

On the classification of $\sigma(B)$ -measurable functions defined on an abstract point set

by

J. Novák (Praha)

Let X be a non-empty abstract point set, X the system of all its subsets and $B \subset X$ a non-void system of sets. Denote by $\sigma(B)$ the σ -algebra generated by the system B and containing the greatest element X. Let \mathfrak{F} be the system of all real-valued functions defined on X and \mathfrak{M} the subsystem of all $\sigma(B)$ -measurable functions. Denote by \mathfrak{M}^0 the system of all real-valued a(B)-measurable functions (1) on X, a(B) being the ring generated by the system B containing the element $X \in a(B)$. The elements of the σ -algebra $\sigma(B)$ will be called measurable sets and the elements of the system \mathfrak{M} measurable functions.

The sequential topology λ in the system X is defined by the well-known convergence:

$$\lim A_n = A$$
, whenever $A = \limsup A_n = \liminf A_n$,

whereby

$$\limsup A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$$
 and $\liminf A_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n$.

The sequential topology z in \mathfrak{F} is defined by the convergence at each point as follows: $\lim f_n = f$ whenever $\lim f_n(x) = f(x)$ for each $x \in X$. In such a way we get two convergence spaces (X, λ) and (\mathfrak{F}, z) the topologies $(\lambda \text{ and } z)$ of which are defined by the convergences fulfilling both Fréchet's axioms of convergence (the axiom of the stationary sequence and the axiom of the subsequences of a convergent sequence) and also Urysohn's axiom (if a sequence of elements z_n does not converge to the element z, then there is a subsequence $\{z_{n_k}\}$ no subsequence of which converges to z).

Let L be a covergence space and λ its sequential topology. The closure λA of a subset A (i.e. the set of all limits of sequences of points $x_n \in A$)

⁽¹⁾ $\{V(x)\}$ denotes the set of all $x \in X$ fulfilling the property V(x). The function f is a(B)-measurable if $\{f(x) > t\} \in a(B)$ for each real number t.

need not be closed. Therefore it is possible to form the successive closures. In such a way we get a non-decreasing sequence of closures:

$$\lambda^0 A \subset \lambda^1 A \subset \lambda^2 A \subset ... \subset \lambda^{\xi} A \subset ...$$

where $\lambda^0 A = A$, $\lambda^1 A = \lambda A$, $\lambda^{\xi+1} A = \lambda(\lambda^{\xi} A)$ and $\lambda^{\xi} A = \bigcup_{\eta < \xi} \lambda^{\eta} A$ if ξ is a limiting ordinal. From the property of the set of all countable ordinals it follows that there is no sense in forming the closures for uncountable ordinals $\xi > \omega_1$, ω_1 being the first uncountable ordinal. As a matter of fact $\lambda(\lambda^{\omega_1} A) = \lambda^{\omega_1} A$. Thus thes et $\lambda^{\omega_1} A = \bigcup_{\xi < \omega_1} \lambda^{\xi} A$ is closed, i.e. it fulfills the following property: $\lim x_n = x$ and $x_n \in \lambda^{\omega_1} A$ implies $x \in \lambda^{\omega_1} A$. Evidently $A \subset B$ implies $\lambda A \subset \lambda B$.

LEMMA 1. $\sigma(\mathbf{B}) = \lambda^{\omega_1} a(\mathbf{B})$.

Proof. Since $\lim A_n = A$ and $\lim B_n = B$ implies $\lim (A_n \cup B_n) = A \cup B$ and since $\lim C_n = C$ if and only if $\lim (X - C_n) = X - C$, it easily follows that each system $\lambda^{\ell}a(\mathbf{B})$, ζ being any ordinal, is an algebra; so is the system $\lambda^{\omega_1}a(\mathbf{B})$ which is identical with $\bigcup_{\xi < \omega_1} \lambda^{\xi}a(\mathbf{B})$. Hence, if A_n are elements of $\lambda^{\omega_1}a(\mathbf{B})$, n = 1, 2, ..., then $\bigcup_{n=1}^{\infty} A_n \in \lambda^{\omega_1}a(\mathbf{B})$ for every

m=1,2,... Since the system $\lambda^{\omega_1}a(\mathbf{B})$ is closed and $\lim_{m}\bigcup_{n=1}^{m}A_n=\bigcup_{1}^{\infty}A_n$, it follows that $\bigcup_{1}^{\infty}A_n$ belongs to $\lambda^{\omega_1}a(\mathbf{B})$; thus $\lambda^{\omega_1}a(\mathbf{B})$ is a σ -algebra. $\mathbf{B}\subset\lambda^{\omega_1}a(\mathbf{B})$ then implies that $\sigma(\mathbf{B})\subset\lambda^{\omega_1}a(\mathbf{B})$.

On the other hand, using the method of transfinite induction we easily prove that $\lambda^{\xi}a(B) \subset \sigma(B)$ for each $\xi < \omega_1$, so that $\lambda^{\omega_1}a(B) \subset \sigma(B)$.

Let (L,λ) be a convergence space. Let A be a subset of L. The set $\lambda^{\xi+1}A-\lambda^{\xi}A$ is called the $(\xi+1)$ th class and each point z of it is called a point of the class $\xi+1$; it will be denoted by c(z;A) or simply by c(z). Further we define c(z;A)=0 if $z\in A$. If c(z;A)>0, then c(z) is a countable and isolated ordinal such that $z\in \lambda^{c(z)}A-\lambda^{c(z)-1}A$.

LEMMA 2. If A and B are two elements of $\sigma(\mathbf{B})$ and a an ordinal such that $c(A \cap B; a(\mathbf{B})) \ge a$, then either $c(A; a(\mathbf{B})) \ge a$ or $c(B; a(\mathbf{B})) \ge a$.

Proof. If we had c(A) < a and c(B) < a, then $A \in \lambda^{a'}a(B)$ and $B \in \lambda^{a'}a(B)$, where $a' = \max(c(A), c(B))$. The product $A \cap B$ would be an element of the algebra $\lambda^{a'}a(B)$ and consequently $c(A \cap B) \le a' < a$; this would be a contradiction.

Let f be a $\sigma(\mathbf{B})$ -measurable function on X. Let o(f) be the least ordinal such that (1) $o(\{f(x) > t\}; a(\mathbf{B})) \le o(f)$ for each real number t; the ordinal o(f) will be called the *order* of the element f. Each characteristic function χ_A of the set $A \in \sigma(\mathbf{B})$ belongs to \mathfrak{M} and its order $o(\chi_A) = o(A; a(\mathbf{B}))$; it is 0 or an isolated ordinal. Also each simple function

 $s(x) = \sum_{i=1}^{p} k_i \chi_{A_i}(x)$ where k_i are real numbers different from one another and A_i are disjoint elements of $\sigma(\mathbf{B})$ such that $\bigcup_{i=1}^{\infty} A_i = X$, has an order $\sigma(s)$, which is 0 or an isolated ordinal. This follows from

Lemma 3. The order o(s) of a simple function $s(x) = \sum_{i=1}^{p} k_i \chi_{A_i}(x)$ is equal to $\max[e(A_1), ..., e(A_p)]$.

Proof. Denote by q the natural $\leq p$ such that $c(A_q) = \max[c(A_1), \ldots, c(A_p)]$. There exists a semiclosed interval (a, b) containing k_q and no other k_i , $i \neq q$. Then (1) $\{s(x) > a\} \cap \{s(x) \leq b\} = A_q$ so that $c(\{s(x) > a\} \cap \{s(x) \leq b\}) = c(A_q)$. In view of Lemma 2 and since $c(\{s(x) \leq b\}) = c(\{s(x) > b\})$, it follows that $c(\{s(x) > a\}) \geq c(A_q)$ or $c(\{s(x) > b\}) \geq c(A_q)$; consequently $o(s) \geq c(A_q)$.

Now, let t be a real number. If $\bigcup^* A_i$ denotes the union of all sets A_i whose indices i fulfill the relation $k_i > t$, then $\{s(x) > t\} = \bigcup^* A_i$. Since $A_i \in \lambda^{c(A_q)}a(\mathbf{B}), \ 1 \le i \le p$, the set $\bigcup^* A_i$ is an element of the algebra $\lambda^{c(A_q)}a(\mathbf{B})$. Consequently $c(\{s(x) > t\}) \le c(A_q)$. Thus $o(s) \le c(A_q)$, so that $o(s) = c(A_q)$.

It is well known that every measurable function g is the limit of a sequence $\{s_n\}_{n=1}^{\infty}$ of simple functions $s_n(x)$, whereby

$$s_n(x) = \begin{cases} rac{i-1}{2^n} & ext{if} & rac{i-1}{2^n} \leqslant f(x) < rac{i}{2^n}, \ i = 0, \pm 1, ..., \pm n2^n, \\ n & ext{if} & f(x) \geqslant n, \\ -n - rac{1}{2^n} & ext{if} & f(x) < -n - rac{1}{2^n}. \end{cases}$$

It is easy to see that $\{g(x) > t\} = \bigcup_{n=1}^{\infty} \{s_n(x) > t\}$. It follows from Lemma 3 that each simple function s_n has a countable order. Thus each measurable function g has a countable order as well.

Theorem 1. $\mathfrak{M} = \varkappa^{\omega_1} \mathfrak{M}^0$.

Proof. It is evident that $\varkappa^{\omega_1}\mathfrak{M}^0 \subset \mathfrak{M}$. In order to prove the reverse inclusion it suffices to show that each simple function belongs to $\varkappa^{\omega_1}\mathfrak{M}^0$; as a matter of fact, if g is a measurable function on X and $\{s_n\}$ a sequence of simple functions converging to g, then from the supposition $s_n \in \varkappa^{\omega_1}\mathfrak{M}^0$ and because $\varkappa^{\omega_1}\mathfrak{M}$ is a closed system it follows that $g \in \varkappa^{\omega_1}\mathfrak{M}^0$.

We shall use the method of transfinite induction. Assume that the system $\varkappa^{\xi}\mathfrak{M}^{0}$ contains all simple functions of orders $\leqslant \xi$ where $\xi < \alpha$. If α is a limiting ordinal, then in view of Lemma 3 there is no simple function of order α at all and the system $\varkappa^{\alpha}\mathfrak{M}^{0}$ contains—by our supposition—all simple functions of orders $\leqslant \alpha$. Now, suppose that α is isolated and con-

Since

$$c(\lbrace f_n(x) > t_m \rbrace; a(\mathbf{B})) \leqslant o(f_n) \leqslant \sup o(f_n)$$

for each natural m and n, we have

$$c\left(\bigcup_{m=1}^{\infty}\bigcap_{k=1}^{\infty}\bigcup_{n=k}^{\infty}\left\{f_n(x)>t_m\right\};\ a\left(\boldsymbol{B}\right)\right)\leqslant \sup o\left(f_n\right)+3$$

for each real t so that

$$o(f) \leq \sup o(f_n) + 3$$
.

THEOREM 2. If f is a measurable function of the class $c(f; \mathbb{R}^{0})$ $=a\omega_0+k$, k being a non-negative integer, a an ordinal and ω_0 the least infinite ordinal, then the order $o(f) \leq a\omega_0 + 3k$.

Proof. Suppose that the assertion is true for all $a\omega_0 + k < \zeta$, where $\zeta = \beta \omega_0 + h$, h being a non-negative integer. If h = 0, the proof is evident. Let $h \ge 1$. If g is a measurable function of the class ζ , then there exists a sequence of functions $g_n \in \varkappa^{\xi-1}\mathfrak{M}^0$ of classes $\leqslant \zeta - 1 = \beta \omega_0 + h - 1$ such that $\lim g_n = g$. By our supposition each order $o(g_n) \leq \beta \omega_0 + 3(h-1)$, n=1,2,... According to Lemma 4 the order $o(g) \leq \beta \omega_0 + 3h$.

LEMMA 5. Let s be a measurable simple function on X. Then c(s; M°) $\leq o(s)$. If the class of the measurable set A is $c(A; a(B)) = a\omega_0 + 1$, then $c(\chi_A; \mathfrak{M}^0) = o(\chi_A) = \alpha \omega_0 + 1.$

Proof. In the proof of Theorem 1 we have proved the following statement: The system $\kappa^{\sharp}\mathfrak{M}^{0}$ contains all simple functions of order $\leqslant \xi$. This implies the inequality $c(s; \mathfrak{M}^0) \leq o(s)$.

Now, let $A \in \sigma(B)$ and let $c(A) = a\omega_0 + 1$. Then also $o(\chi_A) = a\omega_0 + 1$. In view of the first part of this proof the inequality $c(\chi_4; \mathfrak{M}^0) \leq \alpha \omega_0 + 1$ holds true. If we had $c(\chi_A; \mathfrak{M}^0) < a\omega_0 + 1$, then $c(\chi_A; \mathfrak{M}^0) = 0$ or $c(\chi_{\mathcal{A}}; \mathfrak{M}^{0}) < \eta$ for a suitable ordinal $\eta < \alpha \omega_{0}$, each class being 0 or an isolated ordinal. By Theorem 2 we should have $o(\chi_A) \leq a\omega_0$; but this would contradict the fact that $o(\chi_A) = \alpha \omega_0 + 1$.

THEOREM 3. If ϱ is the least ordinal such that the ϱ -th class $\lambda^{\varrho}a(\mathbf{B})$ $-\lambda^{\varrho-1}a(\mathbf{B})$ is empty and if τ is the least ordinal such that the τ -th class $\kappa^{\tau} \mathbb{M}^{0} - \kappa^{\tau-1} \mathbb{M}^{0}$ is empty, then the following inequality holds true: $\tau \leqslant \varrho + 1$. If $\rho = a\omega_0 + 1$, then also $\rho \leqslant \tau$.

Proof. Suppose, on the contrary, that $\varrho+2\leqslant \tau$. Then there is a function $f \in \aleph^{\ell+1}\mathfrak{M}^0 - \aleph^{\ell}\mathfrak{M}^0$ and, consequently, there is a sequence of simple functions of classes $\geqslant \varrho$ which converges to f. Denote by s one of these simple functions. From Lemma 5 it follows that $c(s; \mathfrak{M}^o) \leq o(s)$. By Lemma 3 there is a set A_0 of the class $c(A_0; a(B)) = o(s)$. Thus $\varrho\leqslant c(s;\ \mathfrak{M}^{0})\leqslant o(s)=c\left(A_{0};\ a(\boldsymbol{B})\right).$ Therefore $\varrho\leqslant c\left(A_{0};\ a(\boldsymbol{B})\right).$ This is a contradiction.

Now, suppose that $\varrho = a\omega_0 + 1$. Since τ is an isolated ordinal, we

sider a simple function $s(x) = \sum_{i=1}^{p} k_i \chi_{A_i}(x)$ of order a. Then A_i are elements of $\lambda^a a(\mathbf{B})$. For every $i \leq p$ there exists a sequence $\{A_i^n\}_{n=1}^{\infty}$ of sets $A_i^n \in \lambda^{n-1}a(B)$ converging to the set A_i . For each natural m let B_i^m , $1 \leq i \leq p$, be the sets defined as follows $B_1^m = A_1^m$; $B_i^m = A_i^m - \bigcup_{i=1}^{i-1} A_i^m$

for $i=2,\ldots,p-1$ and $B_p^m=X-\bigcup_{j=1}^{p-1}B_j^m=X-\bigcup_{j=1}^{p-1}A_j^m$. The sets B_i^m are

disjoint; they are elements of the algebra $\lambda^{a-1}a(B)$ and $X=\bigcup_{i=1}^{p}B_{i}^{m}$, so that $c(B_i^m) \leq a-1$ for every $i=1,\ldots,p$. Therefore the function $s_m(x)$ $=\sum_{x} k_i \chi_{B_i^m}(x)$ is simple and—by Lemma 3—its order is $o(s_m) \leqslant \alpha - 1$ for

every natural m. By our supposition each function s_m belongs to $\kappa^{\alpha-1}\mathfrak{M}^{\alpha}$ Thus it is sufficient to prove that $\lim s_m(x) = s(x)$ for each $x \in X$ since then $s \in \varkappa^a \mathfrak{M}^0$.

Choose a point $x_0 \in X$. Then there is a natural $q \leq p$ such that $x_0 \in A_q$ and for each natural m there is an index i_m such that $1 \le i_m \le p$ and that $x_0 \in B_{i_m}^m$. It follows that $s(x_0) = k_q$ and $s_m(x_0) = k_{i_m}$. Since $\lim_{m} (A_i^m - \bigcup_{i=1}^{i-1} A_j^m)$ $=A_i - \bigcup_{i=1}^{i-1} A_i = A_i$ for $2 \le i \le p-1$ and $\lim_{i \to \infty} (X - \bigcup_{i=1}^{p-1} A_i) = A_p$, the limits $\lim_{m} B_{i}^{m} = A_{i}$ do exist for each $i \leq p$ and $x_{0} \in A_{q} = \lim_{m} B_{q}^{m}$; consequently $i_m = q$ for all but a finite number of naturals m. Hence $\lim s_m(x_0) = s(x_0)$.

Remark 1. We have just proved that each simple function s of order $\alpha > 0$ is the limit of a sequence of simple functions s_m of order $\alpha - 1$.

LEMMA 4. Let f and fn be measurable functions on X such that $\lim f_n = f. \ Then \ o(f) \leqslant \sup o(f_n) + 3.$

Proof. Let t be any real number and $\{t_m\}$ a strictly decreasing sequence of real numbers converging to t. Then

$$\{f(x) > t\} = \bigcup_{m=1}^{\infty} \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} \{f_n(x) > t_m\}.$$

As a matter of fact, if x_0 is a point of X such that $f(x_0) > t$, then $f(x_0) > t_{m_0}$ for a suitable m_0 and consequently the point x_0 belongs to $\limsup \{f_n(x)\}$ $> t_{m_0}$ which is contained in $\bigcup_{m=1}^{\infty} \bigcap_{k=1}^{\infty} \bigcup_{n=1}^{\infty} \{f_n(x) > t_m\}$. On the other hand, if x_1 is a point belonging to the set $\bigcap_{k=1}^{\infty} \bigcup_{m=k}^{\infty} \{f_n(x) > t_{m_1}\}, m_1$ being a suitable index, then $f_n(x_1) > t_{m_1}$ for infinitely many n and since $\lim f_n(x_1) = f(x_1)$, we have $f(x_1) \geqslant t_{m_1} > t$.

J. Novák

418

may denote it by $\beta\omega_0 + k_0$ where k_0 is a suitable natural. Assume, on the contrary, that $\tau < \varrho$. Then $\beta\omega_0 + 3k_0 < a\omega_0$ and consequently there is a set A_0 of class $c\left(A_0; \alpha(B)\right) = \beta\omega_0 + 3k_0$. Denote $c\left(\chi_{A_0}; \mathfrak{M}^0\right) = \gamma\omega_0 + k$; here h is a non-negative integer, each class being 0 or an isolated ordinal. Evidently $\gamma\omega_0 + h < \beta\omega_0 + k_0$. From Theorem 2 it follows that $o\left(\chi_{A_0}\right) \leq \gamma\omega_0 + 3h < \beta\omega_0 + 3k_0$. However $o\left(\chi_{A_0}\right) = c\left(A_0; \alpha(B)\right)$. Thus we have got a contradictory result $c\left(A_0\right) < \beta\omega_0 + 3k_0$.

Remark 2. If $\varrho = a\omega_0 + k$, $1 < k < \omega_0$, is the least ordinal such that the ϱ -th class $\lambda^\varrho a(\mathbf{B}) - \lambda^{\varrho-1} a(\mathbf{B})$ is empty, then from Lemma 5 it follows that each class $\varkappa^{\xi+1}\mathfrak{M}^0 - \varkappa^{\xi}\mathfrak{M}^\varrho$, $\xi \leq a\omega_0$, is non-empty. In this case the number of all other non-empty classes $\varkappa^{\eta+1}\mathfrak{M}^0 - \varkappa^{\eta}\mathfrak{M}^\varrho$, $\eta > a\omega_0$, is at most finite; this follows immediately from Theorem 3.

Remark 3. Let X be the set of all real numbers and P the system of all semiclosed intervals $\langle a,b\rangle \subset X$ where $-\infty \leqslant a < b \leqslant \infty$. Denote by $\mathfrak L$ the system of all real-valued continuous functions on X. Then $\sigma(P)$ is the system of all linear Borel sets, $\mathfrak M^0$ the system of all a(P)-measurable and $\mathfrak M$ the system of all B-measurable real functions, $\varkappa^{\omega_1} \mathfrak L$ is the system of all Baire functions.

First, let us prove that $\mathfrak{M}^0 \subset \varkappa^3 \mathfrak{L}$. Suppose that $g \in \mathfrak{M}_0$. Then $g(x) = \lim r_m(x)$ for each $x \in X$, r_m being simple functions. Since $\{a \leq g(x) < b\} = \lim \{a-1/n < g(x) \leq b-1/n\} \in \lambda a(P)$, we may suppose, with respect to Lemma 3 that the order $o(r_m) \leq 1$ for every m. According to Remark 1, each simple function of order a is the limit of a sequence of simple functions of order a-1. Put here a=1 and notice that each element of the algebra a(P) is a finite disjoint union of semiclosed intervals so that each simple function of order 0 is the limit of a sequence of continuous functions. It follows that $r_m \in \varkappa^2 \mathfrak{L}$ for each m so that $\mathfrak{M}^0 \subset \varkappa^3 \mathfrak{L}$.

Now prove that $\mathfrak{Q} \subset \kappa^3 \mathfrak{M}^{\mathfrak{o}}$. Let $f \in \mathfrak{Q}$ and let $\lim s_n(x) = f(x)$, for each $x \in X$, s_n being simple functions. Since each set $\{a \leq f(x) < b\}$ is a $G_{\mathfrak{d}}$ -set belonging to $\lambda^2 a(P)$, we may suppose, in view of Lemma 3, that each order $o(s_n) \leq 2$ so that, by Lemma 5, also $c(s_n, \mathfrak{M}^{\mathfrak{o}}) \leq 2$. Consequently $f \in \kappa^3 \mathfrak{M}^{\mathfrak{o}}$ and hence $\mathfrak{Q} \subset \kappa^3 \mathfrak{M}^{\mathfrak{o}}$.

Using the method of induction we easily prove that $\varkappa^n\mathfrak{M}^0 \subset \varkappa^{n+3}\mathfrak{Q}$ and $\varkappa^n\mathfrak{Q} \subset \varkappa^{n+3}\mathfrak{M}^0$, $1 \leq n < \omega_0$. Then we can conclude that $\varkappa^{\omega_0}\mathfrak{M}^0 = \varkappa^{\omega_0}\mathfrak{Q}$. Thus we have proved the following statement:

Each ξ -th class of Baire functions is identical with the ξ -th class of B-measurable functions, $\omega_0 < \xi < \omega_1$.

Recu par la Rédaction le 15, 3, 1961

О диадических бикомпактах

П. Александров и В. Пономарев (Москва)

Введение

В этой работе дается внутренняя характеристика диадических бикомпактов, т.е. бикомпактов X, являющихся непрерывными образами так называемых обобщенных канторовых дисконтинуумов D^{τ} (под D^{τ} , где τ — бесконечное кардинальное число, понимается, как известно, топологическое произведение τ бикомпактов D_{λ} , каждый из которых состоит из конечного числа изолированных точек (1).

Важность класса диадических бикомпактов подтверждается, например, следующими фактами:

- 1°. Класс (²) диадических бикомпактов есть наименьший класс, удовлетворяющий следующим условиям
 - а) он содержит все бикомпакты, состоящие из конечного числа точек;
- б) вместе с данными бикомпактами X_a он содержит их топологическое произведение $\prod X_a$;
- в) вместе с данным бикомпактом X он содержит и всякий бикомпакт Y, являющийся непрерывным образом бикомпакта X.
- 2°. Класс диадических бикомпактов совпадает с классом всех бикомпактов, являющихся непрерывными образами бикомпактных топологических групп. В частности, пространство всякой бикомпактной топологической группы есть диадический бикомпакт (теорема Ивановского-Кузьминова [4] (3)).
- 3°. Всякий диадический бикомпакт, удовлетворяющий 1-ой аксиоме счетности, метризуем (теорема А. С. Есенина-Вольпина [3]).

Из последнего предложения легко следует, что

4°. Всякий упорядоченный диадический бикомпакт гомеоморфен ограниченному множеству действительных чисел.

Интересные свойства диадических бикомпактов установлены Э. Марчевским (Шпильрайном) [6], Н. А. Шаниным [8] и другими исследователями.

 $^{^{(1)}}$ Без ограничения общности можно предполагать, что каждый множитель D_{λ} этого произведения состоит из двух точек.

⁽²⁾ Можно ограничить его требованием, чтобы вес или мощность рассматриваемых бикомпактов не превосходил данного кардинального числа.

^(*) Цифры в квадратных скобках означают ссылки на литературу, помещенную в конце статьи.