340

W. Narkiewicz

References

- [1] G. Birkhoff and S. MacLane, A survey of modern algebra, New York 1946.
- [2] A. Goetz and C. Ryll-Nardzewski, On bases of abstract algebras, Bull. Acad. Pol. Sci., Sér. math., astr. et phys. 8 (1960), pp. 157-161.
- [3] O. Haupt, G. Nöbeling u. C. Pauc, Über Abhängigkeitsräume, Journal f. d. reine u. angewandte Mathematik 181 (1940), pp. 193-217.
- [4] E. Marczewski, A general scheme of the notions of independence in mathematics, Bull. Acad. Pol. Sci., Sér. math., astr. et phys. 6 (1958), pp. 731-736.
- [5] Independence in some abstract algebras, Bull. Acad. Pol. Sci., Sér. math., astr. et phys. 7 (1959), pp. 611-616.
- [6] Independence and homomorphisms in abstract algebras, Fund. Math. 50 (1961), pp. 45-61.
- [7] K. Urbanik, A representation theorem for Marczewski's algebras, Fund. Math. 48 (1960), pp. 147-167.
- [8] H. Whitney, The abstract properties of linear dependence, Amer. Journ. Math. 57 (1935), pp. 507-533.

Reçu par la Rédaction le 8. 12. 1960

Semigroups on trees*

by

R. J. Koch and L. F. McAuley (Louisiana)

Introduction. We consider here a special case of the test question: Given a continuum S, does it support the structure of a topological semigroup with zero and unit? In the case that S is one-dimensional it is known [1] that a necessary condition on S is that it be a generalized tree, i.e.: arc-wise connected, hereditarily unicoherent, and satisfy a certain arc-convergence property, namely, that for some point $0 \in S$ (necessarily a point of local connectivity) and for any net $\{p_a\}$ with $\{p_a\} \rightarrow p$, that $[0, p_a] \rightarrow [0, p]$. (See also [2].) It is conjectural that any one-dimensional generalized tree supports the desired structure. As a step in this direction we show here that any metric tree S whose endpoints I form a compact set admits such a structure. In fact we establish a stronger conclusion:

THEOREM. I can be ordered so that $\min(x,y)$ is continuous for $x,y \in I$, and multiplication in S can be introduced so that S is realized as the continuous homomorphic image of the "fan" over I, i.e. the semigroup formed from $I \times \{01\}$ by shrinking $I \times \{0\}$ to a point (here $\{01\}$ denotes the unit interval of real numbers provided with any continuous associative multiplication in which 0 acts as a zero and 1 acts as a unit).

Set-theoretic preliminaries. Throughout the paper S will denote a metric tree, or acyclic locally connected compactum. For equivalent formulations see [4], p. 88. The set of endpoints of S will be noted by I, and we assume that I is compact. The unique arc from p to q will be written [p,q]. We denote the boundary of A by F(A), the complement of B in A by $A \setminus B$, the closure of A by A^* , and the empty set by \square .

We will make use of the fact ([4], p. 99) that a metric tree is a regular curve, i.e. about each point there is a small neighborhood with finite boundary. Also ([4], p. 89) the set of branch points of S, i.e. cutpoints of order > 2, is countable. We fix an element 0 of $S \setminus I$.

^{*} This paper was in part prepared under National Science Foundation Research Grant NSF-G14086.

LEMMA 1. Let $x \in I$ and let U be an open set about x with F(U) finite: then there is a non-branch point p in [0, x] such that $C_x(S \setminus p)$, the component of $S \setminus p$ which contains x, is contained in U.

Proof. Denote the boundary points of U by b_1, \ldots, b_k . Let V be an open connected set with $x \in V \subset U$ and $0 \notin V$. Let p_1 be a branch point in $[0, x] \cap V$; note that if there is no such p_1 , then for any $p \in [0, x] \cap V$, $C_x(S \setminus p) \subset U$. There is a boundary point, say b_1 , in $[0, p_1]$. If $C_x(S \setminus p_1) \not\subset U$, then we may assume there is abranch point p_2 on $(p_1, x]$. Let $b_2 \in F(U) \cap C_x(S \setminus p_1)$ and note that $b_2 \neq b_1$. After k steps, the boundary points have been exhausted, and we let $p \in (p_k, x]$ be a non-branch point. We then have $C_x(S \setminus p) \subset U$ and the proof is complete.

LEMMA 2. Let U be an open set about I; then there is an open set N with $I \subset N \subset N^* \subset U$, F(N) finite, F(N) contains no branch points, $S \setminus N$ is connected, and for $b_1, b_2 \in F(N), b_1 \notin [0, b_2]$.

Proof. Let $x \in I$. Since S is a regular curve, there is an open set V about x with $V^* \subset U$ and F(V) finite. By Lemma 1 there is a non-branch point p in [0,x] with $C_x(S \setminus p) \subset V$. Let $N(x) = C_x(S \setminus p)$, and cover I by the sets N(x). Then $I \subset \bigcup_{i=1}^n N(x_i)$, a finite union which is irredundant in the sense that no $N(x_i)$ is contained in the union of the others. Note that $N(x_i) \cap N(x_j) = \square$ if $i \neq j$. Let $N = \bigcup_{i=1}^n N(x_i)$; then $I \subset N \subset N^* \subset U$, and F(N) is finite and consists of non-branch points. Also $S \setminus N = \bigcap_{i=1}^n [S \setminus N(x_i)]$ is a continuum. From the irredundancy it follows that for $b_1, b_2 \in F(N)$, $b_1 \in [0, b_2]$.

The next two lemmas are easy consequences of Lemma 2 and the fact that S is a regular curve; the proofs are omitted.

LEMMA 3. Let U be an open set about I; then $S \setminus U$ has only finitely many branch points.

LEMMA 4. Each branch point of S has finite order.

LEMMA 5. Let $f: \mathcal{S} \times \mathcal{S} \to \mathcal{S}$ be defined by: $p, q \in \mathcal{S} \to [0, p] \cap [0, q] = [0, f(p, q)]$; then f is continuous.

Proof. Let $p, q \in S$ and let W be an open set about f(p,q). Suppose that f(p,q) separates p from q. Let U be the component of $S \setminus f(p,q)$ which contains p, and let V be the component of $S \setminus f(p,q)$ which contains q. Then U and V are open and arc-wise connected. Let $p' \in U$, $q' \in V$; then $[p,p'] \subset U$, $[q,q'] \subset V$, and it follows that $[0,p'] \cap [0,q'] \supset [0,f(p,q)]$. But if $t \in [0,p'] \cap [0,q']$, it follows that $t \in [0,f(p,q)]$; we conclude that f(p',q') = f(p,q), so that $f(U \times V) = f(p,q)$. Hence we may suppose that f(p,q) does not separate p from q, i.e. we may assume that f(p,q) = q, so that either q = 0 or q separates 0 from p. Let U and V

be disjoint open connected sets containing p and q respectively, with $V \subset W$, and let $p' \in U$, $q' \in V$. It follows that $f(p', q') = f(q, q') \in V$, so that $f(U \times V) \subseteq V$ and f is continuous.

Remetrization of S.

Lemma 6. Let ϱ be the given metric on S; then there is an equivalent metric d satisfying

- (i) if p separates 0 from q then d(0, p) < d(0, q) and
- (ii) d(0, x) = 1 for each $x \in I$.

Proof. Let V_1 be an open set containing I satisfying the conditions of Lemma 2, with $0 \notin V^*$. Let $F(V) = y_1, ..., y_n$. We map $[0, y_i]$ by a homeomorphism h_i onto the real interval $[0, 1-2^{-1}]$ with $h_i(0) = 0$, i = 1, 2, ..., n. We may further modify the h_i 's so that (keeping the original notation) h_i agrees with h_i on $[0, y_i] \cap [0, y_j]$, $1 \le i, j \le n$. Let $m = \max[\varrho(y_1), I]$ and cover I by ϱ -spheres of radius < m/2 each of which is contained in V_1 . Inside the resulting open set about I there is an open set V_2 satisfying the conditions of Lemma 2. Let $F(V_2) = z_1, ..., z_r$. We can find homeomorphisms k_i of $[0, j_i]$ onto the interval $[0, 1-2^{-2}]$ satisfying (i) k_i agrees with k_i on $[0, z_i] \cap [0, z_j]$, $1 \le i, j, k, l \le r$. We iterate this procedure to obtain open sets V_i containing I, $F(V_i) = B_i$, $\bigcap_{i=1}^{\infty} V_i = I$, and corresponding finite sets of homeomorphisms H_i , where $H_i = \{a_b: a_b \text{ is a homeomorphism}$ of [0, b] onto $[0, 1-2^{-i}]$, $b \in B_i$ } satisfying

- (1) $b, b' \in B_i \rightarrow a_b$ agrees with a_b on $[0, b] \cap [0, b']$,
- (2) $c \in B_{i-1} \rightarrow a_b$ agrees with a_c on $[0, b] \cap [0, c]$.

Let $D_i = \bigcup_{b \in B_i} [0, b]$ and let $D = \bigcup_{i=1} D_i$. It is easy to see that $D = S \setminus I$.

Now fix $x \in I$ and define a_x : $[0, x] \rightarrow [0, 1]$ as follows:

Let $t \in [0, x]$; if t = x define $a_x(t) = 1$. If $t \neq x$, then $t \in D$ so there is an integer i and $b \in B_i$ with $t \in [0, b]$. Define $a_x(t) = a_b(t)$. It follows from (i) and (ii) above that a_x is well defined and one to one. It is easy to see that a_x is continuous, hence a_x is a homeomorphism of [0, x] onto [0, 1]. It is also clear that for $x, y \in I$, a_x agrees with a_y on $[0, x] \cap [0, y]$.

Define $d: S \times S \rightarrow [0, 2]$ as follows: Let $p, q \in S$; there exist $x, y \in I$ with $p \in [0, x], q \in [0, y]$. Define

$$d(p,q) = \left\{ \begin{array}{l} |a_x(p) - a_x f(p,q)| + |a_y(q) - a_y f(p,q)| \\ & \text{if } f(p,q) \text{ separates } p \text{ from } q, \\ |a_x(p) - a_x(q)| & \text{if } f(p,q) \text{ does not separate } p \text{ from } q. \end{array} \right.$$

It can be readily shown that d is a metric, and we note the property that for $p, q \in S$, d(p, q) = d(p, f(p, q)) + d(f(p, q), q). To show that d is

equivalent to ϱ we will show that $\varrho(p_n, p) \to 0$ implies $d(p_n, p) \to 0$. If $p \in I$, then using Lemma 3 there is a subsequence p_{n_k} of p_n , and $x \in I$, such that (p_{n_k}) and p lie on [0, x]. It is then immediate that $d(p_n, p) \to 0$. Hence we may assume that $p \in I$. Given $\varepsilon > 0$ there is an integer k with $2^{-k} < \frac{1}{2}\varepsilon$, and an integer n_0 such that $n \ge n_0$ implies $p_n \in V_k$ and $f(p_n, p) \in V$ (the latter by the continuity of f). Then $d(p_n, p) = d(p_n, f(p_n, p)) + d(f(p_n, p), p) < \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon$, so that $d(p_n, p) \to 0$. From the compactness of S it follows that d is equivalent to ϱ . The remaining properties claimed for d are immediate from the construction.

The ordering on I. Let $B = \{0\}$ together with the set of branch points of S, and let $b \in B$: By Lemma 4, $S \setminus b$ has finitely many components $C_i(b)$ which do not contain 0. Let $I_i(b) = I \cap C_i(b)^*$ (the set of endpoints of the tree $C_i(b)^*$ excluding b). Define a relation R(b) for $\bigcup I_i(b)$ by: $(x,y) \in R(b)$ iff (1) $x \in I_i(b)$, $y \in I_j(b)$ and i < j. We note that R(b) is transitive and satisfies the property $(x, y) \in R(b) \rightarrow (y, x) \in R(b)$. Now let $R = \bigcup R(b) \cup \Delta$ where Δ is the diagonal of $I \times I$. To see that R is an ordering, let $x, y \in I$ with $x \neq y$ and we show either $(x, y) \in R$ or $(y, x) \in R$. Let f(x, y) = b where f is the function of Lemma 5; then $x \in I_i(b)$, $y \in I_i(b)$ with $i \neq j$. Hence either $(x, y) \in R(b) \subseteq R$ or $(y, x) \in R(b) \subseteq R$. Further, it is easily seen that $(x, y) \in R \rightarrow (y, x) \notin R$. To show R is transitive, suppose $x, y, z \in I$ with $x \leq y \leq z$. We may assume x < y < z, and we consider $[0,x] \cup [0,y]$. If f(x,y) separates 0 from f(y,z), then y and z belong to the same $C_i^{\dagger}f(x,y)$, so that $(x,z) \in R(f(x,y)) \subset R$. If f(y,z) separates xfrom f(x, y), then x and z belong to the same $C_i(f(x, y))$, so that $(z,y) \in R(f(x,y)) \subset R$, hence $(y,z) \in R$, a contradiction. If f(y,z) separates 0 from y, and f(y, z) = f(x, y), then x, y, and z belong to distinct $C_i f(x, y)$'s, and hence x, y, z are ordered transitively. Finally, if $f(y,z) \in [0,f(x,y)]$, then x and y belong to the same $C_i f(y,z)$ so since $(y,z) \in R(f(y,z))$ it follows that $(x,z) \in R(f(y,z)) \subset R$.

To show that R is closed in $I \times I$, let $(x, y) \in I \times I \setminus R$, and let U and V be disjoint connected open sets about x and y respectively. Then either $x' \in U \cap I$, $y' \in V \cap I \rightarrow (x', y') \in R$ (as determined by the branch point f(x, y)) or vice versa. In the first case $(U \cap I \times V \cap I) \cap R = \square$ and the other case is similar.

It now follows easily that the multiplication $m\colon I\times I\to I$ defined by $m(x,y)=\min(x,y)$ is continuous.

The multiplication in S. To each $t \in S$ we assign two coordinates x(t) and a(t), where $x(t) = \sup\{y \in I: t \in [0, y]\}$ and a(t) = d(0, t). For $p, q \in S$ we define $st = [\min\{x(p), x(q)\}, a(p) \cdot a(q)\}$, where \sup and \min

refer to the ordering just introduced on I, and multiplication in [0, 1] is any continuous associative multiplication in which 0 acts as a zero and 1 acts as a unit. The details of showing that this multiplication is continuous can be carried through, but it is more revealing to take a different point of view.

We define $g\colon I\times I\to [01]$ by g(x,y)=d(0,f(x,y)). Note that since f is continuous, so is g. Define $\varphi\colon I\times [0,1]\to S$ by: $\varphi(x,a)$ is the element of S at d-distance a from 0 along the arc [0,x], and let R be the equivalence relation determined by φ ; i.e. $[(x,y),(y,b)]\in R$ iff $\varphi(x,a)=\varphi(y,b)$. We will write $(x,a)\sim (y,b)$ to denote $[(x,a),(y,b)]\in R$. It is easy to see that $(x,a)\sim (y,b)$ iff $a=b\leqslant g(x,y)$. We will show that R is a closed congruence, i.e. that R is closed in $(I\times [0,1])\times (I\times [0,1])$ and that $(x,a)\sim (y,b),(x',a')\sim (y',b')\to (xx',aa')\sim (yy',bb')$. If $(x,a)\sim (y,b)$ and $(x',a')\sim (y',b')$, then $a=b\leqslant g(x,y), a'=b'\leqslant g(x',y')$, so $aa'=bb'\leqslant g(x,y)\cdot g(x',y')\leqslant \min[g(x,y),g(x',y')]$, the last inequality holding for any continuous associative multiplication on [0,1] in which 0 acts as a zero and 1 acts as a unit ([3], p. 128).

Hence it suffices to show that min $[g(x, y), g(x', y')] \leq g(xx', yy')$. There are four cases.

Case 1. $x \leq x', y \leq y'$.

Case 2. $x' \leqslant x, y' \leqslant y$.

Case 3. $x \leqslant x', y' \leqslant y$.

Case 4. $x' \leqslant x, y \leqslant y'$.

The first two of these cases are clear, and Cases 3 and 4 are dual. We will establish Case 3, i.e. $\min[g(x,y),g(x',y')] \leq g(x,y')$. It will be convenient to consider the subspace $[0,x] \cup [0,y']$. We have several possibilities:

(1) $f(x, x') \in [0, f(x, y')]$. Then f(x, x') = f(x', y'); now f(x', y') and f(x, y') lie on [0, y'], so $g(x', y') \leq g(x, y')$.

(2) $f(x, x') \in [f(x, y'), x];$ then f(x', y') = f(x, y'), so g(x', y') = g(x, y'). At this point we may assume that $f(x', y') \in [f(x, y'), y'].$

(3) $f(x, y) \in [0, f(x, y')]$; then as in (1) we conclude that $g(x, y) \le g(x, y')$.

(4) $f(x, y) \in (f(x, y), x]$; then by the construction of the ordering, x and y compare in the same way with x' and y'. Since x < x', it follows that y < y', a contradiction.

(5) $f(x, y) \in (f(x, y'), y')$; then f(x, y') = f(x, y), so g(x, y') = g(x, y). This completes the argument that R is a congruence.

To show that R is closed, let $[(x, a), (y, b)] \in (I \times [0, 1])^2 \setminus R$. It is then false that $a = b \leq g(x, y)$, so either (1) $a \neq b$ or (2) a = b > g(x, y).

⁽¹⁾ iff = if and only if.

icm

In case (1), there are open sets U about a and V about b with $U \cap V = \square$, so that $(I \times U) \times (I \times V)$ is open and misses R. In case (2), using the continuity of g, there are open sets U about a, N about x, and M about y with g(x', y') < a' for each $x' \in N \cap I$, $y' \in M \cap I$, and $a' \in U$. Then $[(N \cap I) \times D] \times [(M \cap I) \times U]$ is open and misses R. Thus R is closed, and it follows that φ is continuous.

Since $I \times [0, 1]$ is a compact topological semigroup and R is a closed congruence, it follows that $I \times [0, 1]/R$ is again a compact topological semigroup. Denote the natural homomorphism by η . We have the diagram

$$I \times [0, 1] \stackrel{\eta}{\rightarrow} I \times [0, 1]/R \stackrel{\varphi^*}{\rightarrow} S$$

where φ^* is the function induced by φ . It follows from the continuity of φ that φ^* is continuous, and is 1-1 onto and hence a homeomorphism. We identify $I \times [0,1]/R$ with S so that S is now a topological semigroup and is the continuous homomorphic image of $I \times [0,1]$. Now let T be the relation on $I \times [0,1]$ defined by $T = (I \times 0) \times (I \times 0) \cup \Delta$ where Δ is the diagonal of $(I \times [0,1])^2$. Then T is a closed congruence, $I \times [0,1]/T$ is a compact topological semigroup, and the natural mapping β is a continuous homorphism. Since $T \subset R$, there is induced a continuous homomorphism α as indicated:

$$I imes \llbracket [0,\,1] \overset{ heta}{
ightarrow} I imes \llbracket [0,\,1]/T \overset{a}{
ightarrow} I imes \llbracket [0,\,1]/R = S$$

Thus S has been realized as the continuous homomorphic image of $I \times [0,1]/T$; which is the "fan" over I, i.e. the topological semigroup obtained from $I \times [0,1]$ by shrinking $I \times \{0\}$ to a point.

References

- [1] R. P. Hunter, On the semigroup structure of continua, Trans. Amer. Math. Soc. 93 (1959), pp. 356-368.
- [2] R. J. Koch and I. S. Krule, Weak outpoint ordering on hereditarily unicoherent continua. Proc. Amer. Math. Soc. 11 (1960), pp. 679-681.
- [3] P. S. Mostert and A. L. Shields, On the structure of semigroups on a compact manifold with boundary, Annals of Math. 65 (1957), pp. 117-143.
 - [4] G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq, Publ. 28, 1942.

LOUISIANA STATE UNIVERSITY and UNIVERSITY OF WISCONSIN

Reçu par la Rédaction le 22. 12. 1960

On groups of functions defined on Boolean algebras

1

S. Balcerzyk (Toruń)

With an arbitrary set T and abelian group G one may connect the group of all functions x defined on T with values in G. These groups are known as complete direct sums and can be considered also as groups of functions defined on T with values in G that are measurable with respect to the complete Boolean algebra 2^T of all subsets of T. Let us write for an arbitrary function x: $T \rightarrow G$ and arbitrary $g \in G$

$$x(g) = \{t \in T; x(t) = g\}.$$

Then we obviously have

(1)
$$x(g) \in 2^T$$
 for all $g \in G$,

$$(2) \qquad \bigcup_{g \in G} x(g) = T',$$

(3)
$$x(g) \cap x(g') = 0 \quad \text{for} \quad g \neq g',$$

$$(4) (x+y)(g) = \bigcup_{g' \in G} x(g') \cap y(g-g').$$

Now we get a clear way for generalizations; let G be an arbitrary abelian group of cardinality $\overline{G} = \mathfrak{m}$ and \mathfrak{B} a Boolean \mathfrak{m} -additive algebra with maximal element e. Elements of the group $S(\mathfrak{B}, G)$ are functions x defined on G and satisfying the following conditions:

(5)
$$x(g) \in \Im$$
 for all $g \in G$,

$$\bigcup_{g \in G} x(g) = e,$$

(7)
$$x(g) \cap x(g') = 0 \quad \text{for} \quad g \neq g',$$

the sum z = x + y of two such functions is defined by the equation

$$z(g) = \bigcup_{g' \in G} x(g') \cap y(g - g') \quad \text{ for } \quad g \in G \; .$$

Since \mathcal{B} is m-additive, then the sum in (8) exists and elements z(g) are well-defined and satisfy conditions (5)-(7).