On the classification of ¢(B)-measurable functions defined
on an abstract point set

by
J. Novak (Praha)

Let X be a non-empty abstract point set, X the system of all its
subsets and BC X a non-void system of sets. Denote by o(B) the ¢-algebra
generated by the system B and containing the greatest element X. Let §
be the system of all real-valued functions defined on X and I the sub-
system of all o(B)-measurable functions. Denote by IN° the system of
all real-valued a(B)-measurable functions (1) on X, a(B) being the ring
generated by the system B containing the element X e a(B). The ele-
ments of the o-algebra o(B) will be called measurable sets and the ele-
ments of the system 9 measurable functions. ’

The sequential topology 4 in the system X iy defined by the well-
known convergence:

limd, =4, whenever 4 =limsupd, =liminfd,,
whereby
. 0 o X o o™
limsupd, = U 4s  and  liminfd, =) N 4da.
k=1 n=k

k=1 n=k

The sequential topology x in § is defined by the convergence at each
point as follows: limf, = f whenever limfy(z) = f(#) for cach z ¢ X. In
such a way we get two convergence spaces (X, 4) and (&, «) the topologies
(Aand %) of which ave defined by the convergences fulfilling both Fréchet’s
axioms of convergence (the axiom of the stationary sequence and the
axiom of the subsequences of a convergent sequence) and also Urysohn’s
axiom (if a sequence of clements 2, does not converge to the element
then there is a subsequence {z,,} no subsequence of which converges
to 2).

Let I be a covergence space and 2 its sequential topology. The closure
A4 of a subset 4 (i.e. the set of all limits of sequences of points @ eA)

(t) {V (%)} denotes the set of all » ¢ X fulfilling the property ¥ (x). The function f
is a(B)-measurable if {f(w) > £} ea(B) for each real number ¢,
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need not be closed. Therefore it is possible to form the successive closures.
In such a way we get a non-decreasing sequence of clogures:
PACHACPAC..CHFAC..
where 4 = A, P4 =14, 24 = 2(2F°4) and P4 = VA if £ is
n<é
a limiting ordinal. From the property of the set of all countable ordinals
it follows that there is no sense in forming the closures for uncountable
ordinals &> w,, o, being the first uncountable ordinal. As a matter of
fact A(A™4) = 1**4. Thus thes et '4 = UJ 2 A i closed, i.c. it fulfills
£<ay

the following property: lima, = o and @, e A4 implies e 1™ 4. Bvi-
dently A C B implies 14 C AB.

LeMMA 1. o(B) = A (B).

Proof. Since limd, =4 and limB, =B implies lim (4, v By)
= A v B and since im0, = O if and only if lm(X—Cy) = X—0, it
easily follows that each system A°a(B), { being any ordinal, is an algebra;
50 is the system A" (B) which iy identical with |J 2°a(B). Hence, if 4,

<y

m
are elements of 1”a(B), n=1,2,..., then |J 4, e 1™a(B) for every
n=1
m 00
m=1,2,.. Since the system A“a(B) is closed and lim |J 4y = U] 4a,
m n=1 1

o0
it follows that |J 4, belongs to 1”a(B); thus A"a(B) is a o-algebra.
1

B C 2"a(B) then implies that o(B)C 1”a(B).

On the other hand, using the method of trasfinite induction we
easily prove that Aa(B)C a(B) for each &< @, so that 1w (B)C ¢(B).

Let (L, A) be a convergence space. Let 4 be a subset of L. The set
¥ A2 A is called the (E-+1)th class and each point z of it is called
a point of the class £+1; it will be denoted by ¢(e; 4) or simply by ¢(2).
Further we define c¢(2;4) =0 if zed. If ¢(z;.4) > 0, then ¢(z) is a count-
able and isolated ordinal such that z e A°®4—1"®~" 4,

LeMmA 2. If A and B are two elements of o(B) and « an ordinal such
that ¢(4 ~ B; a(B)) > a, then either ¢(4;a(B)) > a or ¢(B;a(B)) > a

P,roof. If we had ¢(4d) <a and ¢(B) <a, then Aela(B) and
B e2a(B), where o =max(¢(4),¢(B)). The product 4 ~ B would be
an element of the algebra a(B) and consequently ¢(d ~ B) < o' < g;
this would be a contradietion.

Let f be a o(B)-measurable function on X. Let o(f) be the least
ordinal such that (1) e({f() > t}; a(B)" < o(f) for each real number ?;
the ordinal o(f) will be called the order of the element f. Each characteristic
function %4 of the set Aeo(B) belongs to M and its order o(xs)
=¢(d; a(B)); it is 0 or an isolated ordinal. Also each simple function
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?
s(®) = ) Fiyu(®) where k; ave rveal numbers different from one another
i=1

(==

and A; ave disjoint elements of ¢(B) such that | _f 4; = X, has an order o(s),
1

which is 0 or an isolated ordinal. This follows from

n
LeMMA 3. The order o(s) of a simple function s(x) = D kiya, (2) s
i=1
equal to max[e(4d,), ..., ¢(4y)].

Proof. Denote by ¢ the natural < p such that ¢(4,) = max[e(4,),
wry 6{4,)]. There exists a semiclosed interval (a, b containing %k, and
no other &}, i # ¢. Then () {s(x) > a} ~ {s(z) < b} = 4, so that ¢({s(x)
> a} ~ {8(&) < bY) = ¢(4,). In view of Lemma 2 and since e({s(x) < bY)
= of{s(@) > b}), it follows that ¢({s(z) > a}) > ¢(4,) or of{s(x)> bY)
> ¢(4,); consequently o(s) = ¢(4y). '

Now, let ¢ be a real number. If U™ 4; denotes the union of all sets 4;
whose indices ¢ fulfill the relation k; > 1, then {s(#) > t} = U* 4;. Since
Ay e 49 (B), 1 <i<p, the set |J*4; is an element of the algebra
242 (B). Consequently c¢({s(#) > t}) < ¢(4g). Thus o(s) < ¢(dg) 80
that o(8) = ¢(4g)-

Tt is well known that every measurable function g is the limit of
a sequence {8y}n-1 of simple functions sn(z), whereby

“;1 it Slcim<ly, i=0, £1, 0 202,
sp(®) = n it fley=zn,
1 . 1
——fn——gﬁ it j(w)<—n——ﬁ.

Tt is easy to see that {g(x) > t} = U {sa(2) > £}. It follows from Lemma 3

n=1
that each simple funetion s, has a countable order. Thus each measurable
function ¢ has a countable order as well.

THEEOREM 1. M = I,

Proof. Tt is evident that »“M° C M. In order to prove the reverse
inclusion it suffices to show that each simple function belongs to M
as a matter of fact, if g is a measurable function on X and {s.} a sequence
of simple functions converging to g, then from the supposition s e M
and because »»IN is a closed system it follows that ge M. ‘

We shall use the method of transfinite induction. Assame that the
system D contains all simple functions of orders < & where &< a. If o
is a limiting ordinal, then in view of Lemma 3 there is no simple function
of order a at all and the system »*M° contains—by our supposition—all
simple functions of orders < o. Now, suppose that o is isolated and con-
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gider o simple function s( 2 sxa;(2) of order a. Then A; are elements
of Xa(B). For every i< p 1here exigts a sequence {A7)a; of sets
A} € 2 'a(B) converging to the set A;. For each natural m let B

1 <4< p, be the sets defined as follows B} T; B = AT — UA"‘

13
for i=2,..,p—1 and By = X— UB"‘_X UA’” The sets Bf* are

disjoint; they arc elements of the algebra- A ‘a(B) and X = UB}”, 50
=1

that ¢(B7") < a—1 for every 4=1,..., p. Therefore the function Sm(%)

= 2 k;me(w) is simple and—by Lemma 3—its order is o(sp) < a—1 for

every natural m. By our supposition each function sy belongs to x=—190,
Thus it is sufficient to prove that hmsm(m) = g(x) for each x e X since
then s e x9N0,

Choose a point %, ¢ X. Then there is a natural ¢ < p such that @, ¢ Aq
and for each natural m there is an index ém such that 1<in<p mnd that

%y € B, . Tt follows that $ (%) = kg and sm(®e) = ky,,. Since hm AT — UA"‘
J=1

= AV—-:QA,- =A4; for 2<ig<p—1 and 1im(J«K~—3rL_)1 Ay) = 4,, the limits

Ii?r”an;" = 4; do exist for each i <p and #ye d, = h;’ranZ‘; consequently

im = ¢ for all but a finite number of naturals m. Hence lim su(z,) = 8 ().

Remark 1. We have just proved that each simple function s of

order a> 0 is the limit of a sequence of simple functions s, of order a—1.

. LeMma 4. Let | and fn be measurable functions on X such thai
limfn = f. Then o(f) < supo(fs)-+3.
n

Proof. Let ¢ be any real nwmber and {tm} a strictly decreasing
sequence of real numbers converging to #. Then

{f (=) >t}"U ﬂ U {falz) > tm} .
m=1 k=1 n=k
As a matter of fact, if @, is a point of X guch that f(mp) > 1, then f(@)> tm,
for a suitable m, and consequently the point x, belongs to limsup {fu(x)

> tm,} Which is contained in U1 kﬂ U{fn ) > tm}. On the other hand,

if @, is a point belonging to the set ﬂ U {fa(@) > 1}, my being a suitable

index, then fu(z,) > t,, for mf]mtely many % and since limfn(@) = f(m,),
we have f(w;) > iy, > ¢,

Olassification of o(B) measurable functions 417

Since
¢({fa(@) > tm}; a(B)) < o(fu) < supo(fn)

for each natural m and =, we have

0( U m U{fﬂ >t} @ ) < supo(fa)+3
M=l k=1 n=k
for each real ¢ so that
o(f) <-supo(fa) +3.

THEOREM 2. If | is a measurable function of the class ¢(f; MMO)
= aw,+ %, k being a non-negative integer, a an ordinal and w, the least
infinite ordinal, then the order o(f) < aw,+3k.

Proof. Suppose that the assertion is true for all ew,+k < {, where
¢ = Bwy+h, h being a non-megative integer. If h=0, the proof is
evident. Let h>1. If g is a measurable function of the class {, then there
exists a sequence of functions g, e -1 of classes < {—1 = Baop+h—1
such that limg, = ¢. By our supposition each order o(ga) < fo,+3(h—1),
n=1,2,.. According to Lemma 4 the order o(g) < fw,+3h.

LevMA 5. Let s be a measurable simple function on X. Then ¢(s; M)
< o(s). If the class of the measurable set A is ¢(d; a(B)) = aw,+1, then
o(ya; M) = 0(y4) = awy+1.

Proof. In the proof of Theorem 1 we have proved the following
statement: The system »*IM0 contains all simple functions of order < &.
This implies the inequality c¢(s; M®) < o(s).

Now, let 4 € o(B) and let ¢(4) = aw,+1. Then also 0(y4) = am+1.
In view of the first part of this proof the inequality e¢(y.; M) < awg+1
holds true. Tf we had e(yu; ) < awy+1, then o(yq; M) =0 or
e{y4; M) < 5 for a suitable ordinal < aw,, each class being 0 or an iso-
lated ordinal. By Theorem 2 we should have o(x.) < awg; but this would
contradict the fact that o(y4) = aw,+1.

THEOREM 3. If o s the least ordinal such that the o-th class Xa(B)
—7%4(B) is empty and if v is the least ordinal such that the v-th class
O — %7~19N0 is empty, then the following inequality holds true: © < o+ 1.
If o = awy+1, then also ¢ < 7.

Proof. Suppose, on the contrary, that ¢-+2 < v Then there is
a function f e x+1900— xe9N° and, consequently, there is a sequence of
simple functions of classes > ¢ which converges to f. Denote by s one
of these simple functions. Flom Lemma 5 it follows that ¢(s; M) < o(s).
By Lemma 3 there is a set 4, of the class c(Ao, (B)} = o0(s). Thus
o < c(s; M) < o(s) = ¢(Ag; a(B)). Therefore o < ¢(4; a(B)). This is
a contradiction.

Now, suppose that ¢ = aw,+1. Since r is an isolated ordinal, we
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may denote it by fwy+ky where %o is a suitable natural. Assume, on the
contrary, that v < g. Then Bowy+3ky < aw, and consequently there is
a set A, of class ¢(dg; a(B)) = fwy+8%,. Denote ¢(xa,; M) = paw,+h;
here % is & non-negative integer, cach class being 0 or an isolated ordinal.
Bvidently yw,+h < fog+%k. From Theorem 2 it follows that o(y,,)
< ywy+3h < Pwy+ 3k, However o(yq,) = ¢ (A,,; «(B)). Thus we have got
a contradictory result ¢(Ay) < fwy+3k,.

Remark 2. If ¢ = aw,+% 1<k < w,y, iy the least ordinal such
that the o-th class A%a(B)— 2 'a(B) is empty, then from Lemma 5 it
follows that each clags 10— IO, £ < awy, Is non-emtpy. In this case
the number of all other non-empty classes »7+1D0— 1IN0, 9 > awy, is ab
most finite; this follows immediately from Theorem 3. ‘

Remark 3. Let X be the set of all real numbers and P the system
of all semiclosed intervals <a,b) C X where —oo < a<b < co. Denote
by £ the system of all real-valued continuous functions on X. Then o(P)
is the gystem of all linear Borel sets, MO the system of all a(P)-measurable
and M the system of all B-measurable real functions, »»: 8 is the system
of all Baire functions.

First, let ns prove that MM C 3L, Suppose that ¢ e M,. Then g(x)
= limru(x) for each x € X, 7 being simple functions. Since {a < ¢g(@) < b}
=lim{a—1/n < g(z) < b—1/n} e Aa(P), we may suppose, with respect to
Lemma 3 that the order o(rm) <1 for every m. According to Remark 1,
each simple function of order « is the limit of a sequence of simple functions
of order a—1. Put here a = 1 and notice that each element of the algebra
a(P) is a finite disjoint union of semiclosed intervals so that each simple
function of order 0 is the limit of a sequence of continuous functions.
It follows that #, € %28 for each m so that O C 38.

Now prove that @ C »*I°. Let f € & and let limsy(z) = f(x), for each
% € X, 8, being simple functions. Since each set {a < f(z) < b} is a Gy-set
belonging to A%a(P), we may suppose, in view of Lemma 3, that each
order o(sy) < 2 so that, by Lemma 5, also ¢(sz, M) < 2. Consequently
f €M and hence £ C AMO.

Using the method of induction we easily prove that »m90C «+38
and »m@ C 3R, 1 K < w,y. Then we can conclude that x@odRP = x2Q,
Thus we have proved the following statement:

Bach £-th class of Baire functions is identical with the &-th class of
B-measurable functions, w, < & < ;.

Regu par la Rédaction le 15. 3. 1961
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O AMapUUecKUX GUKOMNaKTax

N. Anexcauppos u B, MoHomapesn (Mocksa)

Beepenne

B arofi paboTe NAETCA BHYTPEHIS XAPAKTEPHCTHKA JHMA[MHECKHX Ouxom-
faKToB, T.e. OuommaxtoB X, SABJISIONAXCHA Henpepmsnmmi{ oGpaaaM:x TaK
HASLIBAEMBIX OGOOINEHHBIX KAHTOPOBBIX JIHCKOHTHHYYMOB D" (mom D7, rme
7 — BECKOHEUHOE KAD/IMHAJBHOE UHCIO, IOHMMACTCH, KAK HIBECTHO, TOIIONOTH~
yecKoe TIPOM3BEfCHHE 7 OHKOMIAKTOB D, , KOKABIA U8 KOTOPBIX COCTOHMT M3 KO-
HEeYHOro 4HCla H30JHPOBAHHBIX TOYEK ).

BayKHOCTh KJIACCA AUAAMYECKHX GHHOMIAKTOB TOTBEPIKAAETCA, HANPUMED, CICRYIOUIMI

daxramu: )
1°. Koracc (%) AuagHyecKux GUKOMNAKTOB €CTh HAMMEHBUIMIL KJACC, YAOBIICTBOPSIOLIHML

CIHIEAYIOLHM YCTIOBHAM
a) OH COMCPYKHT BCE GUKOMINAKTBHI, COCTOAINME M3 KOHEYHOTO UMCIA TOUEK;

6) BMecTe C JAHHBLIMH GHKOMIAKTAME X, OH CONEPIXUT HX TONOJOTHYECKOE IPOH3BE-
nenve [] Xas
a

. - _
B) BMECTe C [JAHHEIM OHKOMIAKTOM X OH COTEPYHT M BCAKHT GHXOMIAKT Y, ABngo
1uiics HENMpEpLIBHBIM 0GpasoM GuKoMOaKTa X.

90, KacC IMajMuecKuX OHKOMIIAKTOB COBIAfAeT C KIIACCOM BCeX OHMKOMIAKTIOB, v;mm;-
JOLLMXCH HENpepLIBHbIME OGpasamy GHKOMIAKTHEIX TononorudecKux rpymr. B qasmgcm, nsz;
CIPaHCTBO BCAKOH GUKOMUAKTHOH ‘TONOJOTEYECKONX TPYIIbI €CTh JMAAHUECKHH OHKOMIL
(reopema IpanoBcroro-KyspMEHOBR [4] ).
3°. Bosmxuii IHATHUECKHIT OMKOMHOAKT,
merpusyem (reopema A. C. Ecemmna-Bomsnasa [3]).

YIOBAETBOPAIOIIHIE 1-0if aKcHoMe CUETHOCTH,

113 moCHeaHEro NPeUIOKE NS JerKo CIefyer, HTo

4°, Beaxuit yOOpAHOYEHHBIH JMAITIeCKuit GUKOMIAKT TOMEOMOP(hEH OTpPaHITdCHHOMY

MHOKECTBY HeliCTBHTENBHBIX “HCEN. "
HurepecHele cpoiicTBa JMAIUUECKHX OHKOMIIAKTOB YCTaHOBJICHBL 2. Map-

vencxum (Imauspatinon) [6], H. A. Ilanmasm [8] # mpyrHME MCCIENOBATEIAMM.

ens D 9TOTO
(%) Bes orpamyruenust OGLIHOCTH MOYKHO NPe/TOoNaraTh, UTo KayABI MHOYKHT! 2

TIPOM3BENEHUs COCTOMT H3 JBYX TOYeEK.
(%) MOYKHO OrPaHMIMTH €ro TpeGOBAHMEM,
GHKOMNAKTOR He NPEBOCXOMI HAHHOIO KAp/AHANBHOTO SHCIA.
(%) Uubpsl B KBaJpaTHBIX CKOGKAX OSHAYAIOT CCHUIKM Ha JMTEPATyDY,

qroOhl BeEC MJIH MOIHOCTE paccma’rpusaemmx

TOMEIEKHYIO

B KOHIEC CTaTbH.
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