A property of accessible points
by
A. Lelek (Wroclaw)

It is seen in the first of the following examples (fig. 1) that a square
can, after removing its centre p, be decomposed into disjoint continua
with diameters greater than 1. By replacing the square by a locally con-
nected continwum € contained in the plane &2, it is possible (fig. 2) to

Fig. 1 Fig. 2 Fig. 3

put the point p into the boundary of C. Finally, losing the local connec-
tedness of €, we can find such a decomposition (fig. 3) with p belonging
to the boundary of a component of €*—C.

However, in all the above examples the point p is not accessible (*)
from the set ¢*— (. This leads to the following

THEOREM. Let p be a limit point of a set A C E2 such that A is locally
compact at p. If the point p is accessible from the set E*—A and C is a
collection of mutually disjoint continua filling up the set A— {p}, i.e.

A4— {p} = U o ’
CeC
then C contains arbitrarily small elements, i.e.

inf6(C)=0.

CeC

(*) A point p is zaid to be accessible from a set X if a continuum O exists such
that p eC c X o {p} and O = {p} (C. Kuratowski, Topologie II, Warszawa 1961,
p. 115). For X which are connected open subsets of locally connected continua this
i8 equivalent to the existence of an are C satisfying the same conditions (ibidem, p. 194).
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Proof. Taking a disk D’ C ¢* and a continuum ¢ C ¢ such that p
is the centre of D', 4 ~n D’ is a compact set, 4 ~ € = {p} and 0 # {p}
(which exist by the local compactness of 4 at p and the accessibility of p
from ¢2— 4, respectively), we see that the component €’ of O ~ D',
containing p, either coincides with ¢ if ¢ A D' = 0, or intersects the
boundary of ¢ A D" in @ if C ~ D' 5 C (ibidem, p. 112), Hence €' # {p}
in any case. Then the closure of a component J of ¢'— {p} intersects the
boundary of ¢'— {p} in (", i.e. p e J'% {p} (ibidem). Since p¢J C ¢'C D’
and A nJCAn C={p}, we have J C D'— A. Let us denote by R the
component of D'— 4, containing J. The set A ~ D’ being compact, B is
a connected open set in D’ and R—RC A. It follows that J—RC 4
AJCA ~ 0= {p}, which gives JC Ry {p}. The point p is thus accessible
from B and we infer that an are L’ exists such that p e L' C R u {p}.

Suppose on the contrary that

infé(C)=¢e>0
CeC

and let DC D" be a disk with the centre p and a diameter 6(D) <
< min{g, 6(L')}. Then no element of C is contained in D and the arc L’
intersects the boundary B of D. Moreover, since each C € C is a continuum,
every component of €'~ D intersects B provided that ¢~ D+ 0 (ibidem).
Denoting by K the collection of all components K of sets ¢ ~D # 0,
where C e C, we thus have

(1) AAD—-{p}=UK,
KeK

(2) BAK+#0 for KeK

and K consists of mutually disjoint continua.
Let, farther, LC L' be an arc with end points p and ¢ such that
BnL={g}. Hence LCD and pe ANLCANL'CAn(Ruy {p}) = {p},ie.

(3) A~L={p},
which gives
(4) géAnB=A B,

the set A~ B= B~ A~ D being compact.

Let us establish an order < of the circumference B, beginning at‘

the point g. Thus B is ordered by < similarly to a right side open segment
of the real line and ¢ < b for every b e B. Moreover

(6) if C;C D are continua such that b;yc;eBAC; for i=1,2 and
by < by < ¢ < ¢y, then C; 0, 0.
Indeed, if the continua €y, 0, were disjoint, arcs L,, L,C D would

ex.istv having the same properties, and thus the union B u L, would con-
tain a 6-curve, which is impossible (ibidem, p. 359).

icm

Property of accessible points 511

Sinee p is a limit point of 4, points p; e 4 ~ D — {p} exist converging
to p. By (1), we have p; € K; e K for i =1, 2, ..., where no continuum K;
contains p. The distance p(p, K;) tends thus to zero, as ¢—oo, and the
sequence K, K,, ... contains infinitely many distinct sets. We may assume
that all the continua XK, K,, ... are distinct, whence they are mutually
disjoint. Let b;e B~ K; for i=1,2, ..., according to (2). Thus d; + b;
for i #j and the sequence by, b,, ... contains an infinite snbsequence of
points eoverging to a point b ¢ B. On the other hand, among these points
an infinite monotone sequence may be chosen. Let us assume that all
the points by, bs, ... constitute such a sequence and that by < b, < ... for
convenience.

Therefore the set S of points b e B such that there exist distinet
continua K;eK and points b;e B~ K; (i=1,2,...), satisfying the con-
ditions: lime(p, K;) =0, b, < by < ... and limb; = b, is not empty.

It follows from (1) that SC 4 ~ B and so, by (4), the point ¢ does
not belong to S. This implies the existence of the least upper bound s
of 8. Hence
(6) b<s for

belS

and it instantly follows from the definition of the set S that s belongs
to 8. Thus there are distinet continua T;e K and points s;e B~ T
(i=1,2,..), satistying

(M lim o(p, 7o) =0,
1—>00

8 < 83 < ... and lims; = s. Hence

(8) s;<s for i=1,2,..

becanse ¢ # s.

By (3) and the compaectness of the set A ~ D =D~ A~ D’, anumber
&> 0 exists such that if the Hausdorff distance d(L, X) between L and
any compact subset X of D is less than &, then d({p}, AnX)<1)2
(putting d(¥,0) = 0 for every Y). Since the arc L is contained in the
disk D and meets its boundary B only at the point g, there exists a homeo-
morphism % of D onto itself such that h(p) = p, k is the identity mapping
on B and maps the straight line segment pqg with end points p and ¢ onto L
(ibidem, p. 381). It follows from (1) and (7) that there are, in every
neighbourhood of p, points '

teT =T,
i=1

satisfying {eD—{p}, and—from (4) that there are, in every neigh-
bourhood of ¢, points b, e B—{g}, satisfying a < b, for each « ed ~B.
Therefore we may find an arc in D—7pg so that it is mapped by A onto
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an are Ij with end points { and &, and satisfying the inequality d(L,L;)
< &. Hence LiCD—Land teLinl. We have TCA~D=A~DCA,
according to (1) and the compactness of A ~ D. Thus every point a e T ~ B
belongs to 4 ~ B, whence & < b,. Therefore b, does not belong to T and
5o there is an are L, C L] with end points v, and b, such that L, ~ T = {v,}.
We get v,¢ A AL, C A~ D—{p}, whence

d({p}, A A L) < 1/2

o(p, m) <

and, by (1), a continnum U, e K exists such that v; ¢ U;. Let us take
an arbitrary point u; e B ~ U,, which exists according to (2).

If we had #, < s, a positive integer j would exist such that u, < s
and T;#U, for i>j. Thus we should have T;~ U, = 0 for ¢> j. However,
by (7), there would be points #; ¢ T; such that limo(p,?;) = 0, whence
Limpt; = {p}. Since u, ¢ Uyn BC A~ B, by (1), (4) would imply ¢ < u,.
On the other hand, s; < b, because we should also have s;e A~ B for
4> §. Therefore ¢ < u, < 8; < b, and applying (5) to the continua

Co=Lvuv Uy,

we should obtain O~ €5 0. But since L;CLiCD—L and U, L
C{A—{p}) nL =0 by (1) and (3), there would be L 0, = 0. Further-
more, TinLy=TinTALi=Tin {p}CTinUy=0, ie. Tin Co=0
for 4> j. Hence Pt~ Oy 0 for i> 4, which would give {p}n C;

= (Limpt) ~ €y # 0, ie. peCy, contrary to (1) and the inclusion
L, CD—L (because U, e K and p ¢ L). We thus have s < u,.

If some continuum 7'y contained the point v, we should have 75 = U,
and could assume sy = u,, since se B~ T; and the point «;, had been
chosen arbitrarily in the set B ~ U,. This, however, is impossible, since
8 < s according to (8). Hence », belongs to none of T; (i=1,2,..),
ie. the union T of 7T; does not contain v, and thus o, ¢ (T—T) A U,.

Now, supposing that for some n =1,2,.. a continuum U,eK
and points %, v» are given such that

O, =Lwvpt;u T,

9 s<UeBnAUny, wwmeT—T) AU,
(10) e(p, v) < 1/2",

we shall define Uuyi, Unss and v,4q.

In fact, we have U, C D—L, according to (1) and (3). Thus ¢(L, Un)
> 0. By the same reasoning as previously (for #--1 instead of 1), a number
&nr1> 0 exists such that if d(L,X) < enyq, then d({p}, 4 A X) < 12"
for an arbitrary compact subset X of D. Similarly, we flnd an arc
Ly C D—L which intersects T, satisfies

d(L; Ln+1) < mln{en+l’ Q(I‘, Un)}
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and has b,.; as an end point, where b,.; e B— {g} and a < by, for each
aed ~nB. Then also Lj.1 C D~TUp, bysy ¢ T and an are Ly, C L., exists
with end points ¥4y and bu., such that Ly.y ~ T = {v,.,}. Hence

2Py Tar1) AP}, A A Lisy) < 1/2™7,

e. (10) holds for n -1 instead of n, and there is a continuum U,.;e K
containing ¥n.;. Thus a point #,., € B A U,y exists, according to (2).
The proof that & < sy is quite similar to the preceding one, namely
that s<Cu,; it is sufficient to put everywhere # +1 instead of 1. Similarly,
the set 7' does not contain the point v,.;. We thus get (9) for n+1
instead of n.

Moreover, we have 2y < Uny:. To show this, suppose on the contrary
that p.; < %n. Since

Vps1 €Lty A Ungy CLpey A Upy C(D—Tn) A Uppay

the elements Un, Un+, of K are distinet, i.e. disjoint, and thus 4 5= #p:q,
by (9). Hence Uy < 1. It follows by the inclusion Ly, CD—TU, that
the subcontinua U, and Ly v U,y of disk D are disjoint. Let G denote
the component of D—(Lyiivw Uyty), containing U,. Thus & is an open
set in D (ibidem, p. 163) and contains the point ,.

If a point & (i =1,2,...) belonged to @, it would be joined to un
with an arc I C @ (ibidem, p. 182). But since u, € 4 ~ B, we should have
Up < bpr1. On the other hand, (8) and (9) would give & <8< Upt1,
whence §; < Upr1 < Un < bpya. Applying (5) to the continua

¢, =1,

C, = Ln+1 N U'n+1 ?

we should obtain (; ~ C, 5 0, which is impossible since ICGCD—
— (Lp41 v Upyq). Thus no point s; belongs to @ (i =1,2, ...

It follows from (9) that ¥y € Upyy— T for ¢ =1,2, ..
Uy, are distinet elements of K, whence

So 7; and

TiﬁL“_*_l = T»if\ {’l)n+1}C Tl’f\ Un+1 = 0,

ie. T5C D— (Lprivw Upyy). The continnvum 7; containing the point 8;
which does not belong to the component G must therefore be contained
in D—@ for i=1,2.. We thus obtain the inclusion T C D~ @ which,
by (9), yields the contradiction

U eTATCD=—GAUp=(D—@) AUs=0

since Up C @; and the inequality s < %1 is shown.
In this way, we have got. infinite sequences of continna Us e K,
points un e B Up and points vs € Un satisfying s < s < Uns1 for
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n=1,2,..and img(p, v») = 0, by (9) and (10). Therefore limo(p, U,)
=0 and an infinite subsequence Uy, Un,, ... (Where n, < n, < ...) of
mutually distinet sets can be chosen since no continwum U, contains p,
according to (1). Then the points

8 Uy, < Uy < v’

constitute a converging sequence with limus; = » ¢ B, whence 4 € 4 ~ B,
by (1), and % %« ¢, by (4). Thus s < u ¢ § follows, contrary to (6).
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A remark on duality
by
S. Eilenberg (New York) and K. Kuratowski (Warszawa)

We shall consider triples (X, U, 4) in which

(i) X is a connected compact Hausdorff space,
(ii) U is a connected open subset of X,
(iii) 4 =X—-T.

If U is dense in X then we say that (X, U, 4) is a compactification
of U. If further 4 is zero-dimensional then we say that (X, U, 4) is
a light compaetification of U. For each triple (X, U, 4) we may construct
a light compactification (X, U, 4)* of U by regarding each connected
component of A as a single point. Thus (X, U, 4)* = (X, U, e(4))
where ¢(4) is the component space of A.

For every locally compact Hausdorff space U we have the Cech
compactification (8(U), U, 8(T)) which gives rise to the standard light
compactification ((U), U, S())* = (B(1), U, &'(U)) of U. This one is
characterized by the property that for each light compactification
(X, U, A) of U there exists a unique map (8/(U), U, 8"(U)) (X, U, 4)
which is the identity on U.

The purpose of this note is to show that, in a sense that will be
specified below, among all the light compactifications (X,U, A) of U, the
standard one can be characterized by the fact that X has the lowest possible
connectivity in dimension 1. Thus if X is 1-aeyclie then (X, U, 4) is nec-
essarily the standard light compactification. These considerations imply
that in any triple (X, U, 4), if X is 1-acyclic then ¢(4) and &'(U)
are homeomorphic. In particular, this holds if X = 8" is the 2-sphere,
2> 1. In this case the result has been established recently by M. K. Fort,
Jr. [1] solving a question raised by Kuratowski. Much earlier the case
n =2 was considered by L. E. J. Brouwer (see e.g. [2], p. 386).

The considerations are based on cohomology in dimensions 0 and 1.
‘We summarize briefly the relevant facts.

(1) For each compact pair (X, 4) we have an exact sequence

0>HYX, A)>HY(X)~HYA)~>H(X, A)—~H(X)~>HY(A).


Artur




