

A property of accessible points

by

A. Lelek (Wrocław)

It is seen in the first of the following examples (fig. 1) that a square can, after removing its centre p, be decomposed into disjoint continua with diameters greater than 1. By replacing the square by a locally connected continuum C contained in the plane C^2 , it is possible (fig. 2) to

put the point p into the boundary of C. Finally, losing the local connectedness of C, we can find such a decomposition (fig. 3) with p belonging to the boundary of a component of $C^2 - C$.

However, in all the above examples the point p is not accessible (*) from the set \mathcal{E}^2-C . This leads to the following

THEOREM. Let p be a limit point of a set $A \subset \mathcal{E}^2$ such that A is locally compact at p. If the point p is accessible from the set \mathcal{E}^2-A and C is a collection of mutually disjoint continua filling up the set $A-\{p\}$, i.e.

$$A-\{p\}=\bigcup_{C\in C}C,$$

then C contains arbitrarily small elements, i.e.

$$\inf_{C\in C}\delta(C)=0\;.$$

^(*) A point p is said to be accessible from a set X if a continuum C exists such that $p \in C \subset X \cup \{p\}$ and $C \neq \{p\}$ (C. Kuratowski, Topologie II, Warszawa 1961, p. 115). For X which are connected open subsets of locally connected continua this is equivalent to the existence of an arc C satisfying the same conditions (ibidem, p. 194).

Proof. Taking a disk $D' \subset \mathcal{C}^2$ and a continuum $C \subset \mathcal{C}^2$ such that p is the centre of D', $A \cap D'$ is a compact set, $A \cap C = \{p\}$ and $C \neq \{p\}$ (which exist by the local compactness of A at p and the accessibility of p from $\mathcal{C}^2 - A$, respectively), we see that the component C' of $C \cap D'$, containing p, either coincides with C if $C \cap D' = C$, or intersects the boundary of $C \cap D'$ in C if $C \cap D' \neq C$ (ibidem, p. 112). Hence $C' \neq \{p\}$ in any case. Then the closure of a component D of D' = D intersects the boundary of D' = D in D', i.e. $D' \neq D$ (ibidem). Since $D' \neq D \in D'$ and $D \in D \in D$ in $D' \in D$, we have $D \in D' = D$. Let us denote by $D \in D$ the component of D' = D, containing $D \in D \in D$. It follows that $D \in D \in D$ is a connected open set in $D' \in D \in D$. The point $D \in D \in D \in D$ is thus accessible from $D \in D \in D$, which gives $D \in D \in D$. The point $D \in D \in D$ is thus accessible from $D \in D \in D$ and $D \in D \in D$. The point $D \in D$ is thus accessible from $D \in D$ and we infer that an arc $D \in D$. The point $D \in D$ is thus accessible from $D \in D$ and the contrary that

$$\inf_{C \in C} \delta(C) = \varepsilon > 0$$

and let $D \subset D'$ be a disk with the centre p and a diameter $\delta(D) < \min\{\varepsilon, \delta(L')\}$. Then no element of C is contained in D and the arc L' intersects the boundary B of D. Moreover, since each $C \in C$ is a continuum, every component of $C \cap D$ intersects B provided that $C \cap D \neq 0$ (ibidem). Denoting by K the collection of all components K of sets $C \cap D \neq 0$, where $C \in C$, we thus have

$$A \cap D - \{p\} = \bigcup_{K \in K} K,$$

$$(2) B \cap K \neq 0 \text{for} K \in K$$

and K consists of mutually disjoint continua.

Let, further, $L \subset L'$ be an arc with end points p and q such that $B \cap L = \{q\}$. Hence $L \subset D$ and $p \in A \cap L \subset A \cap L' \subset A \cap (R \cup \{p\}) = \{p\}$, i.e.

$$A \cap L = \{p\},\,$$

which gives

$$q \notin A \cap B = \overline{A \cap B},$$

the set $A \cap B = B \cap A \cap D'$ being compact.

Let us establish an order < of the circumference B, beginning at the point q. Thus B is ordered by < similarly to a right side open segment of the real line and $q \le b$ for every $b \in B$. Moreover

(5) if $C_i \subset D$ are continua such that $b_i, c_i \in B \cap C_i$ for i = 1, 2 and $b_1 < b_2 < c_1 < c_2$, then $C_1 \cap C_2 \neq 0$.

Indeed, if the continua C_1 , C_2 were disjoint, arcs L_1 , $L_2 \subset D$ would exist having the same properties, and thus the union $B \cup L_1$ would contain a θ -curve, which is impossible (ibidem, p. 359).

Since p is a limit point of A, points $p_i \in A \cap D - \{p\}$ exist converging to p. By (1), we have $p_i \in K_i \in K$ for i = 1, 2, ..., where no continuum K_i contains p. The distance $\varrho(p, K_i)$ tends thus to zero, as $i \to \infty$, and the sequence $K_1, K_2, ...$ contains infinitely many distinct sets. We may assume that all the continua $K_1, K_2, ...$ are distinct, whence they are mutually disjoint. Let $b_i \in B \cap K_i$ for i = 1, 2, ..., according to (2). Thus $b_i \neq b_i$ for $i \neq j$ and the sequence $b_1, b_2, ...$ contains an infinite subsequence of points coverging to a point $b \in B$. On the other hand, among these points an infinite monotone sequence may be chosen. Let us assume that all the points $b_1, b_2, ...$ constitute such a sequence and that $b_1 < b_2 < ...$ for convenience.

Therefore the set S of points $b \in B$ such that there exist distinct continua $K_i \in K$ and points $b_i \in B \cap K_i$ (i = 1, 2, ...), satisfying the conditions: $\lim \varrho(p, K_i) = 0$, $b_1 < b_2 < ...$ and $\lim b_i^* = b$, is not empty.

It follows from (1) that $S \subset \overline{A \cap B}$ and so, by (4), the point q does not belong to \overline{S} . This implies the existence of the least upper bound s of S. Hence

$$(6) b \leqslant s for b \epsilon S$$

and it instantly follows from the definition of the set S that s belongs to S. Thus there are distinct continua $T_i \in K$ and points $s_i \in B \cap T_i$ (i = 1, 2, ...), satisfying

(7)
$$\lim_{i\to\infty}\varrho(p\,,\,T_i)=0\;,$$

 $s_1 < s_2 < \dots$ and $\lim s_i = s$. Hence

(8)
$$s_i < s$$
 for $i = 1, 2, ...$

because $q \neq s$.

By (3) and the compactness of the set $A \cap D = D \cap A \cap D'$, a number $\varepsilon_1 > 0$ exists such that if the Hausdorff distance d(L, X) between L and any compact subset X of D is less than ε_1 , then $d(\{p\}, A \cap X) < 1/2$ (putting d(Y, 0) = 0 for every Y). Since the arc L is contained in the disk D and meets its boundary B only at the point q, there exists a homeomorphism h of D onto itself such that h(p) = p, h is the identity mapping on B and maps the straight line segment \overline{pq} with end points p and q onto D (ibidem, p. 381). It follows from (1) and (7) that there are, in every neighbourhood of p, points

$$t \in T = \bigcup_{i=1}^{\infty} T_i,$$

satisfying $t \in D - \{p\}$, and—from (4) that there are, in every neighbourhood of q, points $b_1 \in B - \{q\}$, satisfying $a < b_1$ for each $a \in A \cap B$. Therefore we may find an arc in $D - \overline{pq}$ so that it is mapped by h onto

A. Lelek an arc L'_1 with end points t and b_1 , and satisfying the inequality $d(L, L'_1)$

 $< \varepsilon_1$. Hence $L'_1 \subset D - L$ and $t \in L'_1 \cap T$. We have $\overline{T} \subset \overline{A \cap D} = A \cap D \subset A$. according to (1) and the compactness of $A \cap D$. Thus every point $a \in \overline{T} \cap B$ belongs to $A \cap B$, whence $a < b_1$. Therefore b_1 does not belong to \overline{T} and so there is an arc $L_1 \subset L'_1$ with end points v_1 and b_1 such that $L_1 \cap \overline{T} = \{v_1\}$. We get $v_1 \in A \cap L'_1 \subset A \cap D - \{p\}$, whence

$$\varrho(p, v_1) \leqslant d(\{p\}, A \cap L_1') < 1/2$$

and, by (1), a continuum $U_1 \in K$ exists such that $v_1 \in U_1$. Let us take an arbitrary point $u_1 \in B \cap U_1$, which exists according to (2).

If we had $u_1 < s$, a positive integer j would exist such that $u_1 < s$. and $T_i \neq U_1$ for i > j. Thus we should have $T_i \cap U_1 = 0$ for i > j. However, by (7), there would be points $t_i \in T_i$ such that $\lim \rho(p, t_i) = 0$, whence $\operatorname{Lim} \overline{pt_i} = \{p\}$. Since $u_1 \in U_1 \cap B \subset A \cap B$, by (1), (4) would imply $q < u_1$. On the other hand, $s_i < b_1$ because we should also have $s_i \in A \cap B$ for i > j. Therefore $q < u_1 < s_i < b_1$ and applying (5) to the continua

$$C_1 = L \cup \overline{pt_i} \cup T_i, \quad C_2 = L_1 \cup U_1,$$

we should obtain $C_1 \cap C_2 \neq 0$. But since $L_1 \subset L_1' \subset D - L$ and $U_1 \cap L$ $C(A-\{p\}) \cap L=0$ by (1) and (3), there would be $L \cap C_2=0$. Furthermore, $T_i \cap L_1 = T_i \cap \overline{T} \cap L_1 = T_i \cap \{v_i\} \subset T_i \cap U_1 = 0$, i.e. $T_i \cap C_i = 0$ for i > j. Hence $\overline{pt_i} \cap C_2 \neq 0$ for i > j, which would give $\{p\} \cap C_2$ $= (\operatorname{Lim} \overline{pt_i}) \cap C_2 \neq 0$, i.e. $p \in C_2$, contrary to (1) and the inclusion $L_1 \subset D - L$ (because $U_1 \in K$ and $p \in L$). We thus have $s \leq u_1$.

If some continuum T_k contained the point v_1 , we should have $T_k = U_1$ and could assume $s_k = u_1$, since $s_k \in B \cap T_k$ and the point u_1 had been chosen arbitrarily in the set $B \cap U_1$. This, however, is impossible, since $s_k < s$ according to (8). Hence v_1 belongs to none of T_i (i = 1, 2, ...)i.e. the union T of T_i does not contain v_1 and thus $v_1 \in (\overline{T} - T) \cap U_1$.

Now, supposing that for some n=1,2,... a continuum $U_n \in K$ and points u_n , v_n are given such that

$$(9) s \leqslant u_n \epsilon B \cap U_n, v_n \epsilon (\overline{T} - T) \cap U_n,$$

$$\varrho(p, v_n) < 1/2^n,$$

we shall define U_{n+1} , u_{n+1} and v_{n+1} .

In fact, we have $U_n \subset D - L$, according to (1) and (3). Thus $\varrho(L, U_n)$ > 0. By the same reasoning as previously (for n+1 instead of 1), a number $\varepsilon_{n+1} > 0$ exists such that if $d(L, X) < \varepsilon_{n+1}$, then $d(\{p\}, A \cap X) < 1/2^{n+1}$ for an arbitrary compact subset X of D. Similarly, we find an arc $L'_{n+1} \subset D-L$ which intersects T, satisfies

$$d(L, L'_{n+1}) < \min \left\{ \varepsilon_{n+1}, \, \varrho(L, U_n) \right\}$$

and has b_{n+1} as an end point, where $b_{n+1} \in B - \{q\}$ and $a < b_{n+1}$ for each $a \in A \cap B$. Then also $L'_{n+1} \subset D - U_n$, $b_{n+1} \notin \overline{T}$ and an arc $L_{n+1} \subset L'_{n+1}$ exists with end points v_{n+1} and b_{n+1} such that $L_{n+1} \cap \overline{T} = \{v_{n+1}\}$. Hence

$$\varrho(p, v_{n+1}) \leqslant d(\{p\}, A \cap L'_{n+1}) < 1/2^{n+1},$$

i.e. (10) holds for n+1 instead of n, and there is a continuum $U_{n+1} \in K$ containing v_{n+1} . Thus a point $u_{n+1} \in B \cap U_{n+1}$ exists, according to (2). The proof that $s \leq u_{n+1}$ is quite similar to the preceding one, namely that $s \leq u_1$; it is sufficient to put everywhere n+1 instead of 1. Similarly, the set T does not contain the point v_{n+1} . We thus get (9) for n+1instead of n.

Moreover, we have $u_n < u_{n+1}$. To show this, suppose on the contrary that $u_{n+1} \leq u_n$. Since

$$v_{n+1} \in L_{n+1} \cap U_{n+1} \subset L'_{n+1} \cap U_{n+1} \subset (D-U_n) \cap U_{n+1}$$

the elements U_n , U_{n+1} of **K** are distinct, i.e. disjoint, and thus $u_n \neq u_{n+1}$, by (9). Hence $u_{n+1} < u_n$. It follows by the inclusion $L_{n+1} \subset D - U_n$ that the subcontinua U_n and $L_{n+1} \cup U_{n+1}$ of disk D are disjoint. Let G denote the component of $D-(L_{n+1}\cup U_{n+1})$, containing U_n . Thus G is an open set in D (ibidem, p. 163) and contains the point u_n .

If a point s_i (i = 1, 2, ...) belonged to G, it would be joined to u_n with an arc $I \subset G$ (ibidem, p. 182). But since $u_n \in A \cap B$, we should have $u_n < b_{n+1}$. On the other hand, (8) and (9) would give $s_i < s \le u_{n+1}$, whence $s_i < u_{n+1} < u_n < b_{n+1}$. Applying (5) to the continua

$$C_1 = I$$
, $C_2 = L_{n+1} \cup U_{n+1}$,

we should obtain $C_1 \cap C_2 \neq 0$, which is impossible since $I \subset G \subset D$ $-(L_{n+1} \cup U_{n+1})$. Thus no point s_i belongs to G (i=1,2,...).

It follows from (9) that $v_{n+1} \in U_{n+1} - T_i$ for i = 1, 2, ... So T_i and U_{n+1} are distinct elements of **K**, whence

$$T_{i} \cap L_{n+1} = T_{i} \cap \{v_{n+1}\} \subset T_{i} \cap U_{n+1} = 0$$

i.e. $T_i \subset D - (L_{n+1} \cup U_{n+1})$. The continuum T_i containing the point s_i which does not belong to the component G must therefore be contained in D-G for i=1,2... We thus obtain the inclusion $T \subset D-G$ which, by (9), yields the contradiction

$$v_n \in \overline{T} \cap U_n \subset \overline{D-G} \cap U_n = (D-G) \cap U_n = 0$$

since $U_n \subset G$; and the inequality $u_n < u_{n+1}$ is shown.

In this way, we have got infinite sequences of continua $U_n \in K$, points $u_n \in B \cap U_n$ and points $v_n \in U_n$ satisfying $s \leq u_n < u_{n+1}$ for

514 A. Lelek

n=1, 2, ... and $\lim \varrho(p, v_n)=0$, by (9) and (10). Therefore $\lim \varrho(p, U_n)=0$ and an infinite subsequence $U_{n_1}, U_{n_2}, ...$ (where $n_1 < n_2 < ...$) of mutually distinct sets can be chosen since no continuum U_n contains p, according to (1). Then the points

$$s \leqslant u_{n_1} < u_{n_2} < \dots$$

constitute a converging sequence with $\lim u_{ni} = u \in B$, whence $u \in \overline{A \cap B}$, by (1), and $u \neq q$, by (4). Thus $s < u \in S$ follows, contrary to (6).

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK
MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 9. 6. 1961

A remark on duality

b

S. Eilenberg (New York) and K. Kuratowski (Warszawa)

We shall consider triples (X, U, A) in which

- (i) X is a connected compact Hausdorff space,
- (ii) U is a connected open subset of X,
- (iii) A = X U.

If U is dense in X then we say that (X, U, A) is a compactification of U. If further A is zero-dimensional then we say that (X, U, A) is a light compactification of U. For each triple (X, U, A) we may construct a light compactification $(X, U, A)^*$ of U by regarding each connected component of A as a single point. Thus $(X, U, A)^* = (X', U, c(A))$ where c(A) is the component space of A.

For every locally compact Hausdorff space U we have the Čech compactification $(\beta(U), U, \delta(U))$ which gives rise to the *standard* light compactification $(\beta(U), U, \delta(U))^* = (\beta'(U), U, \delta'(U))$ of U. This one is characterized by the property that for each light compactification (X, U, A) of U there exists a unique map $(\beta'(U), U, \delta'(U)) \rightarrow (X, U, A)$ which is the identity on U.

The purpose of this note is to show that, in a sense that will be specified below, among all the light compactifications (X, U, A) of U, the standard one can be characterized by the fact that X has the lowest possible connectivity in dimension 1. Thus if X is 1-acyclic then (X, U, A) is necessarily the standard light compactification. These considerations imply that in any triple (X, U, A), if X is 1-acyclic then c(A) and $\delta'(U)$ are homeomorphic. In particular, this holds if $X = S^n$ is the n-sphere, n > 1. In this case the result has been established recently by M. K. Fort, Jr. [1] solving a question raised by Kuratowski. Much earlier the case n = 2 was considered by L. E. J. Brouwer (see e.g. [2], p. 386).

The considerations are based on cohomology in dimensions 0 and 1. We summarize briefly the relevant facts.

(1) For each compact pair (X, A) we have an exact sequence $0 \rightarrow H^0(X, A) \rightarrow H^0(X) \rightarrow H^0(A) \rightarrow H^1(X, A) \rightarrow H^1(X) \rightarrow H^1(A)$.