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Semigroups on trees”
by
R. J. Koch and L. F. McAuley (Louisiana)

Introduction. We consider here a special case of the test question:
Given a continuum &, does it support the structure of a topologicat
semigroup with zero and unit? In the case that 8 is one-dimensional it
is known [1] that a necessary condition on 8§ is that it be a generalized
tree, i.e.: arc-wise connected, hereditarily unicoherent, and satisfy a certain
arc-convergence property, namely, that for some point 0 € 8 (necessarily
a point of local connectivity) and for any net {po} with {p.}—p, that
[0, pa] [0, pl. (See also [2].) Tt is conjectural that any one-dimensional
generalized tree supports the desired structure. As a step in this direction
we show here that any metric tree § whose endpoints I form a compact
¢et admits such a structure. In fact we establish a stronger conclusion:

Tmmormt. I can be ordered so that min(w,y) is continuous for 2,y eI,
and multiplication in 8 can be introduced so that S s realized as the
continuous homomorphic image of the “fan” over I, i.e. the semigroup
formed from I x {01} by shrinking I x {0} to @ point (here {01} denotes
the unit interval of real numbers provided with any continuous associative
multiplication in which 0 acts as a zero and 1 acts as a unit).

Set-theoretic preliminaries. Throughout the paper § will
denote u metric tree, or acyelic loeally connected compactum. For equiv-
alent formulations sec [4], p. 88. The set of endpoints of 8 will be
noted by I, and we assume that I is compact. The unique arc from p
to ¢ will be written [p, ¢]. We denote the boundary of A by F(4),
the complement of B in 4 by A'B, the closure of A by A* and the
empty set by O.

We will make use of the fact ([4], . 99) that a metric tree is
a regular curve, i.e. about each point there is a small neighborhood with
finite boundary. Also ([4], p.89) the set of branch points of 8, ie.
rutpoints of order > 2, is countable. We fix an element 0 of S\I.

* This paper was in part prepared under National Seience Foundation' Research
Grant NSF-G14086. '
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LemmA 1. Let w € I and let U be an open set about x with F(U) finite:
then there is a non-branch point p in [0, 2] such that Cu(S\p), the component
of S\p which contains x, is contained in U.

Proof. Denote the boundary points of U by by, ..., by. Let ¥V be an
open connected set with ¢V C U and 0¢ V. Let p, be a branch point
in [0, ] ~ V; note that if there is no such p,, then for any p €[0, «] A v,
Ox(8\p) C U. There is a boundary point, say b,, in [0, p,]. If Cuo(8\py) ¢ T,
then we may assume there is abranch point p, on (p, #]. Let by ¢ F (T)n
A CxS\p,) and note that by b,. After k steps, the boundary points have
been exhaunsted, and we let p e (pg, «] be a non-branch point. We then
have On(8\p)C U and the proof is complete.

Lemma 2. Let U be an open set abowt I then there is an open set N
with IC N CN*C U, F(N) finite, F(N) contains no branch points, S\N
s connected, and for by, by e F(N), b, é [0, by].

Proof. Let #¢I. Since 8 iy a regular curve, there iy an open set V
about @ with V*C U and F(V) finite. By Lemma 1 there is a non-branch
point p in [0, #] with C(S\p)C V. Let N(z) = Cx(8p), and cover I by
the sets N (x). Then IC L'L)N(mi), a finite union which is firedundant in

1=1

the sense that no N () is contained in the union of the others. Note that
N(@)~Ne)=0 if i#4. Let N ={J)N(z); then ICNCN*C T,
and F(N) is finite and consists of ﬁ?llon-bl'avnch points. Also S\N
=51[S\N(w¢)] is a continuum. From the irredundancy it follows that
for by, by e B(N), by ¢ [0, by,

The next two lemmas arve easy consequences of Lemm: 2 and the
fact that § is a regular curve; the proofs are omitted.

LeMuA 3. Let U be an open set about I; them S\U has only finitely .

many branch points.

LevmA 4. Bach branch point of S has finite order.

ImyuA 5. Let f: 8 x8—~8 be defined by: p,q e 8~[0,p] ~ [0, q]
= [0, f(p, @)); then f is continuous.

Proof. Let p, g €8 and let W be an open set about f(p, ¢). Suppose
that f(p, q) separates p from ¢- Let U be the component of 8\f(p,q) which
containg p, and let V be the component of S\f(p,q) which contains g¢.
Then U and V are open and arc-wise connected. Let p' e U, ¢’ eV; then
2, 21C U, [¢, ¢ CV, and it follows that [0,p']~[0,q']D[0,7(p, g
But it t¢[0, p'T~[0, ¢ it follows that tel0,f(p,q)]; we conclude
that f(p’, ¢') = f(p, g), so that #(U x V)= f(p, ¢). Hence we may suppose
that f(p,q) does not separate p from ¢, i.e. we may assume that
1,0 =g, so that either ¢ = 0 or ¢ separates 0 from p. Let U and V

icm
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Dbe disgjoint open connected sets containing p and g respectively, with
VCW,and let p'eU,q V. It follows that f(p’,¢') =7(¢,¢) eV, so
that f(UxV)CV and f is continuous.

Remetrization of 8. .

LEMMA 6. Let o be the given metric on 8; then there is an equivalent
metric d satisfying

(i) i p separates 0 from ¢ then d(0,p) < d(0,q) and

(il @0, 2} =1 for each wel.

Proof. Let V) be an open set containing I satisfying the conditions
of Lemma 2, with 0¢V* TLet F(V) =¥y, ..., ¥=. We map [0,y;] by
a homeomorphism h; onto the real interval [0,1-—27"] with (0) = 0,
4=1,2,..,n We may further modify the Rh's so that (_kegping the
original notation) h; agrees with h; on [0, ¥] ~ [0, y;], 1 <4, j < n. Letb
m = max[o(yy), I] and cover I by p-spheres of radius < m/2 each of
which is contained in V,. Inside the resulting open set about I there is
an open set ¥, satisfying the conditions of Lemma 2. Let F(Vy) = 2, oy f’g'
We can find homeomorphisms k; of [0, f;] onto the interval [0,1—277]
satisfying (i) %; agrees with 7y on [0, 1] ~ [0, f], (i) % agrees with .kj
on [0,2] ~[0,27, 1<4,§,k, 1< We iterate this procedure to obtain

© »
open sets V; containing I, F(V;) = By, NV:=1I, and corresponding
i=1

finite sets of homeomorphisms H;, wheve H;= {ay: a is homeomorphism
of [0, b] onto [0,1—27, b e B;} satisfying
(1) b,b" eB;—a, agrees with  ap on [0, b] ~ [0,d'],
(2) ceBj1—+my agrees with  a, on [0, ] ~ [0, ¢].
Let D;= | [0, b] and let D = {J D;. It is easy to see that D = S\I.
beB;

ie=1
Now fix el and detine a,: [0, ][0, 1] as follows:

Let te[0,x]; if t = & define a,(t) = 1. If ¢ # &, then te.D so there
is an integer ¢ and b e B; with ¢e[0,b]. Define au(t) = ap(f). It #ollows
from (i) and (ii) above that a, is well defined and one to one. It is easy
to see that g, is continuous, hence a, is a homeomorphism of [0, ] onto
10, 1]. Tt is also clear that for =,y e I, oz agrees with a, on [0, :r] ~ [0, ]

Define d: § x 8-[0, 2] as follows: Let p, qe§; there exist v,y el
with p € [0, «], ¢ €[0, y]. Define

[az(p) — azf (P, O+ |aylq) — ey (D, Q)|
d(p,q) = if f(p, ¢) separates p from ¢ .
|as(p)— ax(q)] i f(p,q) does not separate p from ¢.

Tt can be readily shown that d is a metric, and we note the property tha.t
for p,qe8, ap,q) =dp, f(p, @) +a(f(p; @), ). To show that d is


Artur


34 R. J. Koch and L. F. McAuley

equivalent to ¢ we will show that ¢(px, p)—0 implies d(pq, p)—0. If pel,
then usitig Lemma 3 there is a subsequence gy, of py, and @ eI, such
that (p»,) and p lLie on [0, 2] It is then immediate that d(p,, p)—>0. Hence
we may assume that p € I. Given ¢ > 0 there is an integer & with 27% <« ts,
and an integer my such that n = ng implies p, eVy and f(ps, p)eV
(the latter by the continuity of f). Then A(pu, p) = &(Pu;s f(Pa, ) +
+d(f(pn, p),p) < e+ }e =&, 50 that d(pa, p)-+0. From the compactness
of 8 it follows that d is equivalent to ¢. The remaining properties
claimed for d are immediate from the construction.

The ordering on 7. Let B = {0} together with the set of branch
points of 8, and let b ¢ B: By Temma 4, S\b has finitely many components
0y(b) which do not contain 0. Let Iyb) = I ~ Cy(b)* (the set of endpoints
of the tree Cyd)* excluding D). Define a relation R(b) lon U I(b) by:
(z,y) e R(D) iff (*) welyb), yel;(d) and ¢ < §. We note that R(I;) is transi-
tive and satisfies the property (z,y) ¢ B(D)—(y, )¢ R(b). Now let
R =zHaR(b) w 4 where 4 is the diagonal of IxI. To see that R is an
orderieng, let 2, y e I with # # y and we show either (z, y) e R or (y, #) € R.
Let f(i, ) = b where fis the function of Lemma, b; then e I(b), v eI;i(d)
with ¢ 5% j. Hence either (z,4)e¢R(0) CR or (y, @) ¢ R(b) C R. Further,
it is easily seen that (z, ¥) e R—(y, ) ¢ R. To show R is transitive, suppose
@i, zel with # <y <2 We may assume # < ¢ < 2, and we consider
[0,2]w [0, y]. T f(@, y) separates 0 from F(y,2), then y and ¢ belong
to the same C}f (2, 4), so that (z, 2) sR(f(w, ¥)) C R. It f(y, #) separates @
from f(z,y), then « and z belong to the same Ci(f (=, ¥)), so that
(2,9) e B(f(x,9)) C R, hence (y,2)¢ R, a contradiction. If f(y,#) sepa-
rates 0 from y, and f(y, 2) = f(», y), then @, y, and 2 belong to distinet
Cif(w, y)’s, and hence «,y,2 are ordered trangitively. Tinally, if
fy;2) € [0, f(x,y)), then @ and y belong to the same C;f(y, ) so since
{y,2) e R(f(y,2) it follows that (x,z) eR(f(y,%)CR.

To show that R is closed in Ix I, let (@, ) eI x I\R, and let U
and ¥ be disjoint connected open sets about z and ¥ respectively. Then
either ' e Un I,y eV ~nI-(a,y')eR (as determined by the branch
point f(w, y)) or vice versa. In the first casc (UAIXV AI) AR =
and the other case is similax.

It now follows easily that the multiplication m: I x I—I defined
by m(®, y) = min(z, y) is continuous.

The multiplication in S. To each te§ we assign two coordi-
nates #(t) and a(t), where (1) = Sup{y e I: t [0, 4]} and a(t) = d(0, t).
For p, ¢ € § we define st = [min (z(p), (q)}, a(p) *a(g)], where Sup and min

() iff = if and only if,
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refer to the ordering just introduced on I, and multiplication in [0, 1] is
any continuous associative multiplication in which .0 acts as a zero.and 1
acts as a unit. The details of showing that this multiplication is con’mmqus
can be carried through, but it is more revealing to take a different point
o VI%‘T‘e define ¢: IxI—[01] by g(z,y) = a(0, f(z, y)). Note that since f
is continuous, so is g. Define ¢: I %[0, 1]—+8 by: ¢(z, a) is the eleme.m'
of 8 at d-distance @ from 0 along the arc [0,«], and let B be the equiv-
alence relation determined by @; i.e. [(@, y), (¥, D) e R iff ¢(2, a)‘.z o(y, D).
We will write (z,a)~(y,Db) to denote [(z, a), (v, ek It m easy to
see that (¢, @)~(y, b) iff @ = b < glz, y). We will show that R is a closed
congruence, i.e. that R is closed in (I [O,l]l)x(,I »[0,1]) and thf;)t
(@, @) ~(y, ), (@, @) ~ (Y, )= (oa, a0’ ~(yy', D). TE (@, a)~(y, D)
and (@, @)~(y', V"), then a=Db<g(@,y), ¢ =V <gla',y), so aa
=bb < glz,y) g, y) <min[g(z,y), g(z’ 7_?]’)1’ the last meqx.mhty _hold-
ing for amy continuomns associative multiplication on [0, 1] in which 0
acts as @ zero and 1 acts as a unit ([3], p. 128). ) ’
Hence it suffices to show that min [glx, ¥), g(=', ¥) 1< g(@a’, yy ).
There are four cases.
Case 1. <o,y <y’
Case 2. @' <&,y <¥.
Case 8. a2,y <.
Case 4. 2’ <z, ¥y <Y
The first two of these cases arve clear, and Cases 3 and 4’ are dua.l.
We will establish Case 3, i.e. min[g(z,¥),g(= ", ¥")] < gz, y). It wil
be convenient to consider the subspace [0,#] v [0, 9] We have several
possibilities: ‘
1) f(z, 2') € [0, f(x, ¥")]- )
Therf )f(a:, @) = f(a',y"); now f(a’,y’) and flw,y") lie on [0,¥'), so
gl y") < gl@, y) ‘ o
’ ’(2) f@, o) e [fla, y'), @); then [, y) = {(@,9), so 9@, y,])
= ¢(@,y’). At this point we may assume that f(.@ »y') e[f(w,‘y Lyl
(3) flz,y) e t();:f(:zc, y)}; then as in’ (1) we conclude that g(;v, )
< gz, y). ‘
g ((_’1_)?/ ]z(m, ) € (f(®, y), «]; then by the (xc»llstl;"llct'ion of thfa f)rge]img,
x and y compare in the same way with @' and y'. Since ¢ < @', it follows
that ¥ < ¢, a contradiction. .
(3) (@, ) € (fe,y),¥); then f(z, y') = f(®, y), 50 gz, y') = g%, 9).
This completes the argument that R is a congruence. ,, .
To show that B is closed, let [(z, a), (y, b)] e (Ix[0,1])A\R. It is
then false that @ = b < g(x, ¥), so either (1) @ # b or (2) ¢ =b> g, ¥).
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In case (1), there are open sets U about a and V about b with UAV = 1,
so that (I x U)x(IxV) is open and misses K. In case (2), using the
continuity of g, there are open sets U ahout a, N about #, and M about y
with g(a',y') < o’ for each 2" ¢ N A LiyeMAlI and @ ¢U. Then
(N AL XDIx[(M ~I)x U] is open and misses B. Thus B is closed,
and it follows that ¢ is continuous,

Since I x[0,1] is a compact topological semigroup and R is a cloged
congruence, it follows that I x [0, 1)/R is again a compact topological
semigroup. Denote the natural homomorphism by 7. We have the diagram

Ix[0,113 Ix[0, 1R &

—

where g* ig the function induced by ¢. It follows fron} the continuity of ¢
that * is continuous, and is 1-1 onto and hence g homeomorphism. We
identify Ix[0,1]/R with § so that § is now a topological semigroup
and is the continuous homomorphic image of I x [0, 1]. Now let T be the
relation on Ix[0,1] defined by T'=(Ix0)x(Ix0)ud where 4 is
the diagonal of (I x[0,1])%. Then T is a closed congruence, I x [0, 1)/T
is a compact topological semigroup, and the natural mapping £ is a con-
tinuous homorphism. Since 7'C R, there is induced a continuous homeo-
morphism o as indicated:

Ix10, 115 1x[0, 1y7 5 I %[0, 1)/R = §

n

Thus § has been realized as the continuous homomorphic image of
Ix[0,1)/T, which is the “fan” over I, ie. the topological semigroup
obtained from I x[0,1] by shrinking I'x {0} to a point.

References
(11 R. P. Hunter, On the semigroup structure of continua, Trans. Amer. Math.
Soc. 93 (1959), pp. 856-368.
[2] R. J. Koch and I. S. Krule, Weak cutpoint ordering on hereditarily wni-
coherent eontinua. Proc. Amer. Math. Soc. 11 (1960), pp. 679-681.

[3] P. 8. Mostert and A. L. Shields, On the structure of semigroups on a compact
manifold with boundary, Annals of Math. 65 (1957), pp. 117-143.
[4] G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq, Publ. 28, 1942.

LOUISIANA STATE UNIVERSITY
‘and
UNIVERSITY OF WISCONSIN

EBegu par la Rédaction le 22. 12. 1960

iom

On groups of functions defined on Boolean algebras

by
S. Balcerzyk (Torud)

With an arbitrary set 7' and abelian group G on? may connect the
group of all functions o defined on T' with value§ in ¢. These groups art;
known as complete direct sums and can be considered also as %rlroups 01;
functions defined on 7' with values in & that are measurable wit ri}spifacr
to the complete Boolean algebra 27 of am‘]l subsets c:f T. Let us write fo
an arbitrary function @: T'->G and arbitrary ge &

w(g) = {t e T; w(t) =g} .

Then we obviously have

(1) w(g)e2? forall ge@,
=1,

(2) » HLEJGw(g)

{3) z(g) ~nm(g) =0 for g#yg,

(4) (+9)(9) =a,L€JGw(g’) ~ylg—9).

ralizations; let G be an arbitrary
Now we get a clear way for generalizations; an
abelian group g;)f cardinality G = m and 9 a Boolean m-additive ?gebrz
with maximal element e. Elements of the group.S.(%, @) are functions
defined on G and satisfying the following conditions:

(5) z(g)eW forall ge@,
(6) gLEJGw(Q) =0,
Y] w(g) ~na(g)=0 for g#g',

the sum # = x+y of two such functions is defined by the equation

(8) a(g) =\ olg) nylg—g) for ge a.
e .
Since 9B is m-additive, then the sum in (8) exists and elements 2(g)
are well-defined and satisfy conditions (5)-(7).
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