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Schoenflies problems
by

M. Morse (Princeton, N.Y.)

Dedicated to the Fundamenta Mathematicae on the occasion
of the publication of its 50th volume, with grateful appre-
ciation of what this journal of mathematics has meant to the
world of mathematics during the last fifty years.

§ 1. Introduction. The theorem that the union of a Jordan
curve and its interior in a 2-plane is a elosed 2-cell is commonly called
a Schoenflies theorem. The problems which arise in attempting to generalize
this theorem in euclidean spaces of higher dimension are called Schoenflies
problems.

The generalization which suggests itself first is false. Let M be
a topological (n—1)-sphere in an euclidean n-space E with n > 1. Let Jm
be the open interior of M and JM the closure of JM. Tt is not always
true that JM is a closed n-cell for n > 2. Sze Ref. [0].

A major advance in formulating a valid Schoenflies extension theorem
when %> 2 was made by Barry Mazur in Ref. [2]. Mazur concerned
himself with a topological (n—1)-sphere on an euclidean n-sphere. We
shall present a theorem which is essentially that of Mazur, but in which
Mazur’s n-sphere is replaced by the euclidean n-space E. This use of an
euclidean n-space F in place of an eucliden n-sphere accords with sub-
sequent developments which we shall present.

Mazur’s theorem. Mazur made two assumptions, the second of which,
as we shall see, is unnecessary. Let S be an (n—1)-sphere in B with center
at the origin and radius 1. In our formulation of Mazur's theorem these
hypotheses are as follows.

I. Let ¢ be a homeomorphism of an open neighborhood N of § into #
under which points interior (exterior) to § go into points interior (ex-
terior) to the (#-1)-manifold ¢(8) = M.

II. Suppose that there exists in N a neighborhood of a point P of §
in the form of a star of euclidean cells incident with P such that on each
cell of the star ¢ is linear.
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Conclusion («). Then @|S admits an extension as a homeomorphism, Jy

of J8 onto J M such that 2, agrees with ¢ at all points of some neighborhood
WCN of 8 interior to 8.

It is trivial that 1, can be extended as a homeomorphism to agree
with ¢ at points of N exterior to §. In general W cannot include all points
of N interior to 8.

The emtension problem (¢, N). Topological case. Given p and N ag
in Hypothesis I, and omitting Hypothesis II, the problem of finding 2
5o as to satisfy (o) will be called the ewmtension problem (p, N¥) in the to‘f
pological case.

The topological case is to be distinguished from the differentiable
case in which ¢ is a (™-diffeomorphism of § into B, m > 0, and the analytic
case in which ¢ is an analytic diffeomorphism of § into Z.

In Ref. [3] we have established the following theorem,

reducing
Mazur’s hypotheses to I.

, T]I}'EOREM 1.1 (i). Given the topological emtension problem (g, N),
there exists a homeomorphic mapping f of B into B such that fo reduces to
the identity on & neighborhood of some point of §.

(ii). A necessary and sufficient condition that there ewist a solution of
the extension problem (@, N) is that there ewist a solution of problem (fp, N).

Since the homeomorphism fp satisfies Mazur’s Hypothesis IT, Mazux’s
theorem and the above theorem have the following corollary.

CO.ROLLARY L.1. Bach Schoenflies extension problem (p, N) in the
topological case admits o solution 2, satisfying Conclusion ().

Theorem 1.1 was first discovered by the author in a form appropriate
to the differentiable case. (Cf. Lemma 3.1 of Ref. [4].) In Retf. [4] the
first solution of the extension problem in the differentiable case was
a.nnounc_ed. This solution was a diffeomorphism with one differential
singularity; it was a homeomorphism. The complete exposition in the
differentiable case was given in Ref. [6]. With the discovery of Theorem 1.1
and its analogue in the differentiable case it wag recognized that Part IT
of 'R:ef. [3], with appropriate verbal changes, gave a solution of the ex-
tension problem (¢, N) both in the topological and the differentiable
case. A simplified exposition with explicit formulas that made this clear
has been presented by Huebsch and Morse in Ref. [6].

u e'Three proofs of Corollary 1.1 appeared, at approximately the same
me.

Morton Brown in Ref. (7] gave a direct solution of the extension
problem.(q;, N) in the topological case. Mazur’s result and Theorem 1.1,
as combined by the author in Ref. [8], gave another proof. These two
proofs apply only to the topological case. The methods of Paxt IT of Ref. [5]
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(later simplified in Ref. [6]) afford a proof both in the topological and the
differentiable case.

The explicit solution of the problem (¢, N), in Ref. [6], is the basis
of what follows concerning cell problems. Cell problems are distinguished
in §3 from extension problems. The results of Ref. [6] lead to the theorem
that the interior of I (in the differentiable case) is an open analytic
n-ball, that is the image of an open euclidean n-ball under a real analytic
diffeomorphism. The methods of Ref. [6] also serve as a model for a theory
of families of Schoenflies extensions. See Ref. [10] and Ref. [11].

Iproblems and simple extension problems. The data in the problem
of obtaining continuous families of Schoenflies extensions includes a to-
pological space I' on which a parametric point p rests. Such a problem
will be called a I-problem to distinguish it from an extension problem
(p, N). We term the latter problem a simple extension problem. Both
in Iproblems and in simple extension problems one distinguishes between
the topological, the differentiable and the analytic case, fivst in the data,
and, subsequently, in the conclusions. See §§ 4 and 5.

Extension problems and cell problems.

(i) Theorem 1.1 and its corollary concern an extension problem.

(ii) Given a O*-diffeomorphism f of § onto f(8) = M, the corresponding
open cell problem is to find an analytic diffeomorphism F of an open n-ball
onto J M. It is solved by Huebsch and Morse in Ref. [12]. In general F
is In no sense an extension of f.

(iii) Tn §3 we define a closed cell problem (with differentiability
index m = oo). We show how this closed cell problem is related to the
general extengion problem. In this connection we introduce ¢‘differentiable
isotopies”. These isotopies differ from those introduced by Milnor in
Ref. [13). For # = 2, or 3, a solution of this closed cell problem exists,
but the existence of a solution in the general case is an open question.

The reader familiar with the theory of extensions of continuous
mappings, as developed by Borsuk (Ref. [17]), or Hurewicz, will note
a formal similarity between certain of the results presented here and
earlier extension theorems. In particular, there exist in the present theory
strong relations between differentiable isotopies and the existence of
differentiable extensions (§2). However the similarity is no more than
formal. In fact, the Borsuk theory aims at continuous extensions over
sets of great generality, whereas the theory of Schoenflies extensions
starts with domains of extreme simplicity, such as §, and finds its principal
difficulty in showing that extensions exist as homeomorphisms or dif-
feomorphisms.

In the next section we shall present some of the principal theorems
concerning simple Schoenflies problems in the differentiable case.
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§ 2. The extension problem (¢, N). Ditferentiable case.
We begin with notation and conventions.
. Notation. As previously F is an euclidean n-space, § an (n—1)-sphere
in B with center at the origin 0, and M a topological (n-—1)-sphere in B.
If 0 ig in J M we sot

JM~0 =dJ M .

Conventions. A real analytic or O™-mapping ¥ into B of an open
subset X of B, is defined in the usual way, as is an analytic or O™-dif-
feornorphism of X into B. We suppose that m > 0. We ghall extend these
definitions to any subset X of B such that X COlX, For such a set X
we say that F is an analytic ox C™-mapping into B, or an analytic or
C™-diffeomorphism of X into B, it F admits an extension #° over an open
subset ¥ O X of B with the respective properties of F', when ¥ replaces X.

Ay or OF-diffeomorphisms, m > 0. Let X be a subset of & such that X
contains the origin and X C OLX. Among such sets ave J§ and J9. Set
%Y—O = X,. We understand that an 4, or O-mapping F of X into B
is a continnous mapping of X into B whose restriction to X, is an analytic
or C™-mapping, respectively, of X, into B. Such a mapping will he called
an 4, or CP-difteomorphism of X into W, if it is a homeomorphism of X
into B, and if F|X, is an analytic or O™-diffeomorphism, respectively,
of X, into E. o

The following theorem was established by Morse in Ref. [5]. A O™-dif-
feomorphism of § into B, m > 0, is understood in the usual sense.

TeROREM 2.1. 4 O™-diffeomorphism f of 8 into B, m >0, can be
extended by a OF-diffeomorphism F of J8 onto JF(R).

) Botensions over J8 without differential singularity. The question
arises, when can the extension F of f in Theorem 2.1 be chosen so as to
be a (™-diffeomorphism of JS into X.

. In Theorem 2.2 and its corollaries we shall suppose that all dif-
teomgrphisms are of class 0°°, This is to avoid the detail which is necessarily
associated with a treatment under weaker hypotheses.

A definition is needed. -

.D?fferemiuble wsotopies. Let R be the axis of reals. Two C*-ditfeo-
m(.)rph.lsms fy9: S—E will be said to he differentiably isotopic if there
exists a O™-diffeomorphism

h: 8XR—~BXE; (2,1)—(h(w,1), )

'sucl.l that ?z(w, t? = f(w) for ¢ < 0, and k(w, t) = g(e) for ¢ > 1. We term h
a differentiable isotopy of f into g or simply a differentiable isotopy of f.

A differentiable isotopy of two C®-diffeomorphisms F, G: J8—F i
\ ¢ ; 8 5
gimilarly defined. & ’ ”
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This definition should be compared with that of Milnor, Ref. [13].
Under Milnor’s definition a differentiable isotopy of a diffeomorphism f,
of § onto 8 is a deformation of f, through a family f;, —oco <t < oo,
of diffeomorphisms each in 8%, but under our definition is through a family
of diffeomorphisms each in B

Theorem 2.2 is the fundamental theorem of this section. The necessity
of the condition is relatively easy to establish. The sufficiency of the
condition may be established by means of methods introduced in §§1-6
of Ref. [14].

THEOREM 2.2. A necessary and sufficient condition that a C™-dif-
feomorphism fo of S into B be extendable as an orientation-preserving O%-dif-
feomorphism of J8 into B, is thai there ewist a differentiable isolopy of
folf, € B) into the identity map of S onto 8.

According to Theorem 5 of Milnor, loc. ¢it., there exists a 0 -dif-
feomorphism £, of degree 1 of a 6-sphere § onto § such that f, is not dif-
ferentiably isotopic to the identity in Milnor’s sense, that is with fie 85,
This result of Milnor has an extension in the form of a corollary of Theo-
rem 2.2. See Ref. [21]. ’

COROLLARY 2.1. When n =T there exists a C™-diffeomorphism f, of
a 6-sphere 8 onto 8 of degree +1, which is not differentiably isotopie to the
identity with f; e B°. ' .

In establishing this corollary use is made of Milnor’s manifold M}
as well as of Theorem 2.2. i

The following theorem gives an “‘extension” of a differentiable isotopy.

THEOREM 2.3. Corresponding to a differentiable isotopy fi, —oo <t <
< oo, of @ C°-diffeomorphism f, into the identity fi, with fi e B°, there ewist
O%-diffeomorphisms Fy, —oco < t < oo, of J8 into B extending the respective
mappings f,, and defining a differentiable isotopy of By into the identity
map of JS onto JS.

The wufficiency of the condition in Theorem 2.2 is a ecorollary of
Theorem 2.3.

Theorem 2.3 would be false if one added that F, could be taken
arbitrarily among the O0®-diffeomorphisms of J§ into F which extend f,.
An example will ghow this.

We distinguish three differentiable extension problems.

(a) A Op*-extension problem, given feEs

(b) A (™extension problem, given f e B”.

(¢) A O™extension problem, given f e 8°.

Problem (a) it to find a Cf-diffeomorphism ¥ of J§ into B extending
the given (™-diffeomorphism of f into H. It is solvable. Problems (b)
and (c) are similar, except that F iz required to'be a O™-diffeormorphism
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of J§ into B alnd in Problem (c), /(8) = 8. As Milnor hay shown, Prob-
Iem (c) may fail to have a solution for certain values of n. Since a Prob-
lem (c) is a Problem (b), a Problem (b) may likewise fail to have a solution,

. Scho.eozﬂies inlegers. We shall call an integer » > 1, a Schoenflies
integer, if every C™-extension Problem (b) has a solution when B — B,
. Milnor imtegers. We shall call an integer m> 1, a Milnor integer
if when 8 = 8,-1 every C™-extension Problem (¢) has a solution.
.It is obvious that each Schoenflies integer is a Milnor integer. We
are ignorant as to the converse. According to Munkres in 6.4 of Ref. [15]
=2 and n =38 are Milnor integers (our notation). See also ‘Smale:
Bef. [197. The.author hag proved that # = 2 and n = 3 are also Schoenflies
Integers, confirming and extending the above results of Munkres and
Smale.
. Tl’le integer 7 is7 not a Milnor integer, as one sees with the aid of
Milnor’s manifold MJ. Hence 7 is not a Schoenflies integer.

§'3. Schoenflies cell problems. The image in B of an opeu
n-ball in F under an analytic diffeomorphism will be called an open analytic
n-ball. The fundamental theorem of this section is the following.

.TBZE‘OREM 3.1. If M is the image of 8 in B under C-diffeomorphism f,
the interior of M s an open analytic n-ball.

' The ope.n-oell problem. Given M the problem of finding the analytic
diffeomorphism ¥ of an open n-ball onto J M will be called the Schoenflies
open cell pr‘oblem. This problem is not an extension problem. The manifold M
may pe given as the ('-diffeomorphic image in B of § under diffeo-
morph}sms other than f, but the open-cell problem remains the same.
The @"feo'morphism ¥ may not extend any diffeomorphism of S into
B Whmh. represents M. The proof of Theorem 3.1 is given in Ref. [12]
by s-howmg that there exigts a O'-diffeomorphism @ of J8 onto S M. anc{
making use of a general theorem in Ref. [12] that any 01-diffeomorp’hism
of an open subset X of & onto an open subset ¥ of B can be approximated
by a real analytic diffeomorphism of X onto Y.

The purely topological version of Theorem 3.1 involves topological
gfn-—l)-spheres Z'in B, termed elementary. Of. Ret. [6], § 4. By definition, 2
is elementa?y if. it is the image of § in & under a homeomorphism F o% 8
onjco 2 which iy extendable as a homeomorphism into B over an open
gelghborhood of 8. .Not every topological (n— 1)-sphere in T is elementary.
: ](;2 jII{.lii.r_[l,]. if ;"m a topological (n— 1)-sphere which is not elementary
o for o 2 s not always an open topological n-ball. See Ref. [0].

owever it 2 is elementary, not ounly is JX an open topological n-ball
but J Z'is a closed topological n-ball. This is a consequence of Corollary 1.1.

To Theorem 3.1 we add the following conjecture.
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CONJECTURE. The interior of an elementary topological (n—1)-sphere X
in B is an open analytic n-ball. -

This conjécture is correct when n = 2 or 3. It follows from the con-
formal mapping theorem when n = 2. When 7 = 3 the proof runs as
follows. By Corollaxy 1.1, J§ is the homeomorph of JZ. Both J§ and /2
are differentiable 3-manifolds. Hence they are C'-diffeomorphic. See
Theorem 6.3, Munkres, Ref. [15]. See also Thom, Ref. [20]. By a general
theorem of Huebsch and Morse in Ref. [12], /8 and J Z ave then analytic-
ally diffeomorphic.

If the Hauptvermutung (ef. Munkres, loc. cit., p. 544) is here valid
our conjecture for general » is provable by a similar argument. However
a more likely mode of proof would be by a limiting process, applying
Theorem 3.1 to C'-topological (n—1)-spheres in JZ which approxi--
mate 2.

The closed cell problem. Let M be the image of 8 in B under a C™-dif-
feomorphism f of 8§ into B. A (*-diffeomorphism of 8 onto M which is
extendable as an orientation-preserving ¢”-diffeomorphism of J,§ onto J M
will be called a preferred representation of M. Given a C”-representation
of M, the problem of finding a preferred representation of M will be
called the closed cell problem (of index m = oo).

Let an orientation-preserving C*-diffeomorphism of J8 into E be
termed a (+4) C*-diffeomorphism of J§ into E.

The group An_,. Given # > 1 let A,_, be the group of C™-diffeo-
morphisms f, of § onto § which ave preferred representations of 8, or
equivalently (by Theorem 2.2) the group of al C*”-diffeomorphisms f,
of § onto § which are differentiably isotopic (f: € BS) to the identity.
‘We understand that the product of two diffeomorphismsin A, is their
composition.

The closed cell problem differs radically from the ¢*-extension prob-
lem. Let 7 be a 0 -diffeomorphism of § onto M. When M = § the corres-
ponding cloged cell problem always has a trivial solution obtained by
representing M by the identity map ¢ of § onto M = 8§, and extending ¢
over J§ by the identity. .

‘We shall prove a lemma giving a relation between three Schoenflies
problems.

() The closed cell problem (of index m = co).

(B) The C™-emtension problem, given f e B°.

(Y) The C*™-emtension problem, given fe;S’s.

LeMMA 3.1. Let M be the image in B = By of 8= 8p-, under a C=-dif-
feomorphism f. If M admits a preferred representation g, then f is a preferred
representation of M if and only if g=f is in Aa_. '
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To verily the lemma unote that f= g(g=*f). By hypotheses there
exists a (+) O™-diffeomorphism G of J§ onto JM extending g¢.

If g='f is in Ap—q, there exists a () 0°°-diffeomorph1'sm K of J§
onto J§ extending g—1f. The mapping

(3.1) r=GK
is a (4) C®-diffeomorphism of J& onto JM extending f.

Conversely, the existence of a () O*-diffeomorphism F of J§ onto
JM extending f, and the existence of ¢ as above, implies the exigtence
of the () C*-diffeomorphism

K ={p

of J8 onto J§ extending g-1f, so that g~ s in Ap_q.

We give below a proof that the closed- cell problem has a solution
when % = 2. The author has had for several years a proof that the closed
cell problem for # = 3 has a solution. A solution for this case will presently
be published. We know of no evidence that the closed cell problem for
arbitrary # ever fails to have a solution, Tt differs in this regpect from
the (™-extension problem.

We shall further clarify the relations between the problems (a), (B), ()
by introducing the following sets of integers,

The set 7. Let v denote the set of all integers # > 1 such that the
closed cell problem in B = By, always has a solution.

The set 0. Let o, be the set of Schoenflies integers.

The set o,. Let o, be the get of Milnor integers.

The definitions of 7, o, and o,, taken with Lemma 3.1, imply the
following.

LrmmA 3.2. Between the sets v, o, and o, there exist the relations

(3.2) 0,C 0y, TAOy=o0.

It is conceivable that v includes all integers # > 1, and in sueh a case
03 = 0y. Bince it is known that # = 2 and » = 3 are contained in g, and =,
it follows from the relation = ~ 0y = ¢y that 2 and 3 are contained in o.

Proof that 2 . There is given a Jordan curve M in I, guch that M
Is regular and of clags ™. There exists a Green’s funetion G on JM with
logarithmie pole at a point of JM. By definition & reduces to zero on M.
Let 2=a+tiy. If ¢ is a positive constant the level curve I, on which
G(2) = —e, will be a non-gingular, analytic, closed curve in M and,
if ¢ is sufficiently small, will be so near M that M is included in an open
“field” of short normals to M, with one and only one normal through
‘each point of the “field*. It ix then easy to set up an orientation-preserving
0™-diffeomorphism 7' of B, onto B, such that (M) = M.
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There exists a divectly conformal map K of fSl onto JaMc. Since M,
is regular and analytic, K is conformally extendable over an open neighb.or-
hood of J8;. The O%-diffeomorphism 7'K maps J8,; 0%11;0 JM preserving
orientation, and is extendable as a C*-diffeomorphism over an open
neighborhood of J8,. Thus TK is a solution of the Schoentlies closed
cell problem posed by the giving of IM.

Proof that 2 eo,. There is given a ¢ -ditfeomorphism f of §; onto 8,
which we seek to extend over J8,. Without loss of generality We can suppose
that f maps 8y onto §; preserving sense on §;. Were tlps not ’ryhe.case
a reflection of 8, in a diameter, composed with f, woulq give a mapping g
of 8, onto 8y preserving sense, and f would be extendable over J8 if ¢

rere 50 extendable.
A Ll‘JLSe(fo (r, 6) be polar coordinates in H,. UJ%dGl‘ f & point (», 6) = (1, 6)
on 8, corresponds to a point with polar eoor@nates (1, k(8)) on 8y, vs{here
0—k(0) can be taken as a C*-diffeomorphism of the 6-axis o(z‘nto 1t.s:e1f
such that % (04 27)=k(0)+ 2~ and ¥'(0)> 0. Let t —pu(t) bea O -mapping
of the t-axis onto the interval [0, 1] such that ,u(t)_: 0 for fg Of an.d
w(t) =1 for t=>1. A C%-differentiable isotopy of f into the identity is
defined by the mappings

O (L—p()k(6)+u(t)0 (r=1),
applied to 8, for each value of ¢ That 2 is in o, now follows from
Theorem 2.2. ] ) o

The case n=3. A proof that » =3 iy in oy is relatively snnple..
Our proof that » =3 is in 7 is nore movel and involves the theory of
critical points of non-degenerate functions. . .

The removal of the restriction to 0 -diffeomorphisms, msofar_as
it oceurs in this paper, is facilitated by the following theorem on “elevating
manifold differentiability”. See Ref. [16]. .

THEOREM 3.2. Corresponding to a compact, regular, _dijfermtm'ble
(n—1)-manifold of class C™ in B, m> 0, there ewists an oriematzo’n_-preser:umg
O™ diffeomorphism T of E onto T such that T (M) is o regular differentiable
(n—1)-manifold of class 0% in E.

§ 4. Extensions ot families of diffeomorphisms. Re_f. [10]
Theorem 2.3 concerns the extension over J§ of the family. of mappings fis
—oo < t< oo, of a differentiable isotopy. In this section we consider
extensions of families of mappings of much more general character. We
begin with notation. '

Product spaces. Let U and V be two spaces, and U XV tl}elr product.
If X is a subset of U xV let pr, X and pr,X be defined as in Ref. [18].
For vepr, X set )

X° = {u] (u, p) € X} '
and term X° the v-section of X. We have no need for w-sections of X.
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Let (w, v)—=IF(u, v) be & mapping of X into B. For fixed v e pr, ¥
the partial mapping

(u e X°)

will be called the v-section F® of I.

I-problems. The topological case. Let I' be au arbitrary Daracompact
space with points p, ¢, etc. Let B be an euclidean n-space, with n > 1,
with points , y, ete. Leti § be the wunit sphere in B with center at the
origin. We consider the product T x I', and its subsets, such as Sx I

The data required to define a Schoenflies I-problem is a mneigh-
borhood L of 8x I'y open relative to B x I', and a continuous mapping

®: L—E: (x,p) (=, p),
whose p-gections
P P >B: x->®P(x)  (pel

are honleomofphjsmﬁ of L” into H such that @° maps points of I, interior
(exterior) to 8, into points which are interior (exterior) to the topological
(n—1)-sphere #”(8) in B. The fundamental extension theorem in the
topological case is the following. Ref. [10].

TrzorEM 4.1. Corvesponding to (®,L,I') conditioned as above, and
lo any sufficiently small neighborhood N of § x I'y open relative to B x T,
there ewists a comtinuous mapping into B ‘

{4.1) Aot Nw (J8XT); (%, p)—do(x, )

whose p-section for p el is o homeomorphism of N? w J8 into E which
extends OP|N?.

I-problems. The differentiable case. Tn the differentiable case there

is given an integer m > 0 and an arbitrary O™-manifold, I" with a countable
base. The data is an ensemble (@,L,I'), with @ and L conditioned as in
the topological case, and in addition such that @ is of clags €™ on L and
for each p eI, " a O™-diffeomorphism of IP into .
_ Oomventions. Let X be a neighborhood of J§ x I, open relative to
ExTI. By a O7-mapping P, m > 0, of X into # we mean a continnous
mapping of X into B whose restriction to X — (0x I") is a O™-mapping.
By a (7-mapping of J8 X I' into B we mean a mapping extendable as
a CP-mapping F into B of some neighborhood X of J8 x I" open relative
to BxT.

The first theorem in the ditferentiable cage iy as follows. See Ref. [10].

TeRoREM 4.2. Corresponding to (P, L, I') conditioned as above, and
to any sufficiently small neighborhood N C I of 8 xI'y open relative to B X I,
there ewists a CF-mapping Ay into E, of the form (4.1) whose p-section, for
each p ¢ I, is a OF'-diffeomorphism of N® & J8 into B which extends oP|N".
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In the differentiable cage, m > 0, there is an equivalent theorem.
Cf. Lemmas 6.1 and 6.2, Ref. [11].

THEOREM 4.3. Given a O™-mapping D of 8§ x I" into E, each of whose
p-sections, for pely is a C™-diffeomorphism of S into B, there emists
a C%-mapping Ag of J8 X I imto H, whose p-section, for each p eI, is
a COP-diffeomorphism of JS into B which ewtends &F.

Note that Theorem 4.2 is the analogue of Theorem 4.1 gtated for
the topological cage. Theorem 4.3 has an analogue, Theorem 5.2, in the
analytic case. Theorem 4.2 has no analogue in the analytic case, nor
Theorem 4.3 in the topological cage. For a more precise statement of
these differences see § 6.

§ 5. The analytic case. We begin with the simple Schoenflies
problem. One should recall the definition of an A4,-diffeomorphism asg
given in § 2. The first theorem is as follows.

THEOREM 5.1. An analytic diffeomorphism f of 8 into B can be ex-
tended by an A -diffeomorphism T of JS onto JEF(S).

This theorem was first stated and proved by Royden in Ref. [8],
making use of Theorem 2.1 of Morse. Because of the many difficulties
in extending this theorem to the cage of analytic families @ of diffeo-
morphisms f in Ref. [11], Huebsch and Morse found it necessary to give
a different proof of Theorem 5.1, one that could serve as a model when @
was given. This model is presented in Ref. [9]. Recently Theorem 5.1
has been greatly extended. Cor 7.1 [12].

T-problems. The analytic case. Theorem 4.3 has itg analogue in the
analytic case. Here I' is a real analytie, regular, proper r-manifold in
some euclidean space.

Convention. An Apr-mapping of JS x I" into H is defined as was a Op-
mapping of J8 X I" into B, and a O™-mapping by an analytic mapping.

The principal theorem is as follows.

THROREM 5.2. Corresponding to o veal analytic mapping @ of SxI”
into B each of whose p-sections is an analytic diffeomorphism of S into B,
there emists an Ap-mapping Ao of JS X I' into B whose p-section for each
p eI is an Aydiffeomorphism of JS into B which extends &

§ 6. The data in simple extension problems. We ghall bring
out fundamental differences between the topological, differential and
analytic cases of the simple extension problem.

In posing a simple extension problem the domain of definition of
the given mapping f into & has been one of two types.

I. The (n—1)-sphere S. In this case an extengion F of f over J§ is
tentatively admitted if f = F|8.


Artur


330 M. Morse
II. An open neighborhood N of 8. In this case an extension F of f
is tentatively admitted if F|W =f, where WC XN is some sufficiently
small open neighborhood of 8.

The question arises, is it possible in all three cases, the topological,
the differentiable, and the analytie, to take the domain of f either of type I
or II at pleasure, and be assured of an extension ¥ of f over J§ which
is admissible, that is, one that is tentatively admissible in the sense of I or
II and in addition such that F is a homeomorphism, a C7'-diffeomorphism,
or an Aydiffeomorphism of J8 into F, respectively, according to the
case at hand. The answer is no. Corresponding to the case the following
table gives the type of domain of f for which f always has an extension F
which is admdssible in the above sense. We term such a domain admissible.

Case | Type of domain
Topological II
Differentiable I orII
Analytic I

That 8 is not admissible as a domain in the topological case follows
from Ref. [1]. We have seen in Theorem 1.2 that § is admissible as a domain
in the differentiable case. A domain of type II is likewise admissible in
the differentiable case, as is shown in Ref. [6].

In the analytic case a domain of type II is not admissible. That
i, if the given mapping f iy an analytic diffeomorphism into F of an
open neighborhood of 8, there will exist, in general, no 4,extension
of f which agrees with f in a neighborhood WC N of S. The following
example shows this.

Exavpre. Let (r, 6) be polar coordinates in a 2-plane H, of coordinates
@, 9. Set ¢z = w4 4y. Let a point 2 = ¢® on the circle || = 1 be represented
by 6 and let this circle ¢' be mapped diffeomorphically onte an ellipse &
by setting

z=aqcosf, y=>bginl (0<a<bd),

the point 2 = ¢® € ¢ correspouding to (#, ¥) € G. Lot this map of C onto &
be denoted by ¢. Let g be extended over a small open neighborhood of ¢
in such a manner that short normals to ¢ and @ at corresponding points,
themselves correspond. Cf. Ref. [5], §5. In particular let points in Jo
and J@ -on corresponding normals correspond if at the same distance
from C and &. Let this correspondence be similarly defined for points
exterior to C and G and near ¢ and G We understand that no normal
to O extends to the origin and no normal to & extends to a focal point of G.
Let the resulting analytic diffeomorphism of an open neighborhood of €
onto an open neighborhood of G be denoted by f.
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This mapping f does not admit an extension as an A,-diffeomorphism
of JC onto J@G. In fact the analytic extension of f will fail to be a diffeo-
morphism at those points of JC which are antecedents of focal points of a.

Nevertheless the original analytic mapping g of C onto G admits
an extension as an analytic diffeomorphism into B, of an open neighborhood
of JC. This statement is a consequence of the following facts. The integer
n = 2 is in o, 50 that g can be extended as a (™ -diffeomorphism over JC.
The mapping g thus admits an extension as an analytic diffeomorphism
into B, of an open neighborhood of JC, in accord with the following theo-
rern. Cf. Huebsch and Morse, Ref. [9].

THEEOREM 5.3. If an analytic diffeomorphism f of 8 imto E admits
an extension as a C™-diffeomorphism of J§ into B, m > 1, then f admils
an extension as an analytic diffeomorphism of JS into E.

The hypothesis of this theorem may fail to be satisfied when n > 3.
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