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Reversibility in absolute-valued algebras
, N
K. Urbanik (Wroctaw)

Let 4 be an algebra, not necessarily associative, over the real field R,
which is a normed linear space under a norm | | satisfying, in addition
to the usual requirements, the condition lzy] = |#||y| for every &,y of A.
Such an algebra is called absolute-valued. A complete description of all
absolute-valued division algebras was given by F. B. Wright ([4]), who
proved that every such algebra is isotopic to one of the following: the
real field R, the complex field €, the quaternion algebra @ or the Cayley-
Dickson algebra D. A. A. Albert ([1]) had previously established this
result under the restriction that the algebra be algebraic in the sense
of every element generating a finite-dimensional subalgebra. F. B. Wright
and the present author have shown that an absolute-valued algebra with
a unit element is isomorphic to one of the classical algebras R, C, Q,
and D ([3]). Infinite-dimensional absolute-valued algebras with an in-
volution were studied in [2].

An element # from 4 is said to be reversible and to have Yy a8 a re-
verse if

1) TAHY—ay =x+y—yr =0.

If an algebra has a unit element ¢, then ¥ is the reverse of # if and only
if e—y is the inverse of e—a. In equation (1) there is no reference to the
unit element and the relation between z and y can hold in any algebra
regardless of the existence of a unit element. Therefore the concept of
reverse is capable of replacing the inverse in algebras without unit
element.

We say that an algebra satisties the reversibility condition it all its
elements except of a countable set are reversible. In the present note
we shall give a complete description of all absolute-valned algebras satis-
fying the reversibility condition.

It is obvious that all the classical algebras R, 0, @ and D satisfy
the reversibility condition. Moreover, all their elements except the unit
element are reversible and have exactly one reverse. We note that in
arbitrary absolute-valued algebras the uniqueness of the reverse of
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elements # with the norm [#| # 1 can easily be established. In fact, if
y, and y, are the reverses of », then @-4-y,—wy, = ®+y,~woy,, which
implies the equality |y,—y.| = |@||y1—¥./- Hence, taking into account
the inequality |»| # 1, we get the equality ¥, = y,. In the sequel, for
|z % 1, the unigue reverse of # will be denoted by z~.

THEOREM. An absolute-valued algebra satisfying the reversibility con-
dition is isomorphic to one of the following: the real field, the comples field,
the quaternion algebra or the Cayley-Dickson algebra.

Before proving the Theorem we shall prove some lemmas. In what

follows 4 will denote an absolute-valued algebra satisfying the rever-

sibility condition. Further, [, @y, ..., #»] Will denote the linear set spanned
by the elements x,, @,, ..., . from 4. For each # in A4, we shall denote
by A (z) the subalgebra generated by a.

We shall use the following lemma, proved in 3] (p. 862).

LemwmaA 1. If the elements @y, @y, ..., xn from A commute with one
another, then (@, &y, ..., y] i an inner product space.

For each » in 4, let us introduce the notation
(2) al'=g, ot =gh); =z, = @he n=1,2..).

LeMma 2. The reverse of a reversible elemenmt w, with (x| < 1, can be

expanded into the series
0o oo
&7 = — Zw[" = —Zm"].

Na=1 =l

Proof. Using the notation
Uy =B(87);  Upgr =B ; O =(B)T, V=048 (n=1,2,..),
we start from equation (1) and, by means of successive multiplication by 2,
obtain the equations
Pt Uyt =0, B —0u =0 (m=1,2,..).

Hence and by (1) we conclude that the reverse z~ can he expanded in
the following manner:

N N
(3) w“:—Zw["+uN+l=-2m"1-]—7;N.,_1 (N =1,2,...

Ne=l nw]
Since |uyia| = (o] = |z~ ||u[Y (N =1,2,..), the sequences uy and vy
converge to 0 when N tends to infinity. Passing to the limit in (3) we
get the assertion of the lemma.

CorOLLARY.. For every element x from A the equality

(4) 2t =M (n=1,2,..)
holds.
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Indeed, for non-denumerably many real numbers 1 the elements
Az are reversible and

o0

(o)== Yira" = — 32,

n=1 n=1

I8

provided |Az| < 1. Hence noting that the coefficients of A* are the same
in both expressions we get formula (4). In the sequel by 2* we shall denote
the common value of z* and a™. Definition (2) yields the formula

() Tt =gt =" (n=1,2,..).
LeMMA 3. For every pair a,, x, of elements from A we have the equality
(6) . whm+ (01 + a1 ) @y = w1w§+m2(w1mz+m2x,) .

Proof. For every pair a, # of real numbers we have the equalities

(o + ﬂ%)z(‘wl + Bmg) = o2l + aﬂz-”g“’l =+ a2ﬁ (@123 + m2) T, 4
+ azﬁ“"f-’”z + ﬁamlli + ‘1/32(“71 Dy + @y 1) X
(azy Bap) (o, 4 ,59’2)2 = d'ni+ ‘1.32971”7;- + ‘lzﬂmx(mlwz +m2,) +

+ Byt + fo + af’y(w 2y + 2, %),
which, by virtue of (5), imply

af’ (wgwl + (@ + xz-’ﬁ)%) + o8 (m;lmz + (@10 + @y 2y) ”1)
= ‘152 (“71"”2 + (@1 2y +- 5"'2“'1)) + azﬂ(a’zwi + @y (@ 2y + -’”2%)) .

Comparing the coefficients of af* on both sides of this equation we get
formula (6).

LEMMA 4. For every element @ from A we have the relations

(#*) e [2° 2°]
and

(7) 28 = aPa

Proof. Substituting in formula (6) #, = #°, @, = 2 we get, in virtue
of (5), equality (7).

Since, by (5), 2a® = 2%, we infer, in view of Lemma 1, that [z, 2]
is an inner product space. If » and #* are linearly dependent, then, of
course, A(z) = [«]=[2?], which implies the assertion of the Lemma.
Now let us suppose that « and 2* are linearly independent. Let 2 be an
element from [w, 2?] different from 0 and orthogonal to z. Of course,
element 2z can be written in the form ax + fa?, where

®) | g0,
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Taking into account the equality
(9) 2 = a®2? + 2afr® -+ pA(a?)?

and (7), we conclude that 4 commutes with 2. Consequently, by Lemma1,
[22,2%] iy an inner product space. Further, since # and 2z are orthogonal
and commute with one another, we have the formula

a2 = I(@+2) (@—2)| = [o-+2ja—#| = [of+|2f = |o*| 4|24

Hence it follows that #* and #* are linearly dependent. Consequently,
according to (8) and (9), the element (#%)? is a linear combination of g
and «* which completes the proof.

Lewma 5. For every @ from A, o commutes with a4, a%a® and (a3).

Proof. Substituting in (6) #, = 2, @, = 2, we get, by virtue of (5),
the equality

(10) o2t = riot.

Further, substituting @, = 4%, 2, = 2? and taking into account formula (M),
we have

1) (2220 + 2 (%) 0? = &¥(a)? + 2a*(a®) .

By Lemma 4, (22)® is & linear combination of #* and a°. Thus by (7), we
have the equahty

(12) a3(2?)? = (a?)2a8.

Hence and from (11) the formula

(13) (wP2®) @ = o)

follows.

Finally, substituting in (6) T = a?, @

=o* and applying (7) we
obtain the equality Pplying (7)

(14) (@2 + 2 (20%) 2 = a(a)? + 20%(a%09) .

By simple computations for every palr a, f of re

al n b
the equalities numbers we get

(15) (0% +B2) (o + o) = aSates L d2? (o (a®)%) + 2082t +
+ @B (@ + (a2 20°a?(2"a8) + P 0
+ afi(@)(m (222 -+ 20243(a?)2a - o ((@%)2)" + B3(a)(a?)? +
+2aB(@*(a0%) + 2048 (ad)2 L 20203 (w (22)¥) + dodfratat 4
+ 20000 + 2aBlat(@t)s + do2 i (afan)
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and
(16)  (aw+ B2 (am+ fa?)? = o0 + of (1 (%)) + 204Brta? +

+ a4,3(mz)s + az/ga($2)4 + 2a3ﬂ2(m2m3)m2+ aaﬂza;a(mz)z

+aft ooy (~’02>2+2a2ﬁ“w’ 2+ (@) 4 B+

+ 2ap4(0%?) (a%)° 4 2048 (2°)P-+ 2026%(z (2%)) P+ 4o frartad +

+2a”ﬂ2(w2)2w3+2aﬁ“(w2)’w“+4a2ﬁ“(a:2wﬂ)m3.
By (7) the right-hand sides of the last equalities are identical. Thus, in
view of (7), (10), (12) and (13), we have the equality
A7) af(@®){o(@®)) -+ 20N (2?)2(a%a®) + 2ap'®(2)? + 2aXpH{ ot +

+ 2020w (@2)) -+ 4o2Boad () + 2B (mﬁ)z) + 43t
= aft{w(2%)?) (02)° -+ 20 (@a®) (¢2)° + 2f4(0)a® + 202F0H(a2)! +-
+ 2026 (0 (27)2)0® + 40PB%(0%0°) 28 + 03B (a?)?) a? + LdfPartad

Finally, comparing the coefficients of o?f® and ¢®f* on both sides of this
equality, we get the following equalities:
(18)  (a)it +2%(w(22)?) + 20%(0?®) = @M (2?)? + (w (02)Y) 2° + 2 (a%a?) o?,
(19) a2 {w (02)) + datt = (w(a2)?) a2 + datas,
By Lemma 4, (2*) is & linear combination of #* and #%: (#?)? = A2*+ s
Substituting this expression in (18) and (19) and applying (7) and (10),
we obtain the equalities
(20) w3 (P) = pate - (02)ad,  adet = i,

which imply 2%2?x%) = (2%2%)a3. Combining this equality and (14), we
obtain the relation %) = (4%)%2?, which together with (10) and (13)
completes the proof of the lemma.

LemMMA 6. For every element % from A we have the relation

2 e[, 27].

Proof. Contrary to our statement, let us suppose that #°¢ [z, 2*].
Then, of course, the elements » and #* are linearly independent and,
consequently, the space [x,a? a¥] is three-dimensional. Since, by (5)
and (7), the elements @, «* and #* commute with one another, we infer,
in view of Lemma 1, that [», 4% 2°] is an inner product space. Let z, y, 2
be an orthonormal basis of [#, 4% 2°]. Since #, y, # commute with one
another, we have the equalities

(21)  |ar—g? = |(@+y)(@—y)| = lo+ylla—yl =2 =1 +¥,
(22)  |at—2t| = |(+ 2) (0— 2)| = @+ 2l — 2] =2 = |a?| +]2]
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and.
(23) =22 =y +2)(y—2)| = ly+elly—2 = 2.

We note that y? and #* are linear combinations of 2%, (#*)?, %, &%, 2%,
222, (2*)2. Thus, by (7) and Lemmas 4 and B, 22 commutes with 42 and <2,
Consequently, by Lemma 1, [«2, 2] and [#?, 2*] are inner. product spaces.
Thus from (21) and (22) we get the equalities y* = —o* and 2 = —a?,
which imply y® =22 But this contradicts formula (23). The lemma is
thus proved.

As a direct consequence of the last lemma and Lemma 4 we gef
the following

COROLLARY. For every element @ from A the equality A (w) = [2, #*] holds.

LemMA 7. If y is a reverse of , then

(24) 7y = yat,
(25) Y = ay,
(26) w(wty) = (*y)@
(27) 2A(aPy) = (a%y) "

Proof. Equality (1) can be written in the form
{28) ’ oY =Yr=2s+Y.

Substituting in formula (6} 4, = », #, =y and taking into account the
lagt formula, we get equality (24). Furthermore, by symmetry, we get
formula (25). From (24) and (28) it follows that y commutes with all
elements of [#,¥] and, consequently, by the Corollary to Lemma 6,
it commutes with all elements of A (). Thus using (28) and substituting
in formula (23) ®, = ¥y, ®, = 2+ Ax?, we obtain for every real number 1
the equality
(yo#) @+ Mya)a* = @ (ya*) + Aa(ya?) ,

which implies (26) and (27).

LevmA 8. If @ is a reversible element of A and if the subalgebra A ()
s of dimension two, then all reverses of x belong to A (x).

Proof. Let y be an arbitrary reverse of z. Contrary to our statement,
let us suppose that y ¢ 4(z). By (5), (24) and (28), the elements x, 2% y
commute with one another and, consequently, by Lemma 1, [, 2% ¥]

is an inner product space of dimension three. Let  be an element from .

[, 2%, y] with the unit norm orthogonal to both # and 2 Since, by the
Goer]la,ry to Lemma 6, 2* and (2®? belong to [z, 2], the element u? is
a linear combination of z, 2%, a%y, y, 4 and, consequently, by formulag
(25), (26), (27) and (28), it commutes with both  and a?. Thus, by Lemma 1,
{4% «,2%] is an inner product space. Further, using a representation
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theorem for commutative absolute-valued algebras proved in [3] (p. 865),
we infer that the algebra .4(z), being of dimension two, is isomorphic
either to the complex field € or to the algebra C* of all complex numbers
with the usual addition and scalar multiplication, where the product
of z, and , is equal to %, Z,. Since both these algebras contain an idem-
potent which is non-trivial (i.e. different from 0), there exists an idempotent
o belonging to [#, #*], with |a| = 1. Taking into account the orthogonality
of w and @, we have
wt—a| = [ut—a?| = |(u+a)(u—a)| = [u+allu—a| = 2.

Since both u? and a are elements of the inner product space [u?, z, #%],
the last equality implies #* = —a. Further, the isomorphism between
A(x) and O or C* implies the existence of such an element b of 4 (x) that
p® = —a. Thus w? = b2 Hence, by the commutativity of » with all the
elements of 4 (x), we have either 4 = b or 4 = —b. Consequently, « belongs
to [, 2*]. But the element  is orthogonal to both @ and #? and is different
from 0, which gives a contradiction. The lemma is thus proved.

LeMMA 9. For every element x from A different from 0, the subalgebra
A(m) is isomorphic to either the real field or the complex field.

Proof. By the representation theorem for commutative absolute-
valued algebras every subalgebra generated by one element different
from 0 is isomorphic to one of the following: the real field, the complex
field or the algebra C* ([3], p. 865). Contrary to our statement, let us
suppose that there exists an element «, in 4 such that 4 () is isomorphie
to O*. We can then find a pair ¢,, i, of elements of A () such that &= e,
ey = oy = — 1By, 13 = —6 and A(w)=[6, %) Let us consider a non-
denumerable family of elements from A (x,) of the form Aey+ (1— 2212,
where |4 % % and |4| < 1. Since the algebra A satisfies the reversibility
condition, there exigts a number 1, such that

(29) Al <1, Al #4
and the element yo = Ao+ {1— 75)'%, is reversible. By simple compu-
tations we get the equalities :
€ = — 1—4m)" (?/%‘1‘220%) ’
by = (L— 4237 (1= 22) 7" (A + (1—22)%) »
which show that the subalgebra A (y,) is of dimension two. Thus, by
Lemma 8, A(y,) contains all reverses of y,. Representing a reverse of
the element v, in the form ae,-+pi, we deduce from (1) the following
equations for o and f:
(A=A a+(1—2)"p =k,
(1= 2P o+ (14 A = — (1= )

1/2
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However, it is very easy to verify that these equations have no solution
whenever 4, satisfies inequalities (29), which implies a contradiction.
The lemma is thus proved.

Levma 10. For every pair e, 6, of linearly independent idempotents
in A there exists an element v ¢ 4 such that A (v) is of dimension two, e, e A (v)
and A () C[e, e, (6,— )]

Proof. First we shall prove that there exists a sequence 4, 4, ...
of real numbers tending to 0 such that all the subalgebras A (e, + Ane,)
are of dimension two. Contrary to this, let us suppose that there exists
a positive number o such that the subalgebras A (e, + le,) are of dimengion
less than two whenever || < w. Thus for |A| < @ we have the equalities

(30) (et 6] = e+ 6), (6,—26,) = ay(e,— Jey) ,
where a; and o, are real numbers depending on 1. Hence and from the
equality
(e1+ A6+ (6,— Ae,)? = 2¢, + 2M%,

we. get the equality

26,420, = ay(6; + 26;) + aye; — Ae,) .
Thus, by the linear independence of e, and e¢,,

2—a—ay=0, 222 —Aay+ Aoy = 0

a.ntli, consequently, a; = 1+1, ¢, =1—1. Now equality (30) can be re-
written in the form .

1+ Xey+ 26162+ €36,) = (1 1) (e1+2ey) ,

whenee the formula e+ ey, = é,+¢, follows. Further, in view of the
last taqua[lity, we obtain (e;—e,)? = 0. Since absolute-valued algebras
f:ontam no divisors of zero, we have 6, = 6,, which contradicts the linear
independence of ¢, and ¢,. Thus there exists a sequence 4, 1,, ... tending
o 0, for which A (¢, + Aue,) (n = 1,2, ..)are of dimengion two, and, con-
fsequently, by Lemma 9, are isomorphic to the complex field. Hence we
infer that there exist elements v, with unit norm, orthogonal to vj, such
that A(e;+aney) = 4 (1) (n = 1,2,..). By the Corollary to Lemma 6
all the elements v, and v2 are contained in the unit sphere of the subspacé
[e1, 62y (6,—€,)2]. Thus the sequence Ay, 4,, ... containg a subsequeﬁée con-
vergent to an element v such that 9, 0% €[ey, €, (6;—e,)*] and v is ortho-
gonal to %, Since e+ Anen € A (vg) (n — 1,2,..) and ¢, = lim (e, + Ane,),
w6 have ¢, ¢ 4 (v). Further, from the orthogonality of v anc;‘:vo: it follows
that 4(v) is of dimension two, which completes the ‘proof.

LEMBIA 11. 1’ €y and €, are 'Ldempotents from A, then (31 — 62) commates
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Proof. By symmetry it suffices to prove that (e,—e,)* commutes
with e,. Substituting in formula (23) @, = €,, , = ¢, we get the equality

€162+ (€161 €s€1) 61 = 6, +e1(e:16,+ 667) .

In other words, e; commutes with e,—e,6,—e.e;. Hence and from the
equality (6,—6x)? = €+ 6, —e16,— 6,6, We get the assertion of the lemma.

Proof of the Theorem. To prove the Theorem it is sufficient
to show that the algebra 4 has a unit element (see [3], p. 863). By Lemma 9
every subalgebra A (z) (z <4, 2 s 0) has a unit element. Consequently,
it suffices to prove that the algebra A contains exactly one nontrivial
idempotent. Contrary to this, let us suppose that there exist two non-
trivial idempotents, ¢; and e,. Of course, ¢; does not belong to A4 (e,) and,
consequently, e, and e, are linearly independent.

First let us consider commuting idempotents. By Lemma 1, [e,, é,]
is then an inner product space. Since e, and e, are linearly independent,
the space [e, ¢,] is of dimension two. Therefore we can find in [e, €]
an element ¢ with unit norm and orthogonal to e,. Writing ¢ = ae, + fe,,
where « and B are real numbers, we have the equality

(31) ¢ = (o*+af)e,+ (B +af)es—af(e,— &) .

Hence and from Lemma 11 we infer that ¢® commutes with e, and, con-
sequently, by Lemma 1, [e¢, ¢?] is an inner product space. Using the
orthogonality of ¢, and ¢ we have the equality

lt—e| = [{e+e)(c—e)| = let+ealle—el =2,

which implies ¢ = —e. Thus, by (31), (a®-+af+1)e + (B2 + aB)e;
= af(e,—e,)t. By the linear independence of ¢, and e, the right-hand
side of the last equality is different from 0. Thus, e, €[é;, 6,]. In other
words [e,, 6,] is a commutative two-dimensional subalgebra of 4. Being
isomorphic either to the complex field or to the algebra C* (see [3], p. 865),
it is generated by an element of A and, consequently, by Lemma 9,
it is isomorphic to the complex field. But the complex field does not
contain two non-trivial idempotents, which gives a contradiction. Thus
we have proved that the algebra A does not contain any pair of commuting
non-trivial idempotents.
Now let us assume that -

(32) 6165 = €48 .

By Lemma 10, the idempotent e, belongs to & two-dimensional subalgebra
A(v) contained in [e;, e, (6,—e,)?]. Of course, ¢, and v are linearly i{l—
dependent and commute with one another. Writing the” element v In
the form o = Je,+ p(e,— é;)*-+e, and taking into account Lemma }1,
we see that e, commutes with ve, = v— e, —u(6;— ), which, according
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to (32), implies the equality » = 0. Further, from the linear independence
of ¢, and v the inequality u 5 0 follows. Thus (e; —e¢,)* € 4 (v) and ¢;, (¢, —¢,)*
are linearly independent. Hence and from the isomorphism between 4 (v )
and the complex field it follows that the subalgebra A(e,—e, ) is of

dimension two. Thus A((er—@z) ) = A (v) and, consequently, ¢; eA( 61— €5)° )
By symmetry, we also have the relation e, eA((el~eg)2), which shows
that the subalgebra 4 ((el—ez)z) contains two non-trivial idempotents.

But this contradicts the isomorphism between A((el—ez)z) and the
complex field. The Theorem is thus proved.
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A characterization of abelian groups of automorphisms
of a simply ordering relation *
by
C. C. Chang (Los Angeles, Calif.) and A. Ehrenfeucht (Warszawa)

A binary relation S is a set of ordered pairs (z,y) of elements z and y;
the field of 8, denoted by F(8), is the set of all elements » for which there
exists an element y such that either <z, y) eS8 or (y,z> 8. A binary
relation S is a simply ordering relation if for any elements z,y, 2 eF(8),

(i) <z, x>el,
(ii) for x # y, either {(z,y> S or (y,m) e 8, but not both,
and

(iii) if <@, yd> ¢ 8 and (¥, 2) €8, then <{z,2>¢f.

A set X is said to be simply ordered by a relation 8, if 8 is a simply
ordering relation and X C F(§). Two binary relations § and T' are iso-
morphie, in symbols § = 7', if there exists a one-to-one mapping 7 of F(S)
onto F(T) such that for z, y e F(8), {x,y> e 8 if and only if {f(z),7(y
The mapping f is called an isomorphism of 8 onto T. If the range of f is
a proper subset of F(T) then f is an isomorphism of 8 into T} if §and T
are the same relation, therr the isomorphism onto is called an automorphism
of 8. Given a binary relation S, the set of automorphisms of 8, denoted
by G(8), is a group under the usual operations of functional composition
and inverse: In this paper we are interested in those groups G(8) which
are groups of automorphlsms of a simply ordering relation 8. We shall
prove the following theorem. Let G be an ‘abelian group. A necessary
and sufficient condition that G be isomorphic to a group G(8), for some
simply ordering relation 8, is that & be isomorphic fo a direct (cartesian)
product H @; of groups @; each of which is a subgroup of the additive

group of real numbers. This result will be provided as a consequence to
several lemmas.

* This paper contains results announced by the auﬂmrs in [l] a.ml [2] Tha ﬁrst
named author was supported by a grant from the National
of the type we consider here were presented by Goffman [4].
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