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Independence in a certain class of abstract algebras
by
W. Narkiewicz (Wroctaw)

1. In [5] B. Marczewski investigated a class of abstract algebras,
called v-algebras, in which the notion of independence has the properties
of linear independence. Later K. Urbanik [7] has given the representation
theorem for v-algebras (called by him Marczewski’s algebras). In this
paper we shall investigate a wider class of algebras, namely 'u*—algebr:jus.
Independence in this class of algebras has also the principal properties
of linear independence. The investigation of v*-algebras was suggested
to me by Professor E. Marczewski.

For the terminology and notation used here see [4], [5], [6]. In
particular we shall denote by A™ the set of all algebraic operations Of(:?;
variables of a fixed algebra % = (4, F) and by 4™ the subset of 4
consisting of all operations depending on at most % variables. By [a,, ..., @]
we shall denote the subalgebra of 9 generated by the set {a, ..., an}.

2. We shall say that an algebra % = (4, F) is a v*-algebra if and
only if it satisfies the following conditions:

(I) If a e A and a is not an algebraic constant, then the set {a} is @ seb
of independent elements.

(IT) If {ag, ..., Gn} i8 @ set of independent elements, ond {ty, ..., Gn, Gpp1}
is not a set of independent elements, then Gnii€[ay, ...; @nl. ‘

Condition (I) may be treated as the degenerated case (n = 0) of (IT).

Bvidently (see [5], p. 614) the v-algebras satisfy (I) and (II). On
the other hand it is easy to construct a v*-algebra which is not a v- algebra.
Let & e a group of transformations of a set A. Let A, be the set of @11
fixed points of the transformations from G and let us assume that ¢ (;1?) C4,
for g e G. Suppose, moreover, that there exists an 7 e &, h. # ¢ with ab
least two fixed points. Then the algebra (4, F), where Fhls the family
of all functions g(x), g ¢ @, and all functions f(z)=a, a ed,, is a v*-algebra
and not a v-algebra.

Trom Theorem I Delow it follows that the simultaneous occurrence
of conditions (I) and (II) is equivalent to the simultaneous occurrence
of (I) and the following two conditions:
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(ILI) The set {ay, ..., an} tn A is a set of independent elements if and
only ¢f mone of the a; belongs to the subalgebra generated by the other elements.

(IV) In every subalgebra with a basis consisting of & elements every I
independent clements form a basis.

The above observation is due to 8. Swierczkowski.

(i) If Wis a v*-algebra, B is a subalgebra of A, then every set of inde-
pendent elements in B is also a set of independent elements in N,

It is suffieient to prove this statement for finite sets only. Suppose
that {a, ..., a»} is a set of independent elements in B; a, is independent
in %, for otherwise, by (I), a; would be an algebraic constant in A, and
a fortiors in B. Let % be the greatest integer <a such that the set:
{@y . o) is a set of independent elements in W If % £ a then,
by (II), @piyelay, ..., ax] and thus {a, ..., arei} would not be a set of
independent elements in B. Thus % =« and (i) is proved.

As an obvious consequence of (i) we infer that every subalgebra
of a o*-algebra is also a v*-algebra.

From (II) it follows by an argument familiar in the theory of linear
spaces (see e.g. [1], pp. 178-179, theorem 7) that:

(ii) If there ewists a set of m generators of a v*-algebra, then every sef
of independent elements contains at most n elements.

The proofs of the following three statements arve identical with the
proofs of the corresponding statements for v-algebras (see [5], pp. 614-616)

y
and so we omit them.

(i) If N is a set of n independent elements in a v*-algebra and M is
a set of n-1 independent elements, then there is an a in MN\N such that
N {a} is a set of independent elements.

We thus see that v*-algebras satisfy the axioms of independence
formulated by H. Whitney [8]. Consequently, v*-algebras are ¢Ab-
héngigkeitsriume” as defined in [3].

(iv) If A = A then the following statements are equivalent in a v*-al-
gebra: (a) B is a basis, (b) B is @ minimal set of generators, (¢) B is & maximal
set' of independent elements.

(v) Any two bases in a v*-algebra have the same cardinal number.

We can now define the dimension of any v*-algebra A (dimA) as
the cardinal number of any basis in % When we treat v*-algebras as
sets with independence in the gense of [8], then the dimenjion coincides.
with the rank, and when we treat them as “Abhéngigkeitsriume” then
the dimension coincides with the “Rang”,

As we have seen above, most of the known principal theorems of
linear independence in vector spaces remain true in v*-algebras with one
exception—iti is no longer true that the algebra of all algebraic operations.
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of & variables of a v*-algebra is also a v*-algebra for all % > 1. This theorem
remains true for infinite-dimensional »*-algebras. For finite-dimensional
p*-algebras the algebra of all algebraic operations of % variables is also
a v*-algebra for 1 <k < dim¥Y; this follows from the remark that the
algebra of all algebraic operations of » variables (where » is the dimension
of ) of the algebra A is isomorphic to A (see [2], theorem 1) and from (i).

8. We shall now give another characterization of v*-algebras. Let U
be an algebra. By 4; we shall denote the set of ordered k-tuples of
algebraic operations of k variables such that if (fy, ..., fx) € 4x then no
fi is generated in the algebra of all algebraic operations of k variables of U
by the other operations f; (k>1). By 4, we shall denote the set of non-
constant algebraic operations of one variable in . By V; we shall denote
the set of ordered k-tuples of elements of A such that if (ay, ..., az) e Vi
then no a; is generated by the other elements (k¥ > 1). By ¥, we shall
denote the set of elements of U which are not algebraic constants. Now
we prove:

TaEOREM 1. If the algebra U is a v*-algebra, then:
(%) Ay is a group of transformations Vi—Vy whenever Vi is non-void,
and 4, 18 a group without fized points.
Conversely if an algebra U satisfies (x), then Vy is the set of all inde-
pendent k-tuples of elements of A, and moreover, A is a v*-algebra.

Proof. Suppose that A is a v*-algebra and V; is non-void. Then
% < dim%. 4; is now the set of independent ordered %-tuples of operations
from the algebra A® and VP is the set of independent ordered k-tuples
of elements of 9. At first we prove that 4; is a set of transformations
Vi—Vy. It suffices to prove that if aeVy, fe 4, then f(a) er.(kLgt
@ = (@yy veey Og)y | = (f1y -eey fr)- I f(a) ¢ ¥ then for some § and F e 4™ :

fl(a'n ey (l;,)

=F(f1(a17 i) ak)a ) f]'—l(a'17 ey ar) f;/-i-l(a'ls ey a’k)y R fk(au RS ] a’k)) .

From the independence of {ay, ..., &} it easily follows that {fy, ..., fx}
is a dependent system, contrary to our assumption. Now we prove that 4y
is .a group. Let ¢ = (@, ..., ). Evidently ¢ e 4y, and, for every fe 4y,
ef =fe =7.

(a) For every f e Ay there exists an f~* € Ay such that i =e.

As we have seen in § 2, the algebra A™® ig a v*-algebra (obviously
%-dimensional) and so every set of k independent operations of k variables
of U generates A®, Let f = (f;, ..., /). Then there exist operations gy, ..., g
such that for ¢ =1, .., % we have gdfi, ..., fs) = ®. I (g1, ..., gr) ¢ i
then, for some §j and FeA® ™, g;=P(g, ..., gi—1; Gi+1s s G1)- BY
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putting here @;—+f; we obtain a; = F(®y, ..., 8joay Tjary ooy 23), which ig
a contradiction. Thus f™* = (gy, ., gu) € Az, and [7f =e.

(b) For every f,q e dy, fg € 4.

Let aeVy. Then g(a) eV and fg(a) € V. Hence the set {f;(gi(ay, ... , az),
T X (. ak))}:.‘:l iy a set of independent clements and this can happen
only if fg e 4. - ;

From (a), (b) and the obvious remark that associativity holds in 4,
we infer that 4y is a group. If for an fed;, and an aeV,; we have f(a)=a
then from (I) follows f(2) == @ for every a. The first part of the theorem
is thus proved.

Suppose now that 4 are groups of transformations Vi—V; when-
ever V; is non-void and 4, is without fixed points. It suffices to prove
that A is a o*-algebra.

"LmMMA. If (ay, ..., 041, b) € Vi, {@y, ..., az} i a set of independent
clements, (ayy ..., tx, ) € Viiq then b e[ay, ..., az).

Proof. At first let % = 1. Then «, € Vy, (0, b) ¢ V,. There exists
an feA™ such that b = f(ay); thus b e[a,], or a, = f(b). In the latter
cage if f ¢ 4, then f is a constant, and so a, is an algebraic constant, con-
trary to owr assumption. Thus fe 4y, and b = f(a,).

Suppose that we have proved the lemma for every k< ¥ and Vy
is non-void. Let owr assumptions be satistied. There exists an fe AN
such that b= f(ay, ..., ay) and so b e[a, ..., ay), or there exists a j such
that a; = f(@y, .., @iy b, @41, ooy ay). In the latter case let ns define:

& = 1y ey Bjozy [ By vony BN) 5 Biay ey ) ©

It 2 ¢ 4y then there exist a jo and a g e AV such that

iy = g(wly cony Bjgmty Ligh1y vy Bima, (@ 7- 7mN)a Ljpry eony wN)

(for f depends on x; and so the equality f= R(@yy ey Bj1y i1y wees BN)
is impossible). If we mow put @; =05, @ =a; (i #j) we obtain ay
= g{@yy very Bjy—1, Cjptay -y @) and this contradicts the independence of
{@1y oy 0y). Thus 2 € Ay. Let us define:

¢ = (ar17 ey Ajeyy b, Ajg1y ooey ay) ’

If ceVy, then 2(c) = (@, ..., ay); thus 2~Ya, ..., ay) = ¢ and b e[ay, ..., ax].
If c¢ Vy, then by applying the inductional hypothesis we easily obtain
b e[ay, ..., ay].. The lemma is thus proved.

Now we prove that (I) and (II) are satisfied. (I) follows from the
fact that 4, has no fixed points. (II) we prove by induction. Suppose
at first that n =1, i.e. ¢, is an independent element and {a,, a,} is a pair
of dependent elements. If a, ¢ V,, then obviously a,e[a,]. If a, eV,
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but (&, ag) € Vs, then as e[ay] or a, e[a,]. In the latter case ay = flay),
where fed;, and 50 ¢, = 7" @y). It remains to consider the case (a,, ;)€ 4,.
There exist two different algebraic operations, f(x,y) and g(z,¥), such
that  f(ay, @) =g(ay, a) =b. Let z=(f,g) If we had zed,, then
2(ay, @) = (b, D) € V,, which is impossible. Thus z¢ 4, and we obtain
flo,y) = G‘(g(m, g/)) (by interchanging if neeessary the operations f, g).
By putting here # = ay, y = u, We obtain b = G(b), whence b is an algebraic
constant. Now let us observe that the pairs (h(z,y), ) and (h{z, ), )
do not belong to 4, for any operation h(z,y) such that h(ay, ay) = b
because (h(z,¥), @) (a1, @) = (b, a)) ¢ V3, and analogously in the second
case. So we see that h(z, y) must be a constant. Consequently the opera-
tions f(x,y) and g(w,y) considered above are constant and so they are
equal, contrary to our assumption. )

Assume now that we have proved (XX) for n < N—1 and let {a,, ..., an}
be a set of independent elements and let {a, ..., ay+1} be a set of
not independent elements. We shall prove that awiie [@y oey an] TE
@y +-s Gx41) does not belog to V41, then this follows easily from the
lemma. Suppose therefore that (ai, ..., ani1) € Vay1. There exist two
different algebraic operations f(@y, ..., @t g(®y, ..., Ty4q) Such that
F@yy oy Ong1) = G0y ooey Uxta) =D. Then 2 = (f(ml, vy BN4)y §(Brg ooy 931\3—})7‘
By, ovy Liy,,) does not belong to Ay for any set of indices 1<y, ..yt
< N +1, for otherwise 2(ay, ..., tx+1) = (b, b, a5, ...) would belong to Vx_i
and this is evidently false. '

Hence

Fl@yy ooy En41) = H(g(wu ceny BN41)y Bigy v mil;r_l)
or
TG @y ey Bpr) = H(f(mla coes BN41)y Biyy ons mt'N_l]
or for some j
o
gy = H (F(@1y ooy Ty1)y §(Bry coey BN42) s Bigs ooy Bigys Bigigs oo @y )

with some H(a, ..., oy). If for a set of indices 1< 4, ... 01 <N ’?he
et {D, @yy oeny Gy} WELE D 5EE of independent elements, then by putting
@; = a; in the equalities just established we would easily obtain a con-
tradiction. Hence the set {b, Gy, vy Oy} is DOt 2 st of independent
elements for any set of indices 1 < 4y, .y in—1 < N. Remembering that
the set {ag,.., ey} 6 a set of independent elements we infer from
the inductive hypothesis that for every set .of indices 1<y,
b €[y, wuey Biyy_,]. Thus »

b = fy(aq, ..., ax) = fo( @y, g, ---1va'lrv) = oo = [y(@1y ony W¥-1) -

From the independence of {a, ..., ax} we easily infel" that all the oper-
ations f; should be constants and so b is an algebraic constant.
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Now let 2 be any operation such that h(ayy <y ay4q) = b. Then
{hy @iy o, @gy,) does 0t belong to Ay, for any set of indices 1 <4, < N 1.
Suppose that  depends on ;. Then (h, 2, .

=9 Th=1y Bretay voey BNtr) § Apyy,
consequently for some j and H =;

= H(h(wly oy BN41)y Bry oeny By_g, Djt1y
ooy g1y B 1y ...,wN.H). By putting z= a; we obtain (considering that b
is an algebraic constant): i €[y, y 0o, @y, <y Gy41], contrary to the
assumption. that (ay, ..., ax41) € Pyp,. Hence h does not depend on a,
for any % and so b is a constant. But in the place of & we can put f and g,
and so they are constant, whence they are equal and this contradicts
the assumption that {ay,..., ay.1} is not a set of independent elements,
Thig proves our theorem,

4. It is natural to ask for a representation theorem for v*-algebras.
Tt seems to be a difficult problem, for, as can eagily be seen, if the classes
of all n-ary algebraic operations are identical for (4,F)and (4, G) where
(4, F) is an n-dimensional v*-algebra, then (4, G) is also a v*-algebra.
In thig direction we obtained only the following, very special result:

TerorEM II. If U is an n-dimensional v*-algebra, and A™ — A,
then there exist a group G of transformations of the set A and a subset A, C A
composed of all fimed points of the transformations from G and such that

G(4,) C 4y, and moreover every algebraic operation of n variables is of
the form:

f@y oy @) = glaw)  for geG and 1 <i < n

or
Haoyy vy tn) =a  for ae A,.
Proof. It suffices to prove that 4y is a group of transformations
A —~A4 (and not only Vi—>V,). The associativity and the existence of the

unit element are obvious. Now let g = f~* in 4,. Then fg(x) = gf (%) = =
in ¥, and from the fact that no element in V, forms a set of dependent
elements it follows that o = fg(@) = gf(2) in A. It we now define 4, = AN4,
we at once obtain the theorem.

We shall say that an »-dimensional algebra is minimal if its funda-
mental operations depend on at wmost # variables. The combination of
theorems I and II gives thus a representation for all minimal algebras
satisfying 4™ — 4@ {where » is the dimension of the algebra).

5. In [3]

O. Haupt, G. Nobeling and C. Pauc define the direct sum
of subsets B,

s -y B of an “Abhingigkeitsraum?” as follows: B — B, +
A k
FBy+ ...+ By if and only if B = B;, dimB, = 0, and &imB = 3 dim B;.
4e=1

=1

m
We shall write 9[ :kZl A and say that the algebra A is decomposable

icm
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m
mn . . v . .
it m>2, Wp=(dyF) me subalgebras of Ay |JAp=4d and 2, Hm

- dim. Tt is easy to see that a v*-algebra is decomposable if and only

if it is a direct sum of subsets in the sense of [3]. Following [3] we \hfnll
say t]-mtv A is totally decomposable if there exists such a decomposition

A= 5}; Ay that dim2 =1 for i =1,..,m. We shall now prove
k=1

TurorEm ITL. If A s a v*-algebra, then the following conditions
are equivalent:

(a) A is decomposadle,

(b) WU is totally decomposable,

(¢) AR = 4" for T < dimA. N
(We thus see that Theorem II gives o representation for minimal de-
composable v*-algebras.) N

Proof. The implication (b)—(a) is trivial.

i .
: . axdim,, = dim, = r.
(a)~(c). Suppose A =k§15),[k, AimY = =, m;cmxdlmﬁ k 1

S epend actually on @, .., % (s <n). Let {a, e @}
?(J)(fmff(nm%’asl: ﬁg)ﬂd ]%vidently in each algebra A there bamg{ exagitsz%d}n;ik
alements from that basis. Let f(ay,..., @) = I{, and let be ;,:“), suCh,m thaé
@y oo, @iy€ Ap,. There exists an operation q(ml, ey ,,Fr(.)m : hat

1(1c;. ’ pai ) = b, because d, ..., &, form a basis of Wg,- e
fiepzéilde’ncg of the a;-s it follows that f(a1, /,my%v= g ;f;l;nré én,;(m; m;wn)
depends only on p variables, and thus s<p ~§1; ec - a; i oy
= Ry, ..y @), We can always suppose that (Ll’:éesr),[ léﬁmsi[k - v
Suppose now that sz 0,1. L(?t h(ayy ooy Gg1y a,,Jrl)w;h t,h;%,p(ar 1, -
and @y, «ovy @rg € A, There oxn‘m an F(wl,...., Zq) (;en,('e o e ‘;i_s o
= ¢ = h(ay, vy Bs—1, Grp1) and from the‘ indepen: ,d : 1 O et thom
infer that the number of variables on which % dep(;n. s 18 o e ieh
the number of numbers from the seguence .1’ 2, f, ?if (x,very .
belong to {ry, ..., g} But this number 15 less than g, for 1-]1e;1 oy mumbe
of the sequence 1,2, ..., s—1,7+1 belongs to 75, s e e,m.] ; f’aoés -
@pypq € Ay, and this is impossible. Hence h and '(?onsequ Ly
d:iaend (;11 s variables, contrary to our l?ssum])tlon. e s bt of &

(€)—(b). Let dimU = n; A® = A Tet ay, ...}fqg;g (t: p;m;e thm;
and let us define % = [ag for é=1,2, .., n It suffice N
A= \3 Ay Suppose b eA\LnJ A;. There exists an f(@, ..., %) Suc

et 1=1

. sl y 3, and so
that f(ay, ..., an) = b but F(@, .., Ta) = g(x,) for suitable 4 a
b = g(a;) € A4, contrary to our assumption.
The theorem is thus proved.
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Semigroups on trees”
by
R. J. Koch and L. F. McAuley (Louisiana)

Introduction. We consider here a special case of the test question:
Given a continuum &, does it support the structure of a topologicat
semigroup with zero and unit? In the case that 8 is one-dimensional it
is known [1] that a necessary condition on 8§ is that it be a generalized
tree, i.e.: arc-wise connected, hereditarily unicoherent, and satisfy a certain
arc-convergence property, namely, that for some point 0 € 8 (necessarily
a point of local connectivity) and for any net {po} with {p.}—p, that
[0, pa] [0, pl. (See also [2].) Tt is conjectural that any one-dimensional
generalized tree supports the desired structure. As a step in this direction
we show here that any metric tree § whose endpoints I form a compact
¢et admits such a structure. In fact we establish a stronger conclusion:

Tmmormt. I can be ordered so that min(w,y) is continuous for 2,y eI,
and multiplication in 8 can be introduced so that S s realized as the
continuous homomorphic image of the “fan” over I, i.e. the semigroup
formed from I x {01} by shrinking I x {0} to @ point (here {01} denotes
the unit interval of real numbers provided with any continuous associative
multiplication in which 0 acts as a zero and 1 acts as a unit).

Set-theoretic preliminaries. Throughout the paper § will
denote u metric tree, or acyelic loeally connected compactum. For equiv-
alent formulations sec [4], p. 88. The set of endpoints of 8 will be
noted by I, and we assume that I is compact. The unique arc from p
to ¢ will be written [p, ¢]. We denote the boundary of A by F(4),
the complement of B in 4 by A'B, the closure of A by A* and the
empty set by O.

We will make use of the fact ([4], . 99) that a metric tree is
a regular curve, i.e. about each point there is a small neighborhood with
finite boundary. Also ([4], p.89) the set of branch points of 8, ie.
rutpoints of order > 2, is countable. We fix an element 0 of S\I.

* This paper was in part prepared under National Seience Foundation' Research
Grant NSF-G14086. '
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