Vespace G soit homéomorphe & un représentant dun graphe
fini et connewe, il faut et il suffit que @ soit un continu métrisable, ne con-

tenant que des points dordre fini et un nombre fini de points de ramifi-
cation.
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Some remarks on Borsuk generalized cohomotopy
groups * '
by
J. W. Jaworowski (Warszawa)

1. In [3] K. Borsuk introduced the concept of generalized-cohomotopy
groups. We recall some of the basic definitions.

Let X be a topological space. A. closed subset 4 of X iz called
a k-skeleton of X, if dim 4z < & and if every closed subset of X of dimension
< % can be continuously deformed in the space X into 4.

If X is a polyhedron and K is a triangulation of X (or, more generally,
it X is a CW-complex given in a cellular decomposition K), then the
k-skeleton K™ of the complex K is also an m-skeleton in the sense of
Borsuk of the space X. Borsuk also showed that if X is a compact ANR-
space satisfying the so-called condition (A), then there exists a k-skeleton
of X for every k= 0,1, ... (see [2]).

Let 8 be an ANR-space and let 4 be a cloged subset of the space X.
Oonsider the set 8% of all continuous mappings of X into § and denote
by §4€% the subset of 84 consisting of all mappings f: A8 which are
extendable over X.

If f € 8% then we denote by [f] the homotopy class of the mapping f,
by [8%] the set of homotopy classes of the mappings f € 8%, and by [§4¥]
the set of homotopy classes of mappings f € §4€%, By the homotopy
extension theorem, [S4°%] is a subset of [S4].

If 8 is the m-sphere 8 and dimd < 2n—1, then a group operation
in [84] can be defined and, under this operation, [§4] becomes an Abelian
group which is called the n-th cohomotopy group an(4) of A (see [5]).

Let oA C X) denote the subgroup of #*(4) generated by the elements
of [84€%], If 4 = X and dimX < 2n—1, then a%(A4 C X) = an(X).

Borsuk showed that if 4 and B are two k-skeletons of X and k < 2n—1,
then the groups a®(4 C X) and an(BC X) are isomorphic. Hence if
k< 2n—1 and if the space X possesses a k-skeleton, then an abstract
‘group al}(X), isomorphic to a%(A C X), can be defined. If dimX =k,
then aj(X) = a™X). In particular, if X is a polyhedron (or, more generally,

: * This work was done when the author was supported by the National Science
Foundation under NSF—G14779.
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a COW-complex, or a compact ANR-space with property (A)), then the
group #}(X) is defined for every n and %< 2n—1.

Tn this paper we prove some elementary properties of the groups
ay(X) and express them in the most simple cases in terms of known
homological invariants.

2. If X,Y,H8 are three spaces, and f: ¥—X is & mapping, then
the assignment a-»af, for a ¢ 8%, defines a function

1*: [8%1-[87]

which hags the following properties:
() If f: XX is the identity mapping, then f‘* 48 the identity.
(i) If Z is another space and g: Z-—Y is a mapping, then

(fg)¥ = g¥f¥

(iii) If g: Y>X and gef, then g% = i,

It 8 is the n-sphere 8* and dim X, dim ¥ < 9n—1, then £ is a homo-
morphism of the cohomotopy groups, f”": a™(X)->x"(Y) (see [B], p. 214).

TrroREM 1. Let A be a closed subset of X, B a closed subset of ¥ and
let 8 be an ANR-space. Let f: ¥ —~X be a mapping such that f(B)C A
and let fo: B—~A be the mapping defined by f. Then f, maps [84%] into
[8BS¥1 and therefore defines a function

: [84C¥][8BCF] 7

which has the following properties:

(iy If f: XX is the identity, then J: [82%]—[8F¥] is the identity.

(i) If C is - a closed subset of Z and g: Z—>Y is a mapping such that
9(0)C B, then fg = g}.
) 7(111) If g2 XX is a mapping such that §(B)C A and gof, then
g=7I

Pr,o of. If [a] € [84°%], a: 48 and a': X8 is an extension of ¢,
th?;[a f: Y-8 is an extension of the mapping afy: B-8; but [afy]
==Jo a].

Properties (i) and (ii) follow from the corresponding proporties above.
To 13r<'3ve property (iil) we notice that the mapping «f, can be written
a8 aﬂ?, where ip: B->Y is the inclusion mapping. Since f~g: ¥->X,
then fip~gip: B—~X and hence a'fig=~a’gizg: B—4.

Lmvua 1. Let X be a compact ANR-space with property (A), A a k-ske-
l.eton of X, B a compact subset of ¥ of dimension <k and f a mapping of ¥
nto X. Then f is homotopic to a mapping §': ¥—X such that f'(B)C 4.
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Proof. By [1], p. 79, the mapping f is homotopic to a mapping
fiz Y—>X such that dimfy(B) < k. Since 4 is a k-skeleton of X, there
exists a mapping u: f(B)—>A such that the inclusion 4;: f(B)—>X and
the mapping t4p: f(B)—>X, where i4: A—X is the inclusion, are homo-
topie. It follows that the partial mapping fis: B—X, where ip: B->Y
ig the inclusion, is homotopic to a mapping f: B~>X such that fi(B) C 4.
Since X is an ANR-space, the mapping f, can be extended to a mapping
#+ Y—>X such that f'~f. Then f* has the desired properties.

TurorEM 2. Let X and Y be two spaces such that X is a compact
ANR-space with property (A) and let 8 be an ANR-space. Let A be a k-skeleton
of X and let B a compact subset of X such that im B < k. Let f be a mapping
of Y into X. Then there ewisls a unique function

;A,A: [SACX]—?‘[SBCY.]
which has the following properties:
(i) If f: X—X is the identity, then fa.4 is the identity.

(i) If Y is a compact ANR-space, B a k-skeleton of ¥, Z is another
sizaoe and O 4s @ compact subset of Z with AmC <k and g: Z—+Y 4s
a mapping, then e )

(f9)a,0 = Jp,0f 4,3 -

(i) If f,9: Y—>X and fg, then fap= jan.

(iv) If f: Y>X and f(A)C B, then faz=1

Proof. Using Lemma 1 we replace f by a mapping f': ¥ -+X homo-
topic to f and such that f(B) C A and we define j4,p= FoIEf: ¥Y->X
is another mapping homotopic to f such that f’(B)C 4, then, by prop-
erty (iii) in Theorem 1, f' = 7. Hence the function f4p is uniquely
defined and, obviously, it has properties (iii) and (iv) of Theorem 2. This
implies that the function 74,8 is unique. The properties (i) and (ii) follow
from the corresponding properties of Theorem 1.

TaEoREM 3 Let A be a closed subset of X, B a closed subset of of ¥
and 8 be the n-sphere 8™ Let f: ¥—>X be a mapping such that f(B)C A4,
and fy: B— A be the mapping defined by f. Then the homomorphism fiF: 2™ 4)
—a™B) of the cohomotopy groups induced by f, maps a*(A C X) into
a(B CY) and hence induces a homomorphism

f: (4 C X)—>a#(BC X) -
which has the following properties:
(i) If f: X—X is the identity, then [ is the identity.
(i) If C is a closed subset of Z and g: Z—Y is a mapping such that
9(0) C B, then (fj) = §f.
(iti) If f, g: Y—X are two mappings such that f(B)C A, g(B)C A
and fxg, then f=g.
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Theorem 8 will be a consequence of the following algebr
the proof of which iy evident: )
Lemma 2. Let @, H be Abelian groups, W a subset of Gy B « subset of H
and @2 G—H a homomorphism such that o(%A) C B. Let Gy be the subgrow
of @ gmer.ated by A and H, the subgroup of H generated by B. Then: (1) p
maps Gy into H, and therefore defines a homomorphism g, G,—~H, é@ori’;
ZZZ, q):’(bai =J g(;(w), fl;{ e:;}fry al ; Go; (2) If @, p: G~H are two homomorphisms
a5 Pl = i, then @|Gy = p|Hy; (3) If @ map: y ;
an epimorphism. i (3) 11 i maps 3 onto B, then g s

PrOOt Of TheOl‘Ol‘n 3 By Th( orem, 1 g 1 ﬂl ]y hﬁ lo } {
J . & wWo ea I/ . g g
' . ) < )p omma to

G = ”n(A) 3

aie lemmg

H =a%B),
Gy = a4 C X),

U=[8%], B =[P
Hy=an(BC Y)

and ¢ s the_ homomorphism of cohomotopy groups induced by f,. The
Droperties (i), (ii), (iii) follow from the corresponding pr fes in
e properties in

THI:]OB.EM 4. Let X, ¥ be two spaces such that X is a compact ANR-
space with property (A) and let 8 be the n-sphere 8™, Lot A be a k-skeleton
of X and B a compact subset of ¥ with dimB < k, where % < 2n—1. Let
f: Y»X. Then f defines a unique homomorphism, .

fhip: #4C X)~>a™BC ¥)
which has the following properties:
() If f: X=X is the identity, then .4 is the identity.

(i) It ¥ is a compact ANR-s 2
, ] -8pace, B is a k-skeleton of ¥, 0 is a compae
subset of a space Z with dim ¢ <k imd g Z-%, the‘;{ ) O compact

(fo)fio = dHofs.

W) If f, 2 Y>X and fxg, then iy =
V) If f: Y>X and f(A)C’B, mmd}%m f /B
(v) fEBl[8°°F] = 14 5.

ond gzg)i.h ém;ii etxmtence of f4,5 and property (v) follows from Theovem 2

orzespon. 1s pal.'t of Lemma 2. Properties (i), (ii) follow from the

o ” € properties in Theorem 2. Properties (tii) and (iv) follow
om Theorem 2 and 3 and from the second part Lemma 2.

with Cg?Lfth 1. Let A and B be two k-skeletons of a compact ANR-space X
property (A) and let 8 be an ANR-space. Then the function 24, where

¢: X—>X ig the identity mappi ;
pping, establishes i 0 .
pondence between the sets [S‘CX]’and [SBCX]a e one-io-one corres
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CoROLLARY 2. Let 8 be the n-sphere 8" and let A and B be two k-skeletons
of a compact ANR-space X with property (A) such that k < 2n—1. Then
the identity mapping e: X — X induces o unique isomorphism eﬁg: amd CX)
~ B C X).

The fact that e‘ff,B is an isomorphism follows from properties (i)
and (ii) in Theorem 4.

Thus we have obtained the theorem proved by Borsuk on isomorphism
between n*(A C X) and =B C X). We stress the fact that this isomorphism
is unique; for this allows us to state the following

CoROLLARY 3. Let X and Y be two compact ANR-spaces with prop-
erty (A) and let k< 2n—1. Let f: ¥Y—>X be a mapping. Then f induces
a unique homomorphism

1) i n;:(X) >y ¥)

which has the following properties:

(i) If f: XX is the identity, then f* is the identity.

(i) If Z is a compact ANR-space with property (A), and g: Z>7Y,
then (fg* = g*f*. ~

(i) If f, 91 ¥Y~>X and fog, then i = g

(iv) If k = dim X, then f# coincides with the homomorphism of coho-
motopy groups induced by f.

Property (iv) justifies notation (1).

8. We assume throughout this section that X i a compact ANR-set
with property (A). Then, as it has been shown by Borsuk, for every
k=0,1,... there exists in X a k-skeleton Ay. Let ¢: XX be the identity
mapping and let % <7< dimX. Congider the function

SA;CX.] SAI;CX]

iy = Byt [ —[
defined by e (see Theorem 2). We observe that in the case, when Ay C Az,
the function 4 is onto; hence by the uniqueness property stressed in
Theorem 2 and in Corollary 1 it follows that the function 4 is always
onto. This can also be shown directly, for the function ¢4 can be defined.
as follows: :

Let a = [a] e[§4'°¥], where a: A;—8. Then there exists an extension
a's X->8. We claim that the restriction a'is,: Ag—>S, where i4,: Ax—>X
is the inclugion, represents 1z(a). For, by Lemma 1, there exists a mapping
f: XX homotopic to the identity ¢ such that f(4x) C 4;. Then the func-
tion F: [8HSF]—[§4*€X] (see Theorem 1) defined by f coincides, by
property (iii) and (iv) in Theorem 2, With G = 84,4, But fla] = [a'fig],
and, since f~e: XX, then o fig™ oeig = d'ia.
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It 8 is the n-sphere and 1< 2n—1, then we have g homomorphism
Mg = €2 am(A1 C X)->an(dy C X)
(see Theorem 4). By the third part of Tiemma 2 wo infer that
epimorphism.
Denote dpg—y = Gy gy = hy. Therefore, if & « 2n—1, then

w(Ady-1 C X) is the image of an(d, C X) under the hom i
) ) - ler i omorphis;
We have therefore a sequence P T

Py is an

o [§A4C] 2, [y B [ gmnaC Xy gy
hop-. Tan—~ g, ]
= A Ay C X)L Y € X) B A, ¢ )

such that each 4 is omto, and each k, for 2n 2k i
¢ and eac () — <
iy , k) <k<n, ig an
It is clearly seen that the kernel of Ayg: ot p
) L * ) nu: (A C X)sam(A,CX
is contained in [84S%Y; in fact, an element a ewn(4;C X) belongs ﬁo ‘th(z
kernel of %y, if and only if it is represented. by a mapping «: A;—§
exh.en.(-i.able over X and inessential on A4*. We also observe that, by the
J:l:ilm:u? _off Ic-zkeﬁton% & mapping of X into § is inessentinl on a k-skele-
0 It and ounly if it is inessential on every closed subset of f
iy Yy closed subget of X of

Pgssmg to the abstract groups, wo obtain =« sequence of epi-
morphisms

" Tan—g Man-g 7
on—o( X) =3 an_o( X) 223 . 128 om0y B mopy g

4. A theorem proved by Borsuk {see [2]) implies that

(%) If Ay is @ k-skeleton of a compact ANR-s A
s 0 -space X with property (A)
then the; homomorphzsm §*: HYX)—H"(4y) of the integral cohomology’
groups induced by the inclusion j: dpe—>X is a monomorphism.

. Let 8 be the n-sphere 8. In the case when dim X < n+-2, the cla gifi-
ga lon theorems of ]gopf., Pontriagin and Steenrod can be used to det-
rmme' the groups af(X). Thus, for example, the Hopt classification and
extension theorem can be formulated ay follows:

THEOREM B. If dimX < n-+1 then i X) s HY X).

Proof. Let sm be the generator of H™(8"). I a is a mapping of an
n-gkeleton 4, of X into §™ then, by the Hopf classification tﬁle)orgm the
assignment o -> a*s® defines an isomorphism #: H™(d,) ~ [SA”],- It
% € H"(X), then, by the Hopf extengion theorem, the class &(u) = nj*(u)
u: extendable over X, ie. #(u)e[§4CX] Tf 4 €[84°°%] iy an arbitrary
:hementl*represented by a: 4,8 and o’: X8 is an oxtension of «

en Ja’*(s%) = g, hence § maps H*X) onto [84¥], Since 7 is an isoi
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morphism and, by (), j* is 4 monomorphism, it follows that 4 is an iso-
morphism. .

In particular it follows that in the case when dimX <n+1, [§4rC Xy
is a subgroup of @#(dy), ie. a%(4y C X) = [§4C¥],

Let now n =2 and dimX < 3. Consider the function [8%]<%(X)
~H(X) (see No. 3); it maps [§%] onto 23(X). If a en3(X) and u ¢ HY(X)
corresponds to @, then, by the Pontriagin classification theorem (see [4]),
the set i3 *(«) is in one-to-one correspondence with the subgroup HY(X) v 2u
of H¥X) (the cup product of HYX) by 2u).

5. Let now %> 2 and dimX << #n+2. Then the Steenrod extension
theorem can be formulated as follows:

THEOREM 6. If AimX < n-+2, then ny(X) is isomorphic to the kernel
of the Steenrod square homomorphism Sq*: HYX)—>H""%X, Z,) (the coef-
ficient group Z, here is the group of integers modulo 2).

Proof. If A, is an n-skeleton of X, then an isomorphism ¢#: Ker(Sq?)
~[§47X] iy defined here in the same way as the isomorphism & in the
proof of Theorem 5: If u e Ker(Sq*) C HY(X), j*: HX)>H"(4x) is the
homomorphigm induced by the inclusion and #: H(4a) ~ [84] is the Hopf
isomorphism, then we define #(u) = uj*(u). Then by the Steenrod ex-
tension theorem it follows that 9 (u) e[84"<%] and 9 maps Ker(Sq?) onto
[84CX]; by proposition (+), & is an isomorphism.

If dimX << n-+1 then the kernel of the epimorphism

(X)) = 2 X) 2 Y X) ~ HY(X)

is also given by the Steenrod classification theorem. It is isomorphic to
the finite quotient group H™YX, Z,)/S®H" (X) (we also use here the
proposition (*)).

As an example, let us consider the case when X is a polyhedral compact
(n+1)-dimensional psendomanifold without boundary, with # > 2, given
in a triangulation. Then H™'Y(X, Z,)~Z, and it follows from the above
remark that either A"™*: a™(X)—>n®X) is an isomorphism, ie. a"(X)
~H"(X), or its kernel is isomorphic to Z,. This can also be shown directly,
without using the Steenrod squares. For if a mapping a: X —8" represents
an element in the kernel of hy41, then we may assume that « maps a (poly-
hedral) n-gkeleton A, of X into a single point ¥, € S". Hence on each
(n+1)-cell of X, o represents an elementi of the homotopy group
Tint1(8™) s Z,. Tt is clearly seen that if o is a fixed (n--1)-cell of X, then a
is homotopic to a mapping «': X—8" such that o'(X—a) =y,. Then
the homotopy class of a can be represented by one of the two elements
0f 7p41(8™) which can correspond to o|o.

If X is a pseudomanifold with boundary then, evidently, a#(X)
(X))  HY(X).
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The category of a map and of a cohomology class

by
I. Berstein and T. Ganea (Bucuresti)

The purpose of this paper is to prove several results concerning the
n-dimensional category of a topological space X in the sense of Fox [7]
and the category of a cohomology class # ¢ HY(X; G)in the sense of Fary [6].
The category of a map, a concept which goes back to Fox ([7], p. 368),
will play a unifying role in the present setting: among other things, we
prove that, provided X is a reasonale space, both the n-dimensional cate-
gory of X and the category of u coincide with the categories of certain
maps of X into standard spaces of homotopy theory.

1. The category of a map. Let f: XY be a (continuous)
map of arbitrary topological spaces.

DEFINITION 1.1. catf is the least integer k=1 with the property
that X may be covered by % open subsets Um such that the maps f| Un:
Un—YX defined by | are nullhomotopic; if no such integer emisis, we pnut
catf = co.

We shall denote by cat X the Lusternik-Schnirelmann category of X,
i.e., the least integer % > 1 with the property that X may be covered
by % open subsets which are contractible in X; if no such integer exists,
cat X = oco.

The following results are easy to check:

1.2. catf < min{eat X, cat Y}.

1.3. cat O = cat X if 0 i the identity map of X.

1.4. catg o f < min {catf, catg} for any map g: Y—Z2.

1.5. cathy = cath, if by X—>Y 48 a homotopy. ‘

Next, since a OW-pair has the homotopy extension property and
since a CW-complex is locally contractible, we have

1.6. If a OW-complew X is the union of k subcomplewes which are
contractible in X, then cat X < k.

‘We now prove

PROPOSITION 1.7. If X is a OW-complew and f: XY is an arbitrary
map, then the following statements are equivalenmt:
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